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ABSTRACT
Bloom Filters are widely used in many applications includ-
ing database management systems. With a certain allowable
error rate, this data structure provides an efficient solution
for membership queries. The error rate is inversely pro-
portional to the size of the Bloom filter. Currently, Bloom
filters are stored in main memory because the low locality
of operations makes them impractical on secondary storage.
In multi-user database management systems, where there is
a high contention for the shared memory heap, the limited
memory available for allocating a Bloom filter may cause a
high rate of false positives. In this paper we are proposing
a technique to reduce the memory requirement for Bloom
filters with the help of solid state storage devices (SSD). By
using a limited memory space for buffering the read/write
requests, we can afford a larger SSD space for the actual
Bloom filter bit vector. In our experiments we show that
with significantly less memory requirement and fewer hash
functions the proposed technique reduces the false positive
rate effectively. In addition, the proposed data structure
runs faster than the traditional Bloom filters by grouping
the inserted records with respect to their locality on the
filter.

1. INTRODUCTION
The Bloom filter is a probabilistic data structure opti-

mized for very efficient membership queries [4]. It provides
a very compact representation of sets. This efficiency comes
at the price of reduced precision: specifically, the Bloom fil-
ter may incorrectly indicate that an element is present in
the original set, thus occasionally generating false positives
(but no false negatives). The false positive rate is directly
proportional to the compression ratio. Thus, in order to
lower the false positive rate, a larger amount of memory is
required.

Bloom filters are used in a wide variety of application ar-
eas, such as databases [1], distributed information retrieval [20],
network computing [5], and bioinformatics [15]. Some of
these applications require large Bloom filters to reduce the
false positive rate. In memory limited environments dedi-
cating large memories for Bloom filters may not be feasible.
A naive approach to tackle this issue would be to put the
Bloom filter on secondary storage, either explicitly or by
using memory-mapped I/O. Each probe would then require

one or more random I/O operations, which would become
a severe performance bottleneck. Therefore, simply plac-
ing the filters on disk will not provide a sufficient quality of
service particularly for time critical applications.

A less naive approach can be used when probes come in
bulk. Instead of one large filter, we store δ disjoint filters.
A record is hashed to one of the δ filters during the build
or probe, and the access is performed on the smaller filter.
However, instead of performing the access immediately, we
instead store the access request in a main-memory buffer.
Only when a buffer becomes full (or when we flush a buffer
periodically) do the accesses actually get applied to the cor-
responding filter partition. Because all of the accesses to
the component filter get applied at once, we improve the
access locality, amortizing the I/O cost and cache-miss cost
of retrieving the filter into RAM/cache over a large number
of accesses. This idea is motivated by a similar idea used by
Zhou and Ross for buffering accesses to B-trees to improve
locality of reference [23].

As we shall see experimentally, even this buffering ap-
proach performs poorly when the secondary storage device
is a hard disk. The random I/O-cost is sufficiently large that
it dominates the overall cost and limits throughput. How-
ever, more recent secondary storage devices based on solid
state flash memory have demonstrated much better random
I/O performance. We therefore study whether such devices
have the potential to provide cost-effective solutions for ac-
cessing large Bloom filters.

To perform this study, we have chosen to use what is to-
day a high-end flash memory device, namely the Fusion-IO
card [10]. See Table 1 for the specifications of this device.
As of May 2010, the retail price1 of this device is about $38
per gigabyte. A higher-capacity MLC device by the same
vendor has 60% of the throughput, but a price of $15 per gi-
gabyte. Note that such flash devices are in a relatively early
stage of development, and prices are expected to drop as
they become more widely adopted. Industry experts seem
to agree (see e.g., [11]) that within the next few years the
price per Gigabyte of SSDs will be more than an order of
magnitude below the price of main memory, and approach-
ing the price of hard disks.

1All quoted prices were obtained from the Dell web-site.
For comparison purposes, the retail price of server RAM
is about $82 per gigabyte using 8GB DIMMs, or $25 per
gigabyte using 4GB DIMMs.



The main contribution of the paper is an SSD-aware Bloom
filter algorithm that reduces the main memory usage by a
factor of at least four without any performance or quality
loss.

