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ABSTRACT
Currently, hardware trends include a move toward multi-
core processors, cheap and persistent variants of memory,
and even sophisticated hardware support for mutual exclu-
sion in the form of transactional memory. These trends, cou-
pled with a growing desire for extremely high performance
on short database transactions, raise the question of whether
the hardware primitives developed for mutual exclusion can
be exploited to run database transactions. In this paper,
we present a preliminary exploration of this question. We
conduct a set of experiments on both a hardware prototype
and a simulator of a multi-core processor with Transactional
Memory (TM.) Our results show that TM is attractive under
low contention workloads, while spinlocks can tolerate high
contention workloads well, and that in some cases these ap-
proaches can beat a simple implementation of a traditional
database lock manager by an order of magnitude.

1. INTRODUCTION
To the best of our knowledge, there has been no published

consideration of using hardware synchronization primitives
such as transactional memory to directly support concur-
rency control for database transactions. One reason for
this is perhaps that these hardware primitives have little or
nothing to offer in the context of arbitrarily complex, heavy-
weight database transactions running over disk-resident data.
However, the convergence of a number of important trends
lead us to believe that this issue should be revisited.

The first such trend is the demand for special-purpose sys-
tems targeted at very fast processing of very simple trans-
actions. The DBMS industry has already begun reacting
to this demand — there are startups targeting this market
(including VoltDB and other, stealth-mode companies.) An
important characteristic of these workloads is that they con-
sist of very short transactions that contain no I/O or think
time. For such workloads, the overhead due to traditional
concurrency control methods will be by far the major part of
the transaction execution path [5]. On a uniprocessor, there
is no reason to incur this overhead [4], since there is no wait
or think time in one transaction to be overlapped with the
execution of another. In other words, on a uniprocessor,
the best concurrency control approach for such workloads is
likely to be to truly serialize the transactions.

However, true serialization collides with the second trend,
that is, the growing dominance of multicore processors. Clearly,
on a multicore processor, true serialization of transactions is
not an attractive option, since true serialization will waste

most of the power of the multiprocessor. If we give up on
true serialized execution and run the transactions concur-
rently, we once again face the need to implement some kind
of concurrency control. The traditional locking approach
may be inefficient for short-lived transactions due to the
high overhead of acquiring and releasing locks, and the cost
of resolving contention, including thread scheduling and syn-
chronization.

These trends are converging to place extreme pressure on
techniques enforcing the isolation requirements of database
transactions. Accordingly, in this paper we investigate us-
ing hardware primitives directly as a concurrency control
mechanism for workloads consisting of very short transac-
tions. We evaluate and compare the performance of three
Concurrency Control (CC) mechanisms: Hardware Transac-
tional Memory (HTM), test-and-set spinlocks, and a simple
implementation of a database lock manager. We then use
both an early hardware prototype implementation of trans-
actional memory and a simulator supporting TM to conduct
a set of experiments on each CC approach under different
workload conditions.

We emphasize what we are not studying in this paper. We
are not studying the question “Given traditional DBMS ar-
chitectures and workloads, can we improve performance by
replacing the lock manager with concurrency control based
upon hardware primitives?” The answer to that question
is almost certainly “no,” since current architectures present
substantial overhead due to their generality and the legacy
assumptions in their design. Rather, we are studying the
question “what will happen with respect to the performance
of concurrency control if we build a stripped-down system
optimized for the execution of short transactions over main-
memory data?”

Building such systems will require advances including re-
thinking storage structures (slotted pages of variable-length
records are probably not optimal) and transaction logging.
While it is too early to be certain, it is possible that the
emergence of very fast persistent memory such as phase-
change memory [2], perhaps in addition to new software
techniques like “k-safety” [15], will eventually lead to ex-
tremely efficient mechanisms for supporting transaction per-
sistence. We do not pretend to address all of these issues in
this paper; rather, our intent is to shed light on what will
be a crucial component in any such system, namely, very
light-weight concurrency control for short-lived transactions
on multi-core processors.

