Online Outlier Detection in Sensor Data Using Non-Parametric Models

Themis Palpanas

Univ of Trento

Sharmila Subramaniam Dimitris Papadopoulos Vana Kalogeraki Dimitrios Gunopulos

Univ of California, Riverside

Introduction

- several emerging applications across industries are event-driven
 - consume streaming data produced by a variety of data sources
 - process those data, reason about them, take corresponding actions
- streaming data management desiderata
 - process data in real time
 - be able to scale in number of sources, data rates
 - perform intelligent data analysis
- some applications are only interested in special events that constitute abnormal behavior
 - then, we can filter out of the streaming data the normal behavior
 - focus on the interesting (and infrequent) data values

Applications: Monitoring Production Control Systems

Applications: Monitoring Vehicle Operation

Problem Overview

- detect abnormal behavior (identify outliers)
- important for
 - situation detection
 - focusing on the interesting events in the data
 - react only to the important readings
- focus of this study:
 - streaming data
 - sliding window model
 - distributed processing (in network of sensors)

Roadmap

- Outliers
 - Distance-Based Outliers
 - Density-Based Outliers
- Input Data Distribution Estimation
 - Kernel Density Estimators
- Proposed Solution for Online, Distributed Outlier Detection
- Experimental Evaluation
- Related Work
- Conclusions

Abnormal Behavior

- deviations / outliers
 - a value that deviates significantly from the rest of the values in the dataset
 - several definitions
 - distance-based, density-based
 - consider two definitions
 - O(r, K) (distance-based)
 - *MDEF* (density-based)
 - Multi-granularity Deviation Factor

O(r, K) Outliers

- outlier
 - a value that has few near neighbors
 - set of outliers $O = \{ p \in D \mid D_r, \forall q \in D_r : dist (p,q) < r \land | D_r | \le K \}$
 - corresponds to statistical tests for outliers
 - for particular choices of (*r*, *K*), gives the same result as statistical tests, for several probability distributions

Identifying O(r, K) Outliers

- problem
 - for every data point in the stream:
 - count the number of near neighbors
 - if these neighbors are too few, declare the data point an outlier

issues

- how can we count the number of neighbors?
- how can we do these computations in a distributed fashion?
- how can we do that fast, with an online algorithm?

MDEF Outliers

- outlier
 - a value whose near neighborhood is significantly less dense than its extended neighborhood

		\times							
$\times \times \times \times \times \times \times \times \times$		\times							
$\begin{array}{c} \times \times \times \times \times \times \times \times \times \\ \times \times \times \times \times \times \times \times \times $		\times	\times	×	\times	\times	\times	\times	×
$\begin{array}{cccc} \times \\ \times \times \times \times \times \times \times \times $		\times	×						
$\begin{array}{c} \times \times \times \times \times \times \times \times \times \\ \times \times \times \times \times \times \times \times \times $	×	\times	×						
$\times \times \times \times \times \times \times \times$		×	×	×	×	×	\times	×	×
		×	×	×	×	×	\times	×	×
		×	×	×	×	×	×	×	×

graph by S.Papadimitriou

MDEF Outliers

- outlier
 - a value whose near neighborhood is significantly less dense than its extended neighborhood
 - set of outliers $O = \{ p \in D \mid MDEF (p, r, a) > k_{\sigma}\sigma_{MDEF} (p, r, a) \}$
 - *MDEF* at radius *r* for point *p* is relative deviation of its local neighborhood density from the average local neighborhood density in its *r*-neighborhood $MDEF(p, r, \alpha) = 1 n(p, \alpha r) / n'(p, \alpha, r)$
 - in uniformly distributed dataset (almost) all points have MDEF equal to 0
 - essentially parameter free: α and k_{σ} predetermined constants with robust behavior across different datasets

Identifying MDEF Outliers

- problem
 - for every data point in the stream:
 - count the number of near neighbors
 - average the number of near neighbors for all the points in the extended neighborhood
 - sum of number of neighbors for a grid decomposition of the data space

issues

- how can we compute all these counts for the number of neighbors?
- how can we do these computations in a distributed fashion?
- how can we do that fast, with an online algorithm?

Input Data Distribution Estimation

• time t_1

Input Data Distribution Estimation

• time $t_2 > t_1$

Our Approach

- kernel density estimation
 - model estimation technique
- benefits
 - effectively approximates an unknown data distribution
 - non-parametric
 - efficiently computed in streaming environment
 - adjusts to changes in the input
 - can operate in a distributed fashion

Kernel Estimation

- kernel estimator
 - generalized form of random sampling
- works as follows
 - sample the data
 - assign a weight to each sample
 - distribute the weight of each sample in its neighborhood
 - according to a *kernel function*

Kernel Function

- Epanechnikov kernel function
 - generalized form of random sampling

$$\begin{split} &k(x) = 3/4B \ (1-(x/B)^2), \ \text{if } |x/B| < 1, \ 0 \ \text{otherwise} \\ &B \ \text{is the kernel function bandwidth} \\ &B = 5^{1/2} \sigma |R|^{-1/5} \qquad (\text{Scott's rule}) \\ &\sigma \ \text{standard deviation of points in the dataset} \\ &|R| \ \text{sample size} \end{split}$$