1.1 Motivating example
To motivate the need for Bloom filters utilizing flash stor-

age, consider the following example based on the TPC-H
schema. Suppose a user poses the following query

Select *

From Lineitem L, Orders O

Where L.Orderkey=O.Orderkey

And L.Quantity>1

And O.Orderstatus=’P’

In relational algebra, we might write this query as

σC1(L) 1J σC2(O)

where C1 and C2 are the local selection conditions on each
table, and J is the join condition on Orderkey. Suppose that
the selectivities of C1 and C2 are θ1 and θ2 respectively, and
that C1 and C2 are statistically independent over the join
of L and O. Note that Orderkey is a foreign key from L to O.

If this database was stored in a distributed fashion, with
L and O stored at different sites, then data transmission can
be reduced by employing a semijoin or Bloom filter [18]. For
example, one could ship

P = πOrderkey(σC2(O))

or a Bloom filter of P from the site hosting O to the site
hosting L in order to reduce the amount of data from L

that needs to be transmitted over the network. When the
network is the bottleneck, such data reduction improves per-
formance significantly.

Now imagine that both O and L are stored in a com-
plex storage subsystem. This subsystem contains a variety
of resources, including multiple persistent devices of various
kinds, including hard disk drives and solid state drives. The
subsystem contains a limited amount of processing power
and memory, sufficient to manage and optimize the stor-
age system, but not designed to perform computations that
require extensive CPU or memory resources. The storage
subsystem serves as the storage layer for many processing
nodes, connected to the storage subsystem via a shared high-
bandwidth channel such as infiniband [12].

Even a high-bandwidth channel can be a performance bot-
tleneck. Since the storage subsystem abstracts a large num-
ber of devices, and since data is requested by many process-
ing nodes, there can be contention for the channel. In such a
situation, it would be advantageous to preprocess data in the
storage subsystem to reduce the bandwidth required. One
straightforward way to reduce bandwidth is to compress the
data.

Another way to reduce bandwidth is to filter out useless
data so that it is not transmitted in the first place. An
example of this kind of approach is the Netezza TwinFin
system [19]. That system uses FPGAs in the storage layer
to apply local selections such as C1 and C2 above so that
only rows satisfying the local selections are transmitted to
compute nodes. The data volume is reduced by a factor of
θ1 for L and θ2 for O.

There still remain opportunities for further data reduc-
tion. In the query mentioned above, the join induces a fur-

ther data reduction because the local conditions on the two
tables are independent. In fact, the fraction of each table
that contributes to an output row for this query is θ1θ2. It
would be unrealistic to expect the storage subsystem to per-
form the full join. In the absence of special clustering prop-
erties, the join operation would require substantial CPU and
memory resources. What is more, this join might be part of
a larger query plan in which these tables are not joined di-
rectly, and performing the full join of these two tables would
be suboptimal.

Nevertheless, we argue that the storage subsystem could
effectively optimize the bandwidth requirements by applying
a Bloom filter to L and O before transmitting the data. Two
Bloom filters would be created, one for L and one for O,
representing the set of Orderkey values satisfying the local
selection conditions. These filters would then be used to
further reduce the data in the other table before data is
transmitted across the data channel to the compute nodes.

The challenge in such a system is performing the Bloom
filter reduction in a low-resource environment such as a stor-
age subsystem. We expect to have a small amount of RAM
relative to the total disk capacity, and much of that RAM
could be devoted to other functions such as caching. On
the other hand, the storage subsystem does have plentiful
persistent storage. We therefore propose an approach that
leverages the persistent storage, particularly solid state stor-
age that has high random-I/O rates. Our approach allows
efficient Bloom filter reduction to scale to much larger con-
figurations than could be handled with RAM alone.

In the remainder of this paper, we first recap the char-
acteristics of traditional Bloom filters (TBF). In section 3,
we introduce our extensions to the TBF that allows it to
be SSD-resident without sacrificing creation and probing
efficiency. The resulting data structure is called “buffered
Bloom filter” (BBF). Finally, section 4 presents detailed ex-
periments for a variety of BBF usage scenarios. Section 5
discusses related work and section 6 concludes the paper.

2. TRADITIONAL BLOOM FILTERS
To introduce the traditional Bloom filters we use the frame-

work and notations described in [9, 17, 13]. A Bloom filter is
a method to represent a set S = {R1, R2, ..., Rn} to support
membership queries. Each element of S, Ri, is any item that
can be an argument of a hash function. It was invented by
Burton Bloom in 1970 [4] and has been used in numerous
applications since then.