We also wish to acknowledge that at this point it is not



clear when, if ever, transactional memories will become widely
available. Furthermore, due to the extremely primitive na-
ture of the hardware transactional memory prototype to
which we had access, the workloads we explore in this pa-
per are greatly oversimplified even when compared to the
short transactions that are the target of extreme transac-
tion processing. Hence, again, we are not making claims
about the practicality of our work in any near-term sense.
Rather, we hope to raise the point that from the database
transaction processing perspective, a move by the hardware
community away from the development of hardware transac-
tional memory would be unfortunate, as a sufficiently pow-
erful future implementation of HTM could be of great ben-
efit to database transactional processing. To express this
differently, one sometimes hears computer architects won-
dering “what are we going to do with all the transistors we
will have on future chips?” In this paper we would like to
at least suggest “consider hardware support for transaction
isolation.”

The main contributions of the paper are as follows:

• We develop timing models for estimating the execution
time of a transaction using TM and spinlocks as CC
mechanisms. The accuracy of these models is verified
through a set of experiments.

• Through both the analytical model and the experi-
mental results, we show that TM and spinlocks are
promising CC approaches for workloads consisting of
a high volume of very short transactions. TM deliv-
ers high performance under low contention. Perhaps
surprisingly, although spinlocks do not differentiate be-
tween read and write access, and employ busy-waiting
instead of sleeping on a queue, spinlocks appear to
be more attractive than TM or database locks under
higher contention. We show that these hardware prim-
itives can beat the performance of our simple lock man-
ager by an order of magnitude.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 describes the analytical
model for each CC approach. Section 4 presents experiments
and results. Finally, Section 5 concludes the paper.

2. RELATED WORK
The idea of running short main memory transactions se-

rially was first proposed by Garcia-Molina and Salem in [4].
In that paper, the authors briefly mentioned that even if all
transactions are short, some form of concurrency control is
needed for multiprocessor systems.

Recently, that idea of serial execution for short-lived trans-
actions has been revived in the H-store system [17]. Stone-
braker et al. argued that it was the end of “one size fits all”
period for DBMS architecture [16], and that for each specific
type of application, we need a specialized database system.
Workloads for the H-Store system need to be highly par-
titioned so that each transaction usually touches only one
partition of the database. For that kind of workload, most
transactions can be executed serially without any concur-
rency control at all. In case that transactions need to access
multiple partitions, they employ a simple type of specula-
tive concurrency control [10]. However, the performance of
this approach degrades in the presence of non-partitioned
and abort-frequent workloads because an abort of a multi-

partition transaction causes cascading aborts of following
speculatively executed transactions.

In recent work, Pandis et al. showed that a conventional
lock manger severely limits the performance and scalability
of database systems on multicores [14]. By using thread-to-
data instead of thread-to-transaction assignments, they can
reduce contention among threads. However, since this ap-
proach is still based on database locks, it does not avoid the
problem of high overhead in acquiring and releasing locks.

In other recent work, Johnson et al. studied the trade-off
between spinning and blocking synchronization [7]. They
pointed out that while the blocking approach is widely used
in database systems, it negatively affects system perfor-
mance in multicore environments due to the overhead of co-
ordination with the operating system for scheduling threads.
The spinning approach, on the other hand, does not incur
that cost and offers a much lower overhead, but system
performance degrades under high load since the spinning
threads do not release the CPU even if they do not make
any progress. This work did not consider the option of using
spinning as an alternative approach for transaction concur-
rency control.

There has been also a great deal of work exploring meth-
ods of combining hardware and software facilities to en-
sure mutual exclusion and to coordinate concurrent access
to shared data structures [8]. However, to the best of our
knowledge there has been no published work considering us-
ing HTM and spinlocks in the context of database transac-
tions.

3. BACKGROUND
In this section, we explore HTM and spinlocks as CC ap-

proaches for database transactions. For each approach, we
give a simple timing model to provide insight into their ex-
pected performance. The model will be used to help explain
the results of our experiments on a hardware prototype and
a software simulator in Section 4. We also describe the im-
plementation of our simple lock manager.

3.1 Workloads and timing model
The workloads we study in this paper have following char-

acteristics:

• Transactions are very short and do not contain I/Os
or think time.

• The active portion of the database is stored in main
memory.

• Transactions come to the system at a rate high enough
to keep the CPUs busy.

To analyze the performance of a given CC method, we
separate the time spent for executing a transaction, called
total time, into three different parts:

• Transaction time: the time required to execute the
transaction in isolation with no CC. This time is con-
stant with respect to any CC mechanism.