- easy to integrate
- extends naturally to multiple dimensions

Kernel Density Estimation: Example

Kernel Density Estimation

- kernel estimation in a streaming environment (assume sliding window model)
 - compute and maintain online
 - random sample of data
 - standard deviation of data
- random sample
 - chain-sample algorithm produces uniform random sample
- standard deviation
 - concise histogram technique
- both algorithms adapt to shifting input distributions
- both algorithms can operate in a distributed fashion
 - models can be combined

Online Outlier Detection: Distance-Based Outliers

- O(r, K) outliers
 - count the number of points within a circle of radius *r*
- solution based on kernel density estimation

$$N(p,r) = \int_{[p-r,p+r]} \left(\frac{1}{|T|} \sum_{p_i \in D} \frac{3}{4B} \left(1 - \left(\frac{x-p_i}{B} \right) \right) \right) dx$$

- estimates the number of neighboring points
- space and time efficient for each sensor
 (space: O(d(|R|+1/ε²log|W|)), time 1-d: O(log|R|+|R'|), time m-d: O(d|R|))

Online Outlier Detection: Distance-Based Outliers

Detection of Region Outliers

- identify outliers wrt multiple data streams
- parent has to build a model for the combined data distribution of its children
- possible solution: each sensor in hierarchy has to compute its own sample
- expensive solution!
 - even if sampling only happens at leaf level

Distributed Computation of Estimators

- kernel estimator model composition
 - combine random sample and kernel bandwidth of children nodes
 - new random sample is union, possibly followed by downsampling
 - kernel bandwidth estimation based on: $V_{12}=V_1+V_2+N_1N_2/N_{12}(\mu_1-\mu_2)^2$
 - single model describing the behavior of all children nodes
- adapting to shifting data distributions
 - children propagate estimator updates to parent nodes according to:
 - changes in input distribution
 - have to monitor changes, adapt update rate accordingly monitor first moments of distribution, or apply specialized techniques
 - probability that depends on number of children and sample sizes
 - update probability $f = |R_p|/c|R|$

Online Distributed Outlier Detection: Distance-Based Outliers

• theorem

Assume nodes $n_1, ..., n_l$ children of node n_p . Assume data streams $S_1, ..., S_l$ referring to the l children nodes, and corresponding sliding windows $W_1, ..., W_l$. The sliding window of node n_p is defined as $W_p = U_{i=1}^{-1} W_i$. Let, at some point in time, $O_1, ..., O_l$ be the sets of distance based outliers corresponding to each one of the l sliding windows. Then, for the set O_p of outliers in W_p it holds that O_p subset of $U_{i=1}^{-1} O_i$.

- if a value is an outlier in the combination of two or more streams, then it is an outlier in at least one of those streams
- as we combine streams we can ignore all points that are not outliers

Online Distributed Outlier Detection: Distance-Based Outliers

Online Distributed Outlier Detection: Density-Based Outliers

- *MDEF* outliers
 - count the number of near neighbors
 - compare to the average count across the extended neighborhood
 - an outlier at the parent node may not be an outlier at any child node!
 - leaf level nodes report outliers wrt to the values they observe, or wrt to the values of the entire region they belong in
- when combining streams, the children nodes have to know the global distribution
 - parents have to communicate their models to the children
- we apply the following scheme:
 - children update parent models about their changes with probability *f*
 - when the global model changes, the changes are propagated to all the leaf nodes
 - may reduce communication by propagating only if change is significant (by computing the distance of the models)

Experimental Evaluation

- technique implemented on top of TAG sensor network simulator
 - 5,000 lines of java code
- synthetic datasets
 - mixtures of Gaussians
 - 35,000 observations
 - values normalized to [0,1]
- real datasets
 - sensor readings from Pacific Northwest region (35,000 observations)
 - engine operation measurements (50,000 observations)
- measured precision and recall (compared to offline algorithm)

Experimental Results: Accuracy – *O(r, K)* Outliers

• varying the sample size (available memory), 1-d synthetic data

Experimental Results: Accuracy – *O(r, K)* Outliers

• varying the sample size, 2-d real data

MGDD 100

100

varying the sample size (available memory), 1-d synthetic data

Experimental Results: Accuracy – *MDEF* Outliers

MGDD

MGDD

varying the sample size, 2-d real data

Experimental Results: Accuracy – *MDEF* Outliers

MGDD 100 90

Experimental Results: Accuracy – MDEF Outliers

varying the update probability f, 1-d synthetic data

MGDD

Experimental Results: Communication Costs

- cost comparison of outlier detection algorithms
 - distance-based D3, density-based MGDD, centralized approach

Related Work

- statistical outliers
 - suppose knowledge of input distribution, offline [Barnet,Lewis'94]
- outliers in databases
 - offline algorithms [Arning et al'96][Knorr,Ng'98][Papadimitriou et al'03][Breunig et al'00] [Ramaswamy et al'00]
- outliers in time series
 - temporal ordering is key [Puttagunta,Kalpakis'02][Muthukrishnan et al'04][Yamanishi et al'04]
- sensor data processing systems
 - query processing

[Madden et al'02][Yao,Gehrke'03][Bonfils,Bonnet'03]

approximate query answering

[Deshpande et al'05][Guestrin et al'04][Cormode,Garofalakis'05][Olston et al'03][Jain et al'04]

Conclusions

- studied the problem of online outlier detection in sensor networks
- proposed general and flexible data distribution approximation framework
 - does not require a priori knowledge of the input data distribution
 - based on non-parametric model
- described technique for efficient distributed deviation detection
 - focus on the interesting, unexpected events
- validated the proposed approach experimentally

thank you!

Themis Palpanas themis@dit.unitn.it