A Bloom filter consists of a vector of β bits, initially all
set to 0. To update the filter, k independent hash functions
h1, h2, ..., hk all with range {1, ..., β} are used. For each ele-
ment R ∈ S, the bit locations hi(R), i ∈ {1, 2, ..., k}, are set
to 1. Note that a particular bit location could be set to 1
several times since the hash results of different elements may
collide. To check if an element e is in S, the bit locations
hi(e), i ∈ {1, 2, ..., k}, are checked. If any of them is not set
to 1, we conclude that e is not an element of S. Otherwise,
we assume that e is an element of S, with a certain prob-
ability that the assumption is wrong. If we conclude that
the element is in the set although it is not, that element is
called a false positive.

2.1 The Locality Problem
The probability of cache misses has a significant impact

on the execution time of TBF. Each bit location on the filter



has the same access probability during the execution of both
build and probe phases. In the worst case the distance be-
tween two consecutive bit locations that are accessed could
be as large as the size of the filter. For small datasets for
which the filter size is smaller than the CPU cache, cache
misses are not expected to occur since the filter is small
enough to fit in the cache. For larger datasets the filter size
should be increased so as to keep the false positive rate be-
low an acceptable threshold. As the filter size increases, the
probability of cache misses will grow proportionally. If the
cache size is c bytes and the filter size is f bytes, then the
probability that an accessed bit of the filter is not cached is
f−c

f
. As the cache miss probability increases, the execution

cost of the Bloom filter would increase gradually.

Figure 1: Effect of filter size on the cost of bit op-

erations

To observe the impact of cache misses on the performance
of Bloom filters, we implemented the build phase and probe
phase of the Bloom filter. For both of these phases we have
used 100 million records and a single hash function. We run
the experiment with different filter sizes in the range [4KB,
64MB] on a platform with 2MB CPU cache (L2 cache). In
another experiment setup, we measured how much time is
spent in the other steps of the algorithms and subtracted
that amount from the previous measurements to isolate the
cost of bit operations. The experiment results are given in
Figure 1. The x axis represents the Bloom filter size which is
stored in the memory2. The vertical axis on the left indicates
the average cost of a single bit operation for different filter
sizes. The vertical axis on the right indicates the probabil-
ity of cache misses that is computed using the formula f−c

f
.

For instance, if the filter size is 16MB and the CPU cache is
2MB, 14 out of 16 bit accesses are expected to cause a cache
miss. Note that, as the filter size increases, the probabil-
ity of cache miss increases as well and rapidly converges to
1. Moreover, the experimental results are precisely parallel
with the analytical observations.

In the following section we introduce buffered Bloom fil-
ters (BBF) which prevent cache misses effectively regardless
of the size of the dataset. Even though the total size of
the filter exceeds the CPU cache size, the cache misses are
prevented by partitioning the Bloom filter into sub-Bloom
filters. The memory partition in each sub-Bloom filter on

2In Figure 1 the step size has a finer granularity between
1MB and 4MB

which the bit operations are performed does not exceed the
cache size. This, in turn, prevents the cache misses effec-
tively and yields a significant performance gain.

3. BUFFERED BLOOM FILTERS
Due to the locality problem in the Bloom filters, storing

the filter in lower storage layers such as conventional hard
drives would entail excessive random access cost. SSDs al-
leviate this problem by eliminating mechanical head move-
ments. Based on this observation, one can suggest moving
the filter to the SSD without any modification in the tra-
ditional Bloom filter algorithm. However, this will yield a
significant performance loss since random access speed of
the SSDs is about one order of magnitude slower than that
of memories. In this paper, we propose a modified version
of the traditional Bloom filter so as to implement it on a
solid state disk. To compensate for the performance loss,
we propose the idea of deferring the read and write opera-
tions during the execution of both build and probe phases.
With this improvement the number of SSD page accesses is
reduced by up to three orders of magnitude depending on
the buffer size. As a second improvement, we propose divid-
ing the Bloom filter into virtual sub-Bloom filters to improve
the locality of the bit operations. This modification reduces
the CPU cache misses and helps to compensate for the cost
of IO operations.