• Overhead : the time spent running the transaction in
isolation with the CC method minus the transaction
time. This fraction depends on both the transaction
and the CC method.



• Conflict resolution cost (or conflict cost for brevity):
the time to run a transaction with the CC method in
the presence of other, concurrent transactions, minus
the transaction time and overhead. This fraction de-
pends not only on the transaction and the concurrency
control method, but also on the workload.

3.2 Transactional Memory
The concept of TM was first introduced by M. Herlihy

and J. E. B. Moss [6]. The idea of TM is to let pieces
of code run atomically and in isolation on each processor
in a multiprocessor system. These pieces of code appear
to be executed atomically and serially with respect to the
memory state. TM can be implemented either in software
or in hardware. In this paper, we only consider hardware
Transactional Memory (HTM) because of the low overhead
it offers.

HTM guarantees the atomicity and isolation of its trans-
actions by keeping track of their read sets and write sets,
recording old values of the write sets, and using cache co-
herence protocols to detect possible conflicts among trans-
actions. The initial machine state and values of objects that
are modified by a transaction are logged so that if the trans-
action fails, the machine can roll back to the initial state.
While the transaction is running, the cache coherence proto-
col automatically checks if there is any overlap between the
write set of the transaction and the write sets or read sets
of other concurrent transactions or between the read set of
the transaction and the write sets of others. If there is such
an overlap, the machine will abort one of two conflicting
transactions.

From a DBMS point of view, the idea of HTM is very
similar to that of optimistic concurrency control (OCC) [11].
However, they differ in the way of implementing the idea:
in HTM, conflicts are detected automatically by hardware,
while OCC is implemented in software.

3.2.1 Timing model
Suppose t0,∆tm, ttm are the transaction time, the over-

head, and the total time of using TM to run a transaction,
respectively.

Under no contention, we have:
ttm = t0 + ∆tm

Under contention, suppose ptm is the probability that a
transaction conflicts with others. Suppose that each time a
transaction gets aborted due to a conflict, the conflict occurs
right before the completion point. Thus, if the transaction
is successfully executed after k restarts, the total execution
time is (k + 1)(t0 + ∆tm), and the probability for this to
happen is pk

tm(1− ptm). On average, the total time is given
by:

ttm =

∞∑
k=0

(k + 1)(t0 + ∆tm)pk
tm(1− ptm)

= (1− ptm)(t0 + ∆tm)

∞∑
k=0

(k + 1)pk
tm

by reduction, we have
∞∑

k=0

(k + 1)pk
tm =

1

(1− ptm)2

therefore

ttm =
t0 + ∆tm

1− ptm
(1)

or
ttm = t0 + ∆tm + tcf tm (2)

where

tcf tm =
ptm(t0 + ∆tm)

1− ptm
(3)

is the conflict cost for TM.
We see that when ptm → 1, tcf tm →∞, or in other words,

TM performs very badly under high contention workloads
because it keeps restarting. We estimate the conflict proba-
bility as follows.

Suppose nt, nr, nw, andDB size are the number of threads,
the size of the read set, the size of the write set, and the size
of the database, respectively. A transaction conflicts with
others if at least one object of its read set belongs to the
write set of any other transaction, or at least one object of
its write set belongs to the read set or the write set of any
other transaction.

So at a given time, we need to know how many read ob-
jects and write objects are currently in the read set and the
write set of a transaction. Suppose that, on average, those
numbers are α1nr and α2nw, where α1 and α2 are two coeffi-
cients that depend on how a transaction accesses its objects.
If transactions access objects uniformly, and gradually from
beginning to the end, we have α1 = α2 = 0.5.

Therefore, roughly, the conflict probability can be esti-
mated by:

ptm = 1−(1−α2nw(nt − 1)

DB size
)nr (1− (α1nr + α2nw)(nt − 1)

DB size
)nw

If DB size is much bigger than (α1nr + α2nw)(nt − 1), we
can approximate p by:

ptm ≈ 1−(1−α2nw(nt − 1)nr

DB size
)(1− (α1nr + α2nw)(nt − 1)nw

DB size
)

using approximation again:

ptm ≈ 1−(1−α2nrnw(nt − 1) + nw(α1nr + α2nw)(nt − 1)

DB size
)

or

ptm ≈
(nt − 1)nw(α2nw + (α1 + α2)nr)

DB size
(4)

If we approximate α1 = α2 = 0.5:

ptm ≈
(nt − 1)nw(nw + 2nr)

2DB size
(5)

3.3 Spinlocks
The idea of using spinlocks to isolate concurrent transac-

tions is straight-forward. We use a spinlock to protect each
database object. Before accessing an object, transactions
are required to hold the corresponding spinlock for that ob-
ject. Locks are acquired and released following a 2-phase
protocol.

