Performance Evaluation and Experimental Assessment

Conscience or Curse of Database Research?

Panelists:
- Torsten Grust (Technische Universität München)
- Martin Kersten (CWI, Amsterdam)
- Paul Larson (Microsoft Research)
- Guido Moerkotte (Universität Mannheim)
- Yannis Papakonstantinou (UCSD)

Moderators:
- Ioana Manolescu (INRIA Futurs)
- Stefan Manegold (CWI, Amsterdam)
Experimental evaluation
in SIGMOD 2007 accepted papers:
some statistics

Ioana Manolescu (INRIA)
with help from Denilson Barbosa (U. Calgary)
SIGMOD 2007 research papers (total: 68)
SIGMOD 2007 industrial papers (total: 15)
Hardware used in experiments

- At least a PC
- Other
- Unspecified
Hardware beyond 1 PC (total: 17)

- Multi-proc
- Distributed network
- Flash memory
- Special hardware
- Mac
- Sun
Programming language

- C
- C++
- Java
- Xquery
- C#
- Teja C
- Unspecified
Data sources used in experiments

- Papers with experiments
- Author-produced data
- Pre-existing data
Anecdote

“Note that we were not able to compare timing results directly with X since a working executable/code is not directly available.¹

¹Personal communication with the authors.”
Experimental Assessments in Research Papers Today

A Little Shop of Horrors

Torsten Grust
Technische Universität München

http://www-db.in.tum.de/~grust/
“Let them figure out the correct syntax...”

combine aggregation-based, structure-based and value-based predicates by the logical operators, not, or and and, which allows more expressive queries. For example, in the following query,

```
/descendant::a[[child::b = "B"] and [descendant::c]]
```
“Let them figure out the correct syntax...”

combine aggregation-based, structure-based and value-based predicates by the logical operators, not, or and and, which allows more expressive queries. For example, in the following query, “/descendant::a[[[child::b = "B"] and [descendant::c]]

- Apparent lack of language knowledge / care doesn’t help your case.
“Let them figure out the correct syntax...”

combine aggregation-based, structure-based and value-based predicates by the logical operators, not, or and and, which allows more expressive queries. For example, in the following query, ‘/descendant::a[[[child::b = "B"] and [descendant::c]]

- Apparent lack of language knowledge / care doesn’t help your case.
- Show love respect for your object of study.
You can typeset \{\} in LaTeX
You can typeset `{}` in LaTeX

```xml
<RECORDLIST>
  for $play$ in
document("dxv.xml")/PLAY/ROW
order by $play$/POSITION/text()
return
  <PLAY>
    <BAND/>$play$/BAND_PCDATA/text(),
    for $song$ in
document("dxv.xml")/SONG/ROW
      [PID/text() = $play$/IID/text()]
  order by $song}$/POSITION/text()
return
  <SONG>
    $song}$/SONG_PCDATA/text()
  </SONG>
</PLAY>
</RECORDLIST>
```

- Missing `{}` in node constructors,
- `document(...)`,
- miXeD cASe KEyWoRDS,
- empty `<BAND/>` tag suspicious....
You can typeset \{\} in LaTeX

```latex
<RECORDLIST>
  for $play$ in document("dxv.xml")/PLAY/ROW
  Order by $play$/POSITION/text()
  return
  <PLAY>
    <BAND/>$play$/BAND_PCDATA/text(),
    for $song$ in
document("dxv.xml")/SONG/ROW
    [PID/text() = $play$/IID/text()]
    order by $song$/POSITION/text()
  return
  <SONG>$song$/SONG_PCDATA/text()
</SONG>
</PLAY>
</RECORDLIST>
```

- Missing \{\} in node constructors,
- \texttt{document(...)},
- miXeD cASE KEyWORDS,
- empty \texttt{<BAND/>} tag suspicious....
- This is the running example in this paper.
Beyond Syntax ...

XQuery$_2$:

FOR b in //B,
 d in b//D
LET $c := $b//C
RETURN b, d, c

- Variables b, c not bound in return clause.
- Have you ever run this through any language processor?
result sets of f and l are the desired data of this query. Therefore we need to identify the tuples composed of ef... subtree rooted at it according to PROPERTY 2. Therefore it is very efficient for the queries to retrieve subtrees.
Be Inventive Before Entering the Experimental Section

- Does “=” mean XQuery’s for or let here?
- You never ran this. What did you run then?

for p in (bib.xml)/paper,
 $t=$p/title,
 $y=$p/year,
 $c=$p/confer,
 $a=$p/authors/author,
 $f=$a/first_name,
 $l=$a/last_name
where $t/text()='XML' and $c/text()=''.
 $y/text()='2007'
return <author> {$f} {$l} </author>
Be Inventive Before Entering the Experimental Section

- Does “=” mean XQuery’s for or let here?
- You never ran this. What did you run then?
- You included performance numbers, but you measured something else.
7 Experimental Evaluations

In this section, we present an experimental study to verify the effectiveness of our proposed techniques. All experiments were run on a machine with 3.4GHZ. The experiments were run in warm memory. The proposed techniques were implemented in c++. The synthetic graphs were generated by the algorithm described in Section 4.
7 Experimental Evaluations

In this section, we present an experimental study to verify the effectiveness of our proposed techniques. All experiments were run on a machine with 3.4GHz. The experiments were run in warm memory. The proposed techniques were implemented in C++. The synthetic graphs were generated using the Erdős–Rényi graph model.