Figure 2: Structure of Buffered Bloom Filter

The structure of the BBF is depicted in Figure 2. The
major difference between TBF and BBF is that the latter
has a hierarchical structure. TBF consists of a single layer,
stored in the main memory, which keeps the filter. In con-
trast, there are two layers in the BBF. The upper layer is
called buffer layer and the lower layer is called filter layer.
The buffer layer is stored in the main memory while the
filter layer is stored in the SSD. As the name implies, the
buffer layer is used to buffer the auxiliary information per-
taining to the deferred reads and writes. The filter layer, on
the other hand, is used to store the filter (bit vector). The
filter is divided into virtual pages such that each page keeps
the bit vector of a sub-Bloom filter. If the filter is divided
into δ pages, the buffered Bloom filter can be considered as
a combination of δ separate traditional Bloom filters. Each
sub-Bloom filter has a dedicated buffer block; therefore, the
number of buffer blocks is equal to the number of filter pages.

3.1 The Build Phase
The build phase of the BBF is described in Algorithm 1.

Similar to the TBF, the input parameters include the list
of records, BuildArray, the size of the build array, nb, and
the number of hash functions, k.



Algorithm 1 Buffered Bloom Filter - Build Phase:

1: Given BuildArray, nb, k
2: for i = 0 to nb do
3: Bi ← h0(BuildArray[i])
4: for j = 1 to k do
5: Ωj ← hj(BuildArray[i])
6: addOffsetValueToBufBlock(Ωj , Bi)
7: if isBufferBlockFull(Bi) then
8: retrievedBlock ← readPageFromSSD(Bi)
9: for each offsetVal in BufferBlock[Bi] do

10: retrievedBlock[offsetVal] ← 1
11: removeOffsetValFromBufBlock(offsetVal, Bi)
12: end for
13: writeUpdatedPageBackToSSD(retrievedBlock)
14: end if
15: end for
16: end for

While processing the records of the build array, an initial
hash function, h0, is used to determine the sub-Bloom filter
to which the records will be assigned. For each record Ri in
the BuildArray, the block number Bi is equal to h0(Ri). If
the filter is divided into δ virtual pages, Bi would be a value
in the range [0, δ − 1].

Once the block number is determined (line 3), subsequent
hash functions, h1, .., hk, are used to find the offset values
for Ri, that is, Ωj = hj(Ri) ∀j ∈ (1, ..., k), in each iteration
of the for loop starting at line 4. The range of Ωj is [0,β]
where β is the size of the filter page (i.e. total number of
bits in a filter page). If Ωj is equal to x, the xth bit of the
filter page is expected to be set to 1. However, instead of
updating the Bi

th filter page immediately, the offset value,
Ωj , is placed to the available position at the Bi

th buffer
block (line 6). For each record, k offset values are computed
and stored in the buffer blocks. Note that in TBF, for any
record, x would be any bit location in the filter. In contrast,
in BBF the range of x is limited to the size of a filter page. If
the same record is processed in the probe phase, the record
will be forwarded to this sub-Bloom filter to check the bit
values corresponding to the hash values of the record.

At any given time each buffer block can be either in “Grow-
ing Phase” or “Shrinking phase”. Initially, all buffer blocks
are assumed to be in the growing phase. As new records are
processed, the buffer blocks are filled with the offset values
(line 6). Once a block gets full, the growing phase of the
block ends and the shrinking phase starts by retrieving the
corresponding page from the SSD to the memory (line 8).
In the shrinking phase, for each offset value waiting in the
buffer block, the corresponding bit position of the retrieved
page is set to one (line 10) and the offset value is removed
from the buffer block (line 11). After processing all of the
offset values in the buffer block, the page is written back to
the SSD (line 13). Once the offset values are removed, the
buffer block gets ready for the next growing phase.

The growing and shrinking phases of the buffer blocks
continue as long as new records are read from the stream.
Each buffer block enters the growing phase and the shrinking
phase consecutively. At any time, at most one buffer block
could be in the shrinking phase. The growing phase does not
require any disk accesses. All of the updates in this phase
are performed on the main memory. On the other hand,
the shrinking phase requires retrieval of an SSD page and
writing this updated page back to the SSD.

3.2 The Probe Phase
The probe phase of the BBF is described in Algorithm 2.

The input parameters include the list of records, ProbeArray,
the number of records in the probe list, np and the number
of hash functions, k.