Deadlock detection or prevention is an interesting prob-
lem for this approach. Since locks we hold here are physical
locks, there is no list of which transaction is currently ”spin-
ning” on which lock. Therefore, there is no way to build the
“waits-for” graph, and we cannot use the deadlock resolu-
tion used by most lock managers. In this paper, we consider
two approaches for this problem.

In the first approach, we prevent deadlock by sorting all
objects before acquiring corresponding locks for them. By
sorting objects on their ids, at any time, active transactions
are ordered so that circular wait does not occur. In this
approach, when a transaction is trying to acquire a lock, if
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Figure 1: Percentage of locks a transaction holds
through its time life

the lock is held by another transaction, the thread running
the transaction simply does nothing but keeps trying until it
succeeds. To employ this approach, we need to know all the
objects a transaction will access before it begins execution.

In the second approach, we detect possible deadlocks by
using a timeout mechanism. Each time a transaction spins
to acquire a lock, we count the number of times it fails. If
this number exceeds a threshold, we assume that deadlock
has occurred, and we abort and restart the transaction.

The second approach differs from the first only in its dead-
lock handling policy. Since we did not need to refer to this
aspect of its performance to analyze our experiments, due
to space limitations, we only present a timing model for the
first approach.

3.3.1 Timing model
In our timing model, the total time of using spinlocks to

run a transaction can be represented by:
tspl = t0 + toverhead spl + tcf spl (6)

toverhead spl includes the sorting time and the time for ac-
quiring all spinlocks. Suppose tsort is the for sorting all
objects, and ∆spl is the overhead of spinning a lock. We
have:

toverhead spl = tsort + (nr + nw)∆spl (7)

tcf spl is the time spent for waiting other transactions if con-
flicts happen. Since transactions are ordered, at any given
time, a transaction may need to wait for from 0 to nt − 1
other transactions, where nt is the number of threads de-
fined in Section 3.2. Suppose that on average, the transac-
tion needs to wait for 0.5(nt − 1) other ones, and that pspl

is the probability that a transaction conflicts with another,
the waiting time is approximated by:

tcf spl ≈ 0.5(nt − 1)(t0 + toverhead spl)pspl (8)

pspl can be estimated in a way similar to the estimation of
pcf tm in Section 3.2, but note that here we do not differen-
tiate between read objects and write objects. To estimate
the average number of locks a transaction holds through its
timelife, we assume that transactions acquire locks in a fash-
ion shown in Figure 1. The average percentage of the total
locks a transaction is holding at a time is approximated by:

β ≈ t0 + 0.5(nr + nw)∆spl

tsort + (nr + nw)∆spl + t0
(9)

and pspl is approximated by:

pspl ≈ β
(nr + nw)2

DB size
(10)

Combining equations 6, 8, and 10, we have

tcf spl ≈ β
(nt − 1)(nr + nw)2

2DB size
(t0 + toverhead spl) (11)

tspl ≈ (1 + β
(nt − 1)(nr + nw)2

2DB size
)(t0 + toverhead spl) (12)

3.4 Database locks
We implemented a simple version of database lock man-

ager based on the lock manager in the Shore-MT storage
engine [9]. Although our lock manager is much simpler than
a real lock manager, we believe it serves our purpose, which
is to provide a lower bound on the performance of database
locking.