• “We studied it — but you will never be able to experience it yourselves.”
RetiredInstructions

I1 accesses
I1 misses
D1 accesses
D1 misses
L2 accesses
L2 misses
L2 prefetches
Retired Branch Instructions
Branch Mispredictions
"We consistently outperform"
“We consistently outperform ... this hopeless case.”
“We consistently outperform ... this hopeless case.”

- Compare against the real competition.
- Makes for a more interesting analysis, too.
“If it was hard to measure, why should it be easy to read?”
“If it was hard to measure, why should it be easy to read?”

- These graphs contain the core message of the work.
Bedtime stories: Experimental validation

Martin Kersten
Experimental validation

- What are the requirements for a credible experimental assessment?

- Are there classes of papers that do not need experimental validation?
Experiment Metrics

• Platform accessibility
 1. Off-the-shelf
 2. Accessible to scientist
 3. For rich only

• Software accessibility
 1. Open-source,
 2. Built your self
 3. Proprietary

• Parameter space
 1. Space exploration
 2. Public points
 3. Private point

• Address a desire
 1. Real-life
 2. Simulation
 3. Theory

• Metric Monsters
 1. Colleagues
 2. Compiler
 3. Clock
Experiment Metrics

- **Platform accessibility**
 1. Off-the-shelf
 2. Accessible to scientist
 3. For rich only

- **Software accessibility**
 1. Open-source,
 2. Built your self
 3. Proprietary

- **Parameter space**
 1. Space exploration
 2. Public points
 3. Private point

- **Address a desire**
 1. Real-life
 2. Simulation
 3. Theory

- **Metric Monsters**
 1. Colleagues
 2. Compiler
 3. Clock
Experiment Metrics

- Platform accessibility
 1. Off-the-shelf
 2. Accessible to scientist
 3. For rich only

- Software accessibility
 1. Open-source
 2. Built your self
 3. Proprietary

- Parameter space
 1. Space exploration
 2. Public points
 3. Private point

- Address a
 1. Real
 2. Simulation
 3. Theory

Metric Monsters

1. Colleagues
2. Compiler
3. Clock
The fairy tale index

SIGMOD’07

Fairy tale

VLDB’07

Dull reality

The Verdict
The Verdict

The fairy tale index

SIGMOD’07

1.97

Fairy tale

Dull reality

VLDB’07

1.89
Performance Evaluation and Experimental Assessment

Paul Larson
Microsoft Research
Typical experimental evaluations of limited value

- Database systems used for lots of different purposes
 - Different databases, workloads, hardware
- Easy to find a case where your idea improves performance by X %
- Lots of work to find out
 - Does the improvement hold up in different contexts?
 - How does it interact with other features?
 - What’s the effects on other quality measures?
- Solid experimental performance evaluation is difficult and takes a lot of work
Benchmarks and performance comparisons

- Good benchmarks are hard to design but very useful
- Thorough experimental evaluations and comparisons are extremely valuable
- So why do we have so few papers on new benchmarks or comparing performance?
 - few submitted or few accepted?
Sigmod experimental repeatability requirement

- Experiments verified by a committee
- Submit code and data sets
- Doubt we have a big problem with fraudulent results?
- Impractical - Lots of work for what benefit?
- Industrial labs not able to participate
 - Can’t distribute code without license
 - Can’t distribute experimental code
Performance Evaluation and Experimental Assessment

Guido Moerkotte
• Should experimental assessment and performance evaluation be considered part of research or rather part of engineering?

• Who cares.
• What are the requirements for a credible assessment?
• Answer doesn’t fit into 5 minutes.
• Are current experimental benchmarks up to the task?
• Not necessarily.
• Are there classes of papers that do not need experimental validation?
• Yes: PODS papers.
• Yes: those with time/space complexity analysis
• Are there other metrics than performance that could/should be assessed empirically?
• Yes, but not in databases.
• Would a requirement list or even template help to ensure standardized and complete representation?
• Yes, see TPC. But for universities this is too heavy.
• And: standardized benchmarks only exist for old problems.
• Is comparison with commercial systems possible?
• Yes, it reveals deficiencies and potentially proposes remedies.
• What are the minimal requirements on experimental validations?
• plausibility. [no cheating!]
• completeness: e.g.: index: time to load, query, update, query. plus space
• approximate reproducability.
• Should we modify the reviewing process to solicit more disclosure of data and code?
• Who is going to read the code anyway?
• Answers are only valid, if you don’t want a paper to be accepted.
Karl Popper, anonymity, the “12 pages” and repeatability
Let’s hear it from the Viennese

Falsifiability is the demarcation between science and non-science

Karl Popper

Thanks wikipedia! I can now (pretend I have) read Popper’s works.
The easy way to do it

• Detail/document the experimental procedure
 – Data set, algorithm
 – Archive; SIGMOD?

• or provide an (online) system

...and while talking about online systems...

Shameless (yet can be repeatable) Advertising Section

Check out app2you.org: Create custom, interactive, database-driven web applications in minutes!

for classroom management, graduate admissions, hiring, event planning, and all sorts of collaborative processes you need
The easy way became hard by conference paper regulations

• “12 pages” do not fit all
 – Allow pointers to web sites having data sets, detailed descriptions, online demos

• Clashes with anonymity
Repeatability proposal

- Will discourage some flagrant cases

- … but onerous and “offensive” [per member of my thesis committee]

- Anonymity-complete bruhaha
Conclusion

• Strongly promote “repeatability” aspects

• Remove regulations that collide with them

• Measure the effect, feedback