Initially, all buffer blocks are assumed to be in the growing
phase. Similar to the build phase, for each record Ri in
ProbeArray, the initial hash function is used to determine
the sub-Bloom filter to which the record will be assigned. If
Bi is equal to h0(Ri), Ri is placed to the available position
at the Bi

thbuffer block (line 4). If the buffer block gets
full, the shrinking phase starts and the corresponding page
is retrieved from the SSD to the memory (line 6). For each
record waiting in the buffer block, subsequent offset values
are computed using the hash functions. If all of the bits
in the retrieved page corresponding to the computed hash
values are set to 1, the record is output as positive. If any
of these bits is set to 0, the record is output as negative
indicating that the record ID does not exist in the build list.

The same procedure is applied as long as new probe records
are queried.

Algorithm 2 Buffered Bloom Filter - Probe Phase:

1: Given ProbeArray, np, k
2: for i = 0 to np do
3: Bi ← h0(ProbeArray[i])
4: addRecordIDToBufBlock(ProbeArray[i], Bi)
5: if isBufferBlockFull(Bi) then
6: retrievedBlock ← readSSDpage(Bi)
7: for each recordID in BufferBlock[Bi] do
8: for j = 1 to k do
9: Ωj ← hj(recordID)

10: if retrievedBlock[Ωj ] = 0 then
11: outputNegative(recordID)
12: break
13: else
14: if j = k then
15: outputPositive(recordID)
16: end if
17: end if
18: end for
19: removeRecordIDFromBufBlock(recordID, Bi)
20: end for
21: end if
22: end for

3.3 Probability of False Positives in BBF
In this section we show that PF P in BBF is independent

of the number of sub-Bloom filters and therefore is equal to
PF P in TBF.

Let b be the number of bits in a filter page and δ be the
number of buffer blocks ( i.e. the Bloom filter is divided into
δ sub-Bloom filters). In the shrinking phase of a buffer block
Bi, after processing an element Ri, the probability that a
single bit of the filter page is not set to 1 by any of the k
functions is:

„

1−
1

b

«k

(1)

Assuming that the hash function, h0, used to assign the
records to the buffer blocks is perfectly random, the ex-
pected number of records assigned to each buffer block will
be:

υ = nb ×
1

δ
(2)



After inserting υ elements to the Bi
th buffer block, the prob-

ability that a single bit of the filter page is not set to 1 by
any of the k functions is:

„

1−
1

b

«k×υ

(3)

Hence, at the end of the build phase, the probability that
a certain bit in the Bi

th filter page is set to 1 by at least one
hash function is:

1−

„

1−
1

b

«k×υ

(4)

Now, PF P , the probability of getting a false positive for an
element assigned to Bi is:

PF P =

 

1−

„

1−
1

b

«k×υ
!k

≈
“

1− e
−k×υ

b

”k

(5)

Let β be the total number of bits in the filter. Then δ, the
number of buffer blocks, is equal to β

b
, where b is the number

of bits in a filter page. Substituting for δ in equation 2, we
get υ = nb ×

b
β
. The formula for the probability of false

positives is now given by the following equation:

PF P ≈

 

1− e
−k×nb×

b
β

b

!k

=

„

1− e
−k×nb

β

«k

(6)

4. EXPERIMENTS
In this section, we first give the hardware and software

specifications of the system where we conducted the exper-
iments. In Section 4.2, we then discuss the starvation prob-
lem in response time critical applications. Then, in Sec-
tion 4.3 we compare the performance of the proposed algo-
rithm running on an SSD versus an HDD. In Section 4.4, we
examine the impact of the buffer size on the performance of
the BBF. We conclude this section by presenting the obser-
vations on the impact of the ratio of probe to build records.

4.1 Hardware & Software Specifications
All experiments are conducted on a 64 bit Fedora 8 (Linux

kernel 2.6.24) operating system. IBM DB2 V.9 is used as
the DBMS software. The system that is used to run all the
experiments has an Intel(R) Core(TM)2 Quad CPU Q6600
@ 2.40GHz with 2MB L2 cache per each core and 4GB mem-
ory. Hardware specifications for the solid state disk are given
in Table 1.