In our lock manager, for simplicity, we focus only on lock-
ing at the record-level since it is the only type of objects we
consider in our experiments. The basic data structures in-
clude a lock table hashed on record ids, and a set of pending
queues, one for each thread. Each lock contains the lock’s
mode, which can be read, write, or free, a latch, and a list of
lock requests. Each entry of the request list consists of the
transaction id, the lock mode that the transaction wants
to acquire, and the status of the request, which is either
pending or granted. A pending queue is a queue of pending
transactions that are blocked. It contains a latch and a list
of pending transactions. Each entry of this list consists of
the transaction id, index of the object that the transaction
has failed acquiring the lock for, and the status of trans-
action, which is either ready or blocked. When a thread
accesses a pending queue, it needs to latch and unlatch the
queue to synchronize with accesses from other threads.

In this implementation, for simplicity, we avoid deadlock
by pre-sorting all records to be accessed by a transaction.
Note that in our performance results, we omit the time for
this sorting. Hence, we are overestimating the performance
of the lock manager, because we are in essence assuming
deadlock detection/avoidance is free. Again, this is reason-
able since our goal is to provide a lower bound on the perfor-
mance of a typical lock manager, not to accurately predict
its absolute performance.

When a transaction requests a lock, the lock manager first
looks it up in the lock table. If the lock is not found, the
manager gets a new lock from the lock free list and inserts
the lock into the lock table. Once the lock is located, the
manager latches it, checks the compatibility between the re-
quest and the lock’s current mode, and appends the request
to the request list of the lock. If the request is incompatible
with the lock’s current mode, the transaction is blocked and
put into the appropriate pending queue.

When the transaction completes, it releases locks one by
one in reverse order. To release a lock, the lock manager
first latches the lock and removes the corresponding request
from the request list. If the list is empty, the lock is unlinked
from the lock table and then returned to the lock free list.
Otherwise, the lock manager goes through the list to decide
the new lock mode and to find any pending requests which
may be now granted. If there are such requests, a list of
ready transactions are returned so that they are waken up
later.

Because our experiments show that the lock manager is
far from competitive with the other two approaches, due to
space constraints we omit a timing model here.

3.5 Physical vs. logical issues
We note that here is a semantic mismatch between database

locks and transactional memory: while the database lock
manager locks logical objects, TM “tracks” references to
physical addresses, not objects. This means that for cor-
rectness, when using TM to manage transactions over ob-
jects larger than a single memory word, one needs to ensure



that the transactions that read or write anywhere within an
object also read or write a specified “dummy” word some-
where in the object. (If we do not do this, it is possible that
transactions could simultaneously write different parts of a
large field of an object without conflicting.)

4. EXPERIMENTS AND RESULTS
4.1 Experiment settings

The database in our experiments consists of a single table.
Each row of a table is a record consisting of id, key, and
balance fields, and the size of each record is 64B.

In our experiments, we fixed the total number of records
to be 1000. Of course, this is a tiny database; however,
the critical factor for transactional memory is the size of
the transactions, not the size of the database. This is be-
cause transactional memory saves and intersects read sets
and write sets, and of course never interacts with data that
is not accessed. In fact, the only way in which our perfor-
mance depends upon database size is that a smaller database
is more challenging than a larger one, since for the same ran-
domized workload the conflict rates are higher over smaller
data sets. Finally, our reason for assuming only 1000 records
is very simple — the simulator we used in some of our ex-
periments was impossibly slow on larger data sets.

The workload is a collection of transactions specified by
a transaction id, a set of read object ids, and a set of write
object ids. The reads read a single one-word field in the
record, whereas the writes write a singe one-word field in
the record.

In our experiments, the workload is created in advance
and distributed equally into a set of transaction queues, one
reserved for each thread. At the runtime, each thread is
bound to a core of the processor. When the workload is
executed, for the TM and spinlock approaches, each thread
simply picks up transactions one by one from its transac-
tion queue, and executes them until completion. For the
database lock approach, each thread first looks up its cor-
responding pending queue (see Section 3.4) to see if there
is any ready transaction. If yes, it removes the first ready
transaction from the pending queue and resumes that trans-
action. Otherwise, it gets a new transaction from its trans-
action queue. The execution terminates when there are no
more transaction in both the pending queue and the trans-
action queue.

To control the level of contention of the workload, we
use another parameter, the “partitioned probability” ppar,
which is the probability that a transaction only touches
records belonging to a portion of the database that cor-
responds to the thread executing the transaction. Other-
wise, records are chosen randomly from the entire database.
When ppar is equal to 1.0, the workload is completely par-
titioned, and conflicts do not occur.

