MIST: Distributed Indexing and Querying in Sensor Networks

Ambuj K. Singh

(Arnab Bhattacharya, Anand Meka)
Department of Computer Science,
University of California, Santa Barbara
Semantic Modeling: Motivation

- **Content-Summarization:** Extracting high level semantic events from low-level sensor readings
 - What is the current traffic pattern?
 - Which room has the highest-likelihood of occupancy?
 - Is a storm approaching?

- **Vocal Recognition of Acorn Woodpeckers by acoustic sensors**
 - Which is this individual?
 - Where is this bird?
 - Are any birds alarmed?

Individual Recognition via models trained on sound
Motivation

- Track movement to study zebra behavior & social patterns
- Zebra’s movement characterized into (G) Grazing, (W) Walking, and (F) Fast Moving
- Temporal behavior is a sequence of states
 - Ex: GWWWWFGG
- Training of Markov Chains over such sequences
 - Start state vector (π)
 - Transition vector (Γ)
 - $P(GWW) = \pi(G) \Gamma(G,W) \Gamma(W,W)$
Semantic Modeling

- Hidden Markov Models (HMMs)
 - Additional Emission Vector (ξ)
 - Probability of state path: Akin to MC

- Probability of observing sequence from a particular state path:
 - $P(GWW \mid S_1 S_2 S_1) = \pi(S_1) \xi(S_1, G) \Gamma(S_1, S_2) \xi(S_2, W) \Gamma(S_2, S_1) \xi(S_1, W)$

- Probability of observing the sequence is the summation of sequence probability over all possible state-paths
 - Viterbi Algorithm: $O(n^2k)$ computation for a n-state HMM, and k-length sequence

Zebra Mobility: HMM model
Goals

- Identify interesting behaviors in the network
 - Ex: Which zebranet sensors observed FFFFF sequence with a likelihood of 0.85? (denoting a possible predator attack)

- Sequence Queries
 - Range Query: Return sensors which observed a particular pattern with a likelihood of at least Φ?
 - Top-1 Query: Which is the sensor that is most likely to exhibit a given behavior?

- Model Query
 - 1-NN Query: Which sensor model is the most similar to the given model?
 - Where is the woodpecker?
Centralized Solution

- Each sensor trains a model on the observation sequence
 - Transmits the model to the Base Station (BS)
- Queries are answered at BS
- Each update of model is transmitted to the BS
A Better Solution: Slack-based Centralized Scheme

- Slack parameter maintained at local models
- Updates are not transmitted if the change is within the slack
- If query cannot be answered by the BS using the cached models, it is transmitted to each node
Talk Outline

- Motivation & Preliminaries
- MIST: An In-network Model based Index Structure
- Query Algorithms
- Experiments
- Conclusions
MIST Index Structure

- Overlay a tree on the network
- Each sensor trains a MC/HMM on the observed sequences
- Bottom-up aggregation of index structure
- Types of Index Models
 - Average Model
 - Min-Max Model
- Index models capture correlation between constituent models
Models at nodes \(S_1 \) and \(S_2 \) are \((1-\varepsilon)\)-correlated if for all corresponding parameters \(\sigma_1 \) of \(S_1 \), and \(\sigma_2 \) of \(S_2 \):

\[
1 - \varepsilon = \min_i \left\{ \frac{\min(\sigma^i_1, \sigma^i_2)}{\max(\sigma^i_1, \sigma^i_2)} \right\}
\]

\(\varepsilon \rightarrow 0 \) : high similarity

Example: 0.75 correlation

<table>
<thead>
<tr>
<th>(S_1)</th>
<th>(S_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

\((\pi_1) \) \hspace{1cm} \((\pi_2) \) \hspace{1cm} \((\Gamma_1) \) \hspace{1cm} \((\Gamma_2) \)

\[
0.75 = \min \left\{ \frac{0.3}{0.4}, \frac{0.6}{0.7}, \frac{0.4}{0.5}, \frac{0.5}{0.6} \right\}
\]
MIST: Average Index Models

- Index maintains
 - Model whose parameters are average of the constituent models
 - β_{max}, β_{min}, and ε'
 - $\varepsilon' = \varepsilon / (2 - \varepsilon)$
 - $\sigma_i \geq \max \left\{ \sigma_{i_{\text{avg}}}(1 - \varepsilon'), \beta_{\text{min}} \right\}$
 - $\sigma_i \leq \min \left\{ \sigma_{i_{\text{avg}}}/(1 - \varepsilon'), \beta_{\text{max}} \right\}$

\[S_1 \xrightarrow{1-\varepsilon} S_2 \]

\[
\begin{array}{cc}
0.4 & 0.6 \\
0.7 & 0.3 \\
\end{array}
\]

\[
\begin{array}{cc}
0.3 & 0.7 \\
0.6 & 0.4 \\
\end{array}
\]

\[
\begin{array}{cc}
0.35 & 0.65 \\
0.65 & 0.35 \\
\end{array}
\]
MIST: Min-Max Index Models

- Index maintains
 - Min Model: parameters are minimum of the constituent models
 - Max Model is similarly defined