Table 1: Hardware specifications of the SSD
Brand: Fusion IO
NAND Type Single Level Cell (SLC)
Storage capacity: 80GB
Interface: PCI-Express x4
Write Bandwidth: 550 MB/s (random 16K)
Read Bandwidth: 700 MB/s (random 16K)
IOPS: 88,000 (70/30 random 4k mix)
Access Latency: 50µs Read
Wear Leveling: 24yrs (@ 5-TB write-erase/day)

4.2 Starvation Avoidance
Bloom filters are used in numerous applications. In some

of these the filter is unaltered over time and is mostly used
for processing the incoming stream of queries. Using Bloom

filters as spell checkers in word processors is an example
where the filter remains almost the same as the dictionary
words are not expected to change frequently [16]. In some
applications the response time could be critical. Once the
probe requests of the client application(s) are inserted into
a request queue, the applications may expect to get the re-
sult of the query within an acceptable time period. This is
not a concern for the traditional Bloom filter as the probing
requests are processed and output in the same order of inser-
tion into the request queue. In contrast to TBF, the buffered
Bloom filter does not guarantee that the output order of the
requests will be similar to the order of the request queue.
Therefore, the data structure does not guarantee that the
queries will be processed within a certain amount of time.
Even though a perfectly random hash function is used to
distribute the probe requests to the buffer blocks, the pro-
cessing latency of the request will depend on the distribution
of the probes. If a specific record is probed frequently, the
buffer block corresponding to this record will fill up faster
than other buffer blocks. This, in turn, may cause some of
the probes to wait for a long time while some of them are
processed and output faster. To avoid starvation the buffer
blocks should be flushed if a certain timeout period, tmax,
is exceeded even though the block has not been filled up.
A dedicated timer is assigned to each buffer block to keep
track of time since the last flushing. Once a probe record is
inserted into an empty buffer block, the timer is reset. After
a while the buffer block is flushed, provided that the block
is not flushed within tmax unit of time.

Figure 3: The impact of tmax on the average waiting

time of the probe requests

One can suggest choosing tmax as small as possible in or-
der to reduce the average waiting time of the probe requests.
However setting tmax below a certain threshold would in-
crease the average waiting time of the probe requests. If
tmax is very small, fewer records will be processed while
flushing the buffer blocks. Due to the cost of I/O opera-
tions, this will decrease the overall throughput even though
the waiting time of the records in the buffer blocks is re-
duced. As a side effect, the waiting time of probe requests
in the request queue will be much longer. Therefore tmax

should be chosen deliberately so as to minimize the waiting
time of the records in both the request queue and the buffer
blocks.

We conduct an experiment in order to analyse the impact
of tmax on the average waiting time of the probe requests.
In this experiment 50 million records are inserted into the



buffered Bloom filter and 50 million records are probed. The
total buffer size is set to 32 MB and a 256MB SSD space is
used for the filter. Two hash functions are used for probe
operations. The request queue size is set to 3MB. A dedi-
cated timer is assigned to each record to measure the average
latency of the records. The experiment results are shown in
Figure 3.

The x axis represents the timeout period, tmax, for the
buffer blocks. The upper line in the graph represents the
average time of a record including the time spent in the re-
quest queue and the time spent in the buffer blocks. The
other two dashed lines represent the components of the total
latency. The time spent in the buffer blocks exhibits an up-
ward trending pattern while the waiting time in the request
queue exhibits a downward trend. As tmax increases, the
time spent in the buffer blocks increases since the frequency
of flushes gets smaller. Since the IO cost is proportional to
the frequency of flushes, the throughput increases and the
time spent in the request queue declines. In this configu-
ration, setting tmax to 750 milliseconds minimizes the total
waiting time of the probe requests as seen in the figure. Us-
ing this configuration, we can obtain good throughput while
still achieving a response time of less than a second for any
individual probe.

4.3 Hard Disk Experiments
We conducted two experiments to compare the perfor-

mance of the proposed algorithm running on an SSD versus
an HDD. The hardware specifications of the HDD used in
these experiments are as follows: 500GB Hitachi Ultrastar
A7K1000, 8.2 ms average seek time and 4.17 ms average
latency, 1070 Mb/sec maxs media transfer rate.

The experiment parameters are provided in Table 2 under
the BBF column (the buffer size is set to 16MB).

In the first experiment we run the BBF on both SSD and
HDD without modifying any part of the BBF algorithm.
As a result of this experiment we observed that BBF runs
8 times faster on the SSD than on the HDD. This is not
a surprising result as the buffer blocks fill up in a random
order and trigger random disk accesses while processing the
records.