At first, we planned to run all experiments on a hardware
prototype supporting TM, called TM0 [1]. However, TM0,
being the first prototype implementation of HTM, is rather
limited. In particular, it implements what is known as Best-
Effort HTM. In Best-Effort HTM, the allowable size of read-
sets and write-sets is bounded, and forward-progress is not
guaranteed, i.e., transactions may be restarted forever. In
addition, in the TM0 transactional memory implementation,
the transactions are very brittle in that they can be restarted
by TLB misses, function calls, cache evictions, and overflow
(see [3] for more experience of working with the prototype.)

We emphasize that these are properties of the specific early
implementation of HTM in TM0, not general properties of
HTM. While these limitations made experimenting with TM
frustrating and limited the set of experiments we could per-
form, TM0 still demonstrates the extremely low overhead of
HTM and hints at the performance that might be obtainable
from future, more full-function implementations of HTM.

Because of the limitations of TM0, we also ran experi-
ments on a simulator of HTM. We chose GEMS, a general
execution-driven multiprocessor simulator [12], because it
is widely used in the hardware community (there are now
more than 80 published works using this simulator.) The
TM version supported in GEMS is LogTM, i.e., log-based
Transactional Memory. More details of this implementation
are given in [13].

In our experiments, we used both TM0 and GEMS for
experiments with low contention workloads with small read
sets and write sets, and we compared results from the hard-
ware and the simulator. Under high contention workloads
with big read sets and write sets, due to the limitations of
TM0, we could only use the simulator.

4.2 Experiment 1: Overhead
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Figure 2: Overhead of CC approaches

In this experiment, we examine the overhead of each ap-
proach in both the hardware machine and the simulator. To
do this, we first created a workload with no contention by
setting ppar equal to 1.0. We then ran the workload with
each CC approach as well as with no CC, and computed
the differences. We varied the number of objects accessed
by transactions to see how the overhead of each approach
scales. The results are presented in Figure 2.

The figure shows that the overhead of TM is negligible
compared to spinlocks and database locks. The overhead
of both spin locks and database locks scale nearly linearly
with the number of objects both on the real hardware and
the simulator.

We implemented two versions of the spinlock approach,
described in Section 3.3: one with deadlock prevention by
sorting, called spinlock1, and the other with deadlock detec-
tion by timeout, called spinlock2. In Figure 2, the spinlock2
line corresponds to the cost of acquiring spinlocks, and the
difference between spinlock1 and spinlock2 corresponds to
the sorting time.



4.3 Experiment 2: Time Breakdown
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Figure 3: Time breakdown

In this experiment, we measured the transaction time,
overhead, and conflict resolution cost for each CC approach
under different workloads. To measure these time compo-
nents for a given CC approach, we first created a no con-
tention workload by setting ppar equal to 1.0. Then we ran it
with the CC approach and with no CC to obtain the trans-
action time and the overhead, as described from Section 4.2.
Next, we created a full contention workload by setting ppar

equal to 0.0, and ran it. The difference between times run-
ning these two workloads is the conflict cost of the given CC
approach. each CC approach as well as no CC, similar to
Section 4.2.

We executed each CC approach under two workload con-
ditions: a low conflict rate (where each transaction reads
and writes four objects) and a high conflict rate (where each
transaction reads and writes 20 objects.) In the former case,
we ran CC approaches on both environment while in the
later case, we could only use the simulator because TM0 is
not stable at such high conflict rates. We used 8 threads in
all experiments in this section.

Figure 3 shows the results with times normalized by trans-
action time. Under the low contention workload, the over-
head plays a very important role, as illustrated in Figure
3(a) and 3(c). Since the TM offers very low overhead, it is
the best approach.

However, under high contention workloads, the conflict
costs of TM, spinlock2 and database lock dominate the other
components. This means that these approaches are vulner-
able to conflicts. However, it turns out that under high con-
tention, spinlock1 appears to be the best approach since it
handles contention very well. These results can be explained
as follows.

First, Equation 3 shows that when ptm cf approaches 1,
the conflict cost of TM goes to infinity. In our situation, this
probability is close to 1, so that the conflict cost is about
ten times bigger than the transaction time. Since spinlock2
uses failure-retry to resolve suspected deadlocks, its conflict
cost is also high under high contention.

