Modeling and Querying Vague Spatial Objects Using Shapelets

Daniel Zinn1 Jim Bosch2 Michael Gertz1

1Department of Computer Science
2Department of Physics

University of California at Davis
Vague Spatial Objects

... are localized objects with uncertainties

Examples
- Astronomical objects
- Meteorological phenomena
- Demographic regions
- Eco-regions
- Probability for “X”

Objective: Data and query model for vague spatial objects
Outline

1. Related Work and Contributions
2. High-Level and Low-Level Operations
3. Shapelets
4. Prototype and Evaluation
5. Summary and Ongoing Work
Outline

1. Related Work and Contributions
2. High-Level and Low-Level Operations
3. Shapelets
4. Prototype and Evaluation
5. Summary and Ongoing Work
Related Work

Fuzzy Regions [Schneider et al. ’97–’05]
- Contour representation
- Operations scale with number of vertices
- High number of vertices for smooth objects
- Discrete Values

Pixel Representations
- Field data
- Operations scale with number of pixels
- Many pixels necessary for smooth objects
- Discrete and fixed squares in x/y area

Both representations are built on a discrete “basis”
Contributions

Data and Query Model
- Represent vague spatial objects with shapelets
- Characterized a comprehensive set of low-level operations
- Build high-level operations from low-level operations

Realization and Evaluation
- Implementation in PostgreSQL
- Shapelet as column data type
- 29 low-level operations implemented
- Stored procedures for high-level operations
- Sample queries and performance experiments
- [Indexing technique based on ε-bounding boxes]
Outline

1. Related Work and Contributions
2. High-Level and Low-Level Operations
3. Shapelets
4. Prototype and Evaluation
5. Summary and Ongoing Work
High-level Operations on Vague Spatial Objects

Standard topological Operations
- Window and point operations
- Union, intersection, overlap

Metric Operations
- Area
- Width, height
- Centroid

Geometric Transforms
- Scale
- Translate
- Rotate
High-level Operations on Vague Spatial Objects

Standard topological Operations
- Window and point operations
- Union, intersection, overlap

Metric Operations
- Area
- Width, height
- Centroid

Geometric Transforms
- Scale
- Translate
- Rotate

Low-Level Operations
- Point-wise evaluation, and arithmetic ops.
- min/max ops.
- Integrals and integral moments
- Value-based and integral-based contours
- Scale, translate, rotate
Examples: Overlap and Width

Overlap
Does/How much does rectangle R overlap with vague object F?

- $overlap(F, R) := \int_R f(x, y)$, or
- $overlap(F, R) := \max_R \{ f(x, y) \}$

Width
How long is F along the x-dimension?

- Value-based contour to measure width of crisp contour
 $width(F) := width(contour(F, t))$, or
- Root-mean-square width, i.e. standard derivation
 $width(F) := \left[\frac{\int x^2 f(x, y) dx dy}{\int f(x, y) dx dy} \right]^{1/2}$
Examples: Overlap and Width

Overlap
Does/How much does rectangle R overlap with vague object F?

- $\text{overlap}(F, R) := \int_{R} f(x, y)$, or
- $\text{overlap}(F, R) := \max_{R}\{f(x, y)\}$

Width
How long is F along the x-dimension?

- Value-based contour to measure width of crisp contour
 $\text{width}(F) := \text{width}(\text{contour}(F, t))$, or
- Root-mean-square width, i.e. standard derivation
 $\text{width}(F) := \left[\frac{\int x^2 f(x, y) dx dy}{\int f(x, y) dx dy} \right]^{1/2}$
Examples: Overlap and Width

Overlap
Does/How much does rectangle R overlap with vague object F?
- $\text{overlap}(F, R) := \int_R f(x, y)$, or
- $\text{overlap}(F, R) := \max_R \{f(x, y)\}$

Width
How long is F along the x-dimension?
- Value-based contour to measure width of crisp contour
 $\text{width}(F) := \text{width}(\text{contour}(F, t))$, or
- Root-mean-square width, i.e. standard derivation
 $\text{width}(F) := \left[\frac{\int x^2 f(x,y) dx dy}{\int f(x,y) dx dy} \right]^{1/2}$
Outline

1. Related Work and Contributions
2. High-Level and Low-Level Operations
3. Shapelets
4. Prototype and Evaluation
5. Summary and Ongoing Work
Shapelets – *Intro*

Shapelets
- Image compression technique, which has been developed in astronomy
- Distorted 2-dimensional Gaussian functions

Our Contributions
- Use shapelets for representing general vague objects
- Refined math for low-level operations (eg. for overlap)
- Developed math for ε-bounding boxes
Shapelets – *Series Expansion*