One might try to address the random I/O difficulties of
hard disks by converting some of the random I/O to sequen-
tial I/O. For example, one could store a single large buffer
of access requests, organized according to the physical order
of the partitioned filters on the disk. The entire Bloom filter
would be scanned sequentially each time this buffer is filled.
We implemented a variant of this hard disk based method
and observed that the running time in a heavily loaded sce-
nario is 4.8 times slower than the running time of the BBF
on the SSD. This is actually quite reasonable, since we used
just one hard disk that was more than 4.8 times cheaper
than the SSD. Nevertheless, the hard disk based algorithm
is much less flexible, and would perform poorly in situations
where response time is being optimized ahead of through-
put. Because the SSD’s random I/O is so much faster than
that of a disk, it can handle many more requests in a random
I/O-limited setting.

4.4 Impact of Buffer Size on Execution Times
Our goal in this experiment is to examine the impact of

buffer size on execution time of the BBF. The parameters
used in this experiment are given in Table 2. We specify an

Table 2: Parameters used in Experiment 1
Parameter Buffered BF Traditional BF
Num. of Build Records 50 Million 50 Million
Num. of Probe Records 50 Million 50 Million
False Positives < 0.25 % < 0.25 %
Num. of hash functions 2 3
Page Size (MB) 2 N/A
Buffer Size (MB) Variable N/A
Filter Size (MB) 256 (SSD) 128 (Memory)

upper limit for the false positive ratio and use 128 MB of
memory space for the TBF with 3 hash functions in order
to keep the ratio below this upper limit. As for the BBF,
256 MB of SSD space is used with two hash functions. In
each run of the experiment we change the buffer size for the
BBF while keeping the remaining parameters in the table
constant.

As long as the buffer size and the number of hash functions
are kept constant, the buffer size has no impact on the false
positive ratio. However, changing the buffer size affects the
execution cost since the number of disk accesses is inversely
proportional to the buffer size.

The execution times of each run for different buffer sizes
are given in Figure 4. Note that the execution times corre-
sponding to the shaded bars are constant because none of
the parameters for the TBF changes. The first black column
corresponds to the run where we use 8 MB of memory space
for the BBF. In this case the TBF runs much faster than
the BBF. We gradually increase the allocated memory size
for the BBF. The BBF runs faster than the TBF provided
that the buffer size is at least 32 MB of memory space.

We also measured the false positives in another experi-
ment setting where we used 32 MB of memory space for
BBF and 64 MB for TBF and set all the other parameters
to the values given above. We observed that TBF yields at
least an order of magnitude more false positives than BBF
does.

4.5 Different Ratios of Probe to Build Records
We conducted some experiments to see how sensitive the

overall execution time is to the ratio of the probe records to
the build records. We observed that the ratio has a slight
impact on the overall execution time. As we increase the
number of probe records while reducing the number of build
records proportionately, the overall execution time slightly
decreases. In one setting we run the BBF algorithm with
10 million build records and 90 million probe records and
observed that it takes about 6 % less time than it takes
to run the same algorithm with 50 million build records
and 50 million probe records. This is mainly because the
build phase includes both read and write operations while
the probe phase consists of read-only disk accesses.

5. RELATED WORK
The Bloom filter has been introduced in [4], as a prob-

abilistic data structure for set membership queries. Since
then, it has been used extensively in a variety of appli-
cation areas, such as spell-checkers [16], distributed infor-
mation retrieval [20], network computing (e.g. distributed
caches, P2P networks, resource routing, packet routing) [5,
7], stream computing [22], gene sequence analysis [15, 8], as
well as database query processing [18, 14, 21].

Motivated by the diverse requirements of such a large set



Figure 4: Execution Times for Different Buffer Sizes

for BBF

of applications, numerous variants of the original data struc-
ture have been proposed. For example, the need to insert as
well as remove elements lead to the counting Bloom filter,
which stores multiplicity counts instead of bits [9]. Fur-
thermore, in order to achieve the best accuracy for a given
bit vector size the compressed Bloom filter [17] has been
proposed. The idea of the compressed Bloom filter is to
use the least message size for transmitting a Bloom filter
over a network. In order to use the compressed Bloom fil-
ter for probing, the entire filter needs to decompressed, and
that typically takes more memory than a TBF. Therefore
it is not comparable with the BBF in terms of the reduc-
ing memory footprint. For environments that can tolerate
small false negative rates the Bloomier filter [6] offers better
accuracy compared to the traditional Bloom filter. In situa-
tions where the size of the build set is not known in advance,
an adaptive Bloom filter [3] has been proposed: the idea is
to create additional Bloom filters whenever the set bits be-
come too dense and thus bring the false positive rate above
an acceptable threshold. All these variants are assumed to
be main memory resident, because the lack of access locality
would make them impractical to store on a hard disk.