With the database lock approach, if the contention is high,
and transactions keep coming to the system at a high arrival

rate, there is a reciprocal relationship between the conflict
rate and the number of blocked transactions. When the
conflict rate gets higher, the chance for a transaction to
be blocked is also bigger. When a transaction is blocked
and de-scheduled, it does not release locks that it already
holds. Therefore, if transactions keep coming to the system
at a high arrival rate, more transactions will be blocked,
which will increase the number of locks currently held and
thus, increase the conflict rate. This reciprocal effect makes
the request list and transaction queues longer, causing the
searching cost to be more expensive. Higher conflict also
leads to more frequent accesses to shared data structures,
which increases the synchronization cost. Therefore, the
high contention workload leads to poor performance in the
database lock approach, similar to results shown in [14].

With spinlock1, from Equation 8, we have:
tcf spl

t0 + toverhead spl
≈ 0.5(nt − 1)pspl

Since transaction time and spinning time are small com-
pared to sorting time, Equation 9 shows that β is relatively
small, which makes pspl not too big. Therefore, the conflict
cost of spinlock1 is not too high even under high contention.

Impacts of transaction time: Observe that given fixed
sizes of read sets and write sets, transaction time and the
overhead of any CC approach are independent of each other,
and that the conflict cost depends on both transaction time
and the overhead. We analyze the normalized total time of
a given CC approach as follows:

ttotal

t0
=

(t0 + toverhead + tcf )

(t0 + toverhead)

(t0 + toverhead)

t0

or
ttotal

t0
= (1 +

tcf

t0 + toverhead
)(1 +

toverhead

t0
) (13)

Thus, when we increase the transaction time, the second
factor of the equation decreases, making the impact of the
overhead less important.

In our experiments, we increased transaction time by adding
some “dummy” computation inside transactions. Figure 4
are results of experiments similar to those for Figure 3 but
with transactions extended to be five time longer. Figure
4(a) shows that the differences among different approaches
under the low contention workload now are not as clear as
those in Figure 3(a), especially between TM and spinlock.
Figure 4(b) shows that the ratio of the conflict cost to the
sum of transaction time and the overhead for TM, spinlock2
and database lock are not changed much, but that ratio for
spinlock1 increases.

We can explain the result for the conflict cost of spinlock1
as follows. From Equation 9, we see that when we increase
the transaction time t0, β is also increased. That makes pspl,
and, thus, the conflict cost also increase. However, Equation
8 shows that even at the extreme case where pspl ≈ 1, the
conflict cost is still bounded by 0.5(nt−1)(t0 +toverhead spl).

4.4 Experiment 3: Scalability
In this experiments, we examine how well each approach

scales as a function of the number of threads under different
conditions. In the experiment, we created workloads with
10 reads and 10 writes for each transaction, and we use ppar

to control the contention level. Specifically, we set ppar to
0.0 for the high contention workload and to 0.95 for the low
contention workload. The results are presented in Figure 5
with throughput normalized by the throughput of the base
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times longer than those in Figure 3
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Figure 5: Scalability on LogTM with 10 reads and
10 writes

solution where we use only one thread to run transactions
serially without any CC.

The graphs show that under low contention workloads,
TM scales fairly well with the number of threads. However,
under high contention, it only scales up to 4 threads. After
that, it even starts going down gradually. These results can
be explained by our analytical model as follows.

We approximate the throughput of the TM approach by
using Equations 1 and 5:

perftm(nt) =
nt

ttm
≈

2nt(1− nw(nw+2nr)
2DB size

(nt − 1))

t0 + ∆tm
(14)

Therefore, under low contention, Equation 14 predicts that
the throughput of the TM approach will have the shape of
the left part of an up-side-down parabola. This matches the
results shown in Figure 5.

Moreover, by taking the derivative of the right part of
equation 14, we can predict the maximum point:

ntmax ≈
DB size

nw(nw + 2nr)
+ 0.5 (15)

With nr = nw = 10 and DB size = 100, we have ntmax =
3.83, which is very close to the maximum point of 4 shown
in the graph.