Series expansion

\[
f(x, y) = \sum_{n=0}^{\infty} a_n \phi_n(x, y)
\]

- Basis functions weighted by coefficients
- Representation of arbitrary vague objects

\[
f(x, y) = a_{00} a_{01} a_{02} a_{03} a_{10} a_{11} a_{12} a_{13} a_{20} a_{21} a_{22} a_{23} a_{30} a_{31} a_{32} a_{33} \]

\[
\phi_n(x, y)
\]

Zinn, Bosch, Gertz
Shapelets – *Localized, Smooth Basis Functions*

1D Shapelet Basis Functions

\[
\phi_n(x) = \left[2^n \pi^{1/2} n!\right]^{-1/2} H_n(x) e^{-\frac{x^2}{2}}
\]

- **Hermite Polynomials**, weighted by a Gaussian
- \(H_{n+1}(x) = xH_n(x) - H'_n(x)\)

Hermite Polynomials

- \(H_0 = 1\)
- \(H_1 = x\)
- \(H_2 = x^2 - 1\)
- \(H_3 = x^3 - 3x\)
Representing Arbitrary Objects

- Arbitrary smooth objects
- Quality improves with number of coefficients
- Excellent for smooth objects, OK for crisp objects

Avg. Squared Error
Shapelets vs. Pixels vs. Polygons

Each representation is limited to the same amount of memory (36 floating point values).

- Outstanding for Gaussian-like objects
- Outperform pixel representation
- Outperform polygon representation – even for the polygons

<table>
<thead>
<tr>
<th>Orig.</th>
<th>Polyg.</th>
<th>Pixel</th>
<th>Shap.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avg. Squared Error

- Gaussian
- Mt. Shasta
- Freehand
- Polygons

-shapelet | poly | img | Avg. Squared Error
Revisiting Low-level Operations

Example: Integral-Operator

Recursion Relations for Hermite Polynomials

\[H_n(x) = 2xH_{n-1}(x) - 2(n-1)H_{n-2}(x) \]
\[\frac{dH_n(x)}{dx} = 2nH_{n-1}(x) \]

Recursion Relations for Integration over Shapelets

\[I_n = \int_a^b \phi_n(x) \]
\[I_n = -\sqrt{\frac{2}{n}}[\phi_{n-1}(x)]_a^b + I_{n-2}\sqrt{1 - 1/n} \]
\[I_0 = \sqrt{\frac{\pi^2}{2}}[\text{erf}(x/\sqrt{2})]_a^b \]
\[I_1 = -\sqrt{2}[\phi_0(x)]_a^b \]

Operation scales linearly with number of coefficients!
Outline

1. Related Work and Contributions
2. High-Level and Low-Level Operations
3. Shapelets
4. Prototype and Evaluation
5. Summary and Ongoing Work
Architecture

- New column datatype: **Shapelet**
- Stored Procedures for high-level operations
- C++ class Shapelet, which implements 29 low-level operations
- GNU Scientific Library (GSL) for matrix operations
- C struct RawShapelet as data container
Example: Neighbor Overlap

C-Binding for Low-level Operations

```sql
CREATE FUNCTION s_overlap(shapelet, shapelet) RETURNS FLOAT8 AS '_OBJWD_/shapelet', 'RawShapelet_overlap'
LANGUAGE C IMMUTABLE STRICT;
```

High-level to Low-level Mapping: Overlap

```sql
CREATE FUNCTION overlap_Symmetric(shapelet, shapelet) RETURNS double precision AS
'SELECT s_overlap($1,$2)/
( s_integrateAll($1) * s_integrateAll($2) )
AS result;'
LANGUAGE SQL;

CREATE FUNCTION overlap_Asymmetric(shapelet, shapelet) RETURNS double precision AS
'SELECT s_overlap($1,$2)/s_integrateAll($1)^2 AS result;'
LANGUAGE SQL;
```
Implemented Low-level Operations