Closer to our work is the cache-aware Bloom filter pro-
posed in [2]. This work addresses the following locality prob-
lem of the traditional Bloom filter: if k independent hash
functions are used, for every build or probe operation k dif-
ferent cache lines need to be accessed. This filter improves
the processor cache hit ratio by partitioning the bit vector
into cacheline-long segments and making sure that all the
k hash functions map into the same segment for any input
element. This is accomplished by dispatching the input to
one of the segments via an initial hash function, and then
selecting bit locations inside that segment using the k hash
functions. Although the goal of this work is related to ours,
there is one important difference: our buffered Bloom filter
achieves reference locality for multiple build or probe opera-
tions instead of just one. This is precisely what enables the
buffered Bloom filter to operate on an SSD, the fact that
the I/O cost is amortized over several requests.

Another attempt to improve the access locality is the hi-
erarchical Bloom filter array [24]: the idea there is to employ
a two-level hierarchy of Bloom filters, where the first level
Bloom filter is small and consequently not very accurate and

the second level filter is larger and therefore more accurate.
The first level filter, by virtue of its smaller size will have
better locality, and will reduce the number of requests that
reach the second filter. Moreover, the nature of the ap-
plication targeted by this solution, namely distributed file
lookups in meta-data servers, provides additional temporal
locality of file access patterns, which improves the locality
of reference in the second layer filter. For a generic-purpose
use, though, one may not expect such temporal locality of
access patterns, and thus the hierarchical Bloom filter may
not alleviate the locality problem enough to enable, for ex-
ample, the storage of the second layer filter on an SSD.

As mentioned previously, our work is motivated in part by
the use of buffering for B-trees to improve cache performance
[23]. Unlike the present paper, that paper deals exclusively
with cache miss latencies, and does not consider secondary
storage costs.

6. CONCLUSIONS
In this paper we proposed the Buffered Bloom Filter (BBF)

as an adaptation of the familiar Bloom filter data structure
that enables it to take advantage of solid state storage, as a
cheaper alternative to main memory. Since SSDs are block
devices, simply porting the traditional Bloom filter to SSD
would not be feasible because of the low locality of reference
of the bit operations. The BBF circumvents this problem
by making two, somewhat independent, locality-improving
changes to the original algorithm: 1) breaking a large filter
into multiple small (page-sized) sub-filters and dispatching
each element to one sub-filter in a deterministic way; and
2) amortizing the I/O cost by buffering the write and read
requests for the same sub-filter. The first change, by itself,
improves the locality of bit operations for a single element
processing in the build or probe phase. The second change
further improves the locality by grouping together a set of
requests for the same sub-filter so they can be applied in
bulk once the sub-filter is brought to main memory.

Each of these two ideas can be applied independently, but
neither will provide the same benefit as their combined use.
Thus, just partitioning the filter into sub-filters, while defi-
nitely improving the processor cache hit ratio, is only suit-
able to a main memory resident filter. Similarly, one can
just group the access requests by the referenced filter page
and read the page only when enough requests have been col-
lected, without requiring all hash functions to map to the
same sub-filter. The build phase algorithm will work un-
changed, even though the bit updates for the same inserted
element will be carried out asynchronously. The probe phase
algorithm would need to be adapted so that the results of
asynchronous bit read operations can be merged to output
the pass/fail status of each probe request. The extra amount
of bookkeeping information and merge processing would re-
duce the efficiency of the algorithm without providing any
benefit in terms of the false positive ratio.

While we have only focused on the Bloom filter data struc-
ture for this paper, we believe that similar partitioning and
buffering techniques can be employed for other memory con-
strained data structures such as hash tables or search trees,
thus enabling them to spill to solid state disks without any
performance degradation. In fact, any large data structure
which is expected to be frequently probed can be spilled to
SSD, provided that the requests can be buffered and served
in an out-of-sequence fashion.
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