With spinlock1, using Equations 6 and 8, the system through-
put is approximated by:

perfspl(nt) ≈
nt

ttm
=

nt

(t0 + toverhead spl)(1 + 0.5pspl(nt − 1))
(16)

Thus, the performance of the spinlock will have the shape
of a hyperbola. When pspl is small enough, the curve looks
almost like a straight line. Figure 5(a) demonstrates this
prediction. In Figure 5(b), although contention increases
with the number of threads, spinlock1 still scales nearly lin-
early. That is because the small transaction time makes the
value of β also small, which leads to a small value of pspl,
as explained in the previous section.

With database locks, the throughput only scales up to a
certain number of threads, where the reciprocal effect hap-
pens, as explained in Section 4.3. After that point, the
throughput starts to go down. Comparing Figure 5(a) to
Figure 5(b), we see that under low contention, the approach
scales better than under high contention. Figure 5 also
shows that the maximum performance of database locks in
both situations is still smaller than the base approach of us-
ing one thread with no CC. This suggests that for workloads
with very short transactions, on our hardware and simula-
tor, it is better to run serially on only one core than to
employ a database lock manager.

With spinlock2, we first expected that its trend would be
similar to that of TM. However, when we ran the experi-
ment, we did not get the peak. We speculated that the con-
tention was not high enough, so we repeated the experiment
with 20 reads and 20 writes in each transaction. With that
contention level, we observed the maximum of throughput
at nt of 5. The results are shown in Figure 6.
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Figure 6: Scalability for spinlock2 on LogTM with
0% partitioned workload

Impacts of transaction time: Similar to Section 4.3, we
study the impact of transaction time by repeating the exper-
iments after adding extra computation inside transactions
to make them about five times longer. The experimental
results are presented in Figure 7.

Under low contention, the throughput lines of the three
approaches are brought close together since the effect of the
overhead of spinlocks and database locks is lessened. The
performance of spinlock1 is very close to that of TM, and
the trends of spinlock1 and TM lines shows that spinlock1
starts beating TM after 15 threads. Under high contention,
even after only four threads, spinlock1 appears to be the
best approach.

When the transaction time increases, the value of β, and
thus, the value of pspl, are also increased, making the graph
for Equation 16 have the shape of a hyperbola more appar-
ently. The performance line of the spinlock1 in Figure 7(b)
clearly illustrates this prediction. Equation 16 and the ex-
periment results also appear to agree with each other that
the thoughput of the spinlock is bounded by a maximum
value when nt is large enough. This maximum value can be
computed from the equation as 2

pspl(t0+toverhead spl)
.

For the database lock approach, the performance line starts
going above the base line for certain values of nt. That
means database lock is still a good approach for long-running
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Figure 7: Scalability on LogTM with 10 reads and 10
writes and transactions five times longer than those
in Figure 5

transactions if the transactions do not come to the system
at high enough arrival rate to make the reciprocal effect
happen.

5. CONCLUSIONS
Our goal in this paper was to explore hardware support for

concurrency control for workloads consisting of very short
transactions. One can consider our work as exploring the
performance of various options at the extreme limit of stripped-
down transaction processing, where almost all overhead re-
lated to transaction processing in today’s general purpose
DBMSs has been removed. Our intention is to shed light
on processing this subset of transaction workloads, rather
than to draw conclusions that are applicable to more gen-
eral classes of workloads.

We found that transactional memory can indeed be ex-
ploited to run these workloads at close to “hardware speed,”
with the caveat that the performance of transactional mem-
ory deteriorates at very high contention. At high contention,
spinlocks perform surprisingly well (especially as compared
to traditional database locking) but there is a catch: it is
unclear how to efficiently resolve deadlocks, since detection
is not an option. If the transactions can predict their read
and write sets ahead of execution, deadlock can be avoided
and spinlocks appear to be the mechanism of choice for high
contention.

The fundamental question of whether or not hardware
support for extreme transaction processing is worth pursu-
ing is a complex question we cannot answer in this paper
— for one thing, it depends on whether or not workloads of
extremely simple, low overhead transactions are important.
There is some evidence that they are — witness the growth
of the “Extreme Transaction Processing (XTP)” market-
place. The question further depends upon whether hard-
ware architects continue to produce higher-functionality im-
plementations of HTM that can handle more robust trans-
action profiles. However, from our study it appears that if
one wants to “squeeze the last drop of performance” out of
extremely short transactions, hardware assistance must play

an important role.
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