<table>
<thead>
<tr>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>importString(t):s</td>
</tr>
<tr>
<td>exportString(s):t</td>
</tr>
<tr>
<td>importPNG(t,p,f,i):s</td>
</tr>
<tr>
<td>exportPNG(s,i,i,b,t)</td>
</tr>
<tr>
<td>makeGaussian(p,f,f):s</td>
</tr>
<tr>
<td>getCenter(s):p</td>
</tr>
<tr>
<td>setCenter(s,p)</td>
</tr>
<tr>
<td>getBeta(s):f</td>
</tr>
<tr>
<td>setBeta(s,f)</td>
</tr>
<tr>
<td>evalAtPoint(s,p):f</td>
</tr>
<tr>
<td>integrateBox(s,b):f</td>
</tr>
<tr>
<td>integrateAll(s):f</td>
</tr>
<tr>
<td>getIntBBox(s,f):b</td>
</tr>
<tr>
<td>getMaxBBox(s,f):b</td>
</tr>
<tr>
<td>getEpsBBox(s,f):b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplyScalar(s,f):s</td>
</tr>
<tr>
<td>multiply(s,s):s</td>
</tr>
<tr>
<td>add(s,s):s</td>
</tr>
<tr>
<td>subtract(s,s):s</td>
</tr>
<tr>
<td>normalize(s):s</td>
</tr>
<tr>
<td>intersection(s,s):s</td>
</tr>
<tr>
<td>union(s,s):s</td>
</tr>
<tr>
<td>overlap(s,s):f</td>
</tr>
<tr>
<td>scale(s,f,f,bl):s</td>
</tr>
<tr>
<td>rescale(s,f,i):s</td>
</tr>
<tr>
<td>recenter(s,p):s</td>
</tr>
<tr>
<td>translate(s,p):s</td>
</tr>
<tr>
<td>rotate(s,f):s</td>
</tr>
</tbody>
</table>

s:Shapelet. t:Text. f:Float. p:Point. b:Box. i:Int. bl:Boolean
Sample Queries

Inserting galaxies from an astronomical catalog

```sql
CREATE TABLE galaxies AS (
  SELECT rotate(scale(makeGaussian(c,1.0,f),a,b,TRUE),theta)
  FROM catalog );
```

Galaxies, having >50% of their brightness in a certain box

```sql
SELECT * FROM galaxies
WHERE integrateBox(g, BOX '((5000,5000),(5500,5500))') > 0.5*integrateAll(g);
```

PNG export

```sql
SELECT shapelet_exportPNG(allgal, 100,100, 5000,5000, 5500,5500, '/tmp/out.png')
FROM (
  SELECT array_accum(g * 250000 * 200 ) AS allgal
  FROM galaxies
  WHERE bbox_0_005 && '(5000,5000,5500,5500)'
) AS foo;
```
Performance Experiments

Experimental Setup

- Varying number of coefficients (1 \ldots 120)
- 1 million shapelets of each resolution
- Measured query runtime (with PostgreSQL query statistics)

Result

- Operations scale linearly with number of coefficients
- Operations \textit{integrateAll} and \textit{integrateBox} comparable to \textit{count}
Outline

1. Related Work and Contributions
2. High-Level and Low-Level Operations
3. Shapelets
4. Prototype and Evaluation
5. Summary and Ongoing Work
Summary

High-level vs. Low-level Operations
- A specific set of low-level operations is sufficient to provide a basis for implementing important high-level operations useful in several application areas.

Series Expansion on Shapelet Basis
- Arbitrary objects can be represented
- Localized, smooth set of basis functions
- “Nice” mathematical properties

PostgreSQL Implementation
- Ready-to-use implementation for PostgreSQL
- Indexing with ε-bounding boxes
Future Work

- Multi-shapelets
- Contouring shapelets
- Providing a full set of high-level operations for a specific application domain
- GIST for indexing shapelets
Questions?

Acknowledgments

This work is in part supported by the National Science Foundation under Awards IIS-0326517 and ATM-0619139
C implementation for RawShapelet_integrateAll

```c
PG_FUNCTION_INFO_V1(RawShapelet_integrateAll);
Datum RawShapelet_integrateAll(PG_FUNCTION_ARGS) {
    RawShapelet *s = (RawShapelet *) PG_GETARG_POINTER(0);
    double result;
    RawShapeletIntegrateAll(s, &result);
    PG_RETURN_FLOAT8(result);
}
```

RawShapelet

```c
typedef struct RawShapelet {
    int size; double beta, x, y;
    double data; // starting element for data array
} RawShapelet;
// Low-level data access methods
inline void setData(RawShapelet *s, int offs, double v) {
    (&(s->data))[offs] = v;
}
```
Architecture

- PostgreSQL Stored Procedures
 - High-Level Operations / Queries
 - PostgreSQL Kernel: Functions
 - PerlShapelet
 - C-Wrappers
 - Perl
 - SWIG
 - C
 - C++
 - Shapelet
 - Memory Management
 - Operations on Shapelets: String I/O, integrals and moments, geometric operations, etc.
 - User-friendly interface
 - Data Storage
 - Variable length C-struct
 - Raw data access
 - Rapid Prototyping
 - Test of C++ library
 - PNG Output
 - Overlap
 - ...
 - Data Storage
 - RawShapelet
 - C
Intersection/Union with Multiplication and Addition

\[f(x) \quad g(x) \]

Intersection
\[\min(f,g) - f \cdot g \]

Union
\[f + g - f \cdot g \]

\[\max(f,g) \]

Zinn, Bosch, Gertz