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>0.7</td>
<td>0.6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>

$S_{min} = (\Gamma_{min})$

$S_{max} = (\Gamma_{max})$
Index Models for HMMs

- Correspondence of states required to define index models
- Domain knowledge to infer correspondence between states
MIST: Hierarchical Index Structure

- Average Model:
 - \((1 - \varepsilon') = (1 - \varepsilon_1') (1 - \varepsilon_2')\)
 - \(\beta_{\text{max}}, \beta_{\text{min}}\) aggregated at node \(R\)

- Min-Max model aggregation similar to an R-Tree
Dynamic Maintenance

- After every period ‘d’, each sensor trains a new model on the recent observation sequence
- Update protocol: Child does not update its parent if the new model is \((1-\delta)\)-correlated with the model maintained at the parent
- Correlation maintained at the parent
 - \((1 - \epsilon_{slack}) = (1- \delta) (1- \epsilon_{no-slack})\)
 - Optimal slack analysis in paper
Motivation & Preliminaries

MIST: An In-network Model based Index Structure

Query Algorithms

Experiments

Conclusions
Range Querying

- Return all nodes that have observed a particular sequence of symbols \(q: q^1 \ldots q^i \ldots q^k \) with a probability \(> \Phi \)

- Assume \(P(q) = \sigma^1 \ldots \sigma^i \ldots \sigma^k \)

- Pruning by Average model \(S_{avg} \):
 - \(lb: \prod^k [\max \{ \sigma_{avg}^i (1 - \epsilon_s), \beta_{min} (1-\delta) \}] \)
 - \(ub: \prod^k [\min \{ \sigma_{avg}^i/(1 - \epsilon_s), \beta_{max}/(1-\delta) \}] \)

- Pruning by Min-Max models \(S_{min} \) & \(S_{max} \)
 - \(lb: P(q|S_{min})(1-\delta)^k \)
 - \(ub: P(q|S_{max})/(1-\delta)^k \)
Top-1 Query

- Return the sensor that has the highest probability of observing the query sequence
- Pruning employed by index models
 - compute lower and upper bounds on the query probability for each child-subtree
 - Prune the child-subtree if the upper bound from this subtree is smaller than the lower bound from another child-subtree
Model Querying

- Return the sensor model most similar to the query model.
- Similarity measure: L_2 distance between corresponding model parameters
- Average Models
 - Create an M-Tree index
 - Index node: routing object S_{avg} and covering radius
- Min-Max Models
 - Build an R-Tree based index
 - Index node: MBR in the vector space
Semantic Modeling & Querying

- Motivation & Preliminaries
- MIST: An In-network Model based Index Structure
- Query Algorithms
- Experiments
- Conclusions
Experimental Results

- Datasets
 - Lab-data:
 - 4 rooms, 4 sensors in each room.
 - Temperature readings every 30s for 10 days.
 - Symbols: C (cold), P (Pleasant), H (Hot)
 - Example semantic queries: CCHHCC, PPPPP
 - Synthetic data
 - Network size varied between 16-512
 - State size varied between 3-11
 - Correlation parameter ϵ varied between 0.001 -0.5
Compared Techniques

- Centralized scheme with no slack
 - A node transmits each parameter update to the base station
 - Zero querying cost
- Centralized scheme with slack
 - Slack maintained at base station
 - Updates transmitted if they exceed the slack
 - If query cannot be answered by the BS using cached models, it is transmitted to the nodes.
- MIST schemes
 - Without slack
 - With slack at every level of the tree
Update cost

Laboratory MCs: Update cost

Update cost in bytes

Minmax slack
Minmax no slack
Average slack
Average no slack
Centralized slack
Centralized no slack

Slack δ

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Range query

Synthetic MCs: Range query cost

- Minmax slack
- Minmax no slack
- Average slack
- Average no slack
- Centralized slack

Query cost in bytes vs Query length k

$\varepsilon = 0.1, \delta = 0.05$
Top-1 query

Synthetic HMMs: Top-1 query cost

Query cost in bytes

Slack δ

$\varepsilon=0.01$
Model query

Synthetic MCs: Model query cost

Query cost in bytes

Correlation parameter ϵ

$\delta=0.2\epsilon$
Scalability with network size

Scalability with network size

Communication cost in bytes

Network size
Semantic Modeling & Querying

- Motivation & Preliminaries
- MIST: An In-network Model based Index Structure
- Query Algorithms
- Experiments
- Conclusions
Semantic Modeling & Querying

- Content summarization using MCs and HMMs
- Semantic queries
 - Sequence-based: Range and Top-1 queries
 - Model-queries
- MIST: In-network index structure
 - Average model and $\epsilon, \beta_{\text{max}}, \beta_{\text{min}}$
 - Min-Max model
- Efficient pruning of queries via MIST
- MIST shows superior scalability than centralized schemes in update, query and total communication costs
Future work

- Other models
- Other ways of summarizing parameters
 - $\beta_{\text{max}}, \beta_{\text{min}}$
- Other query algorithms
- State correspondence problem
- Application domains
- Learning the model

Questions?