
Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Containment of Conjunctive
Object Meta-Queries

Andrea Cal̀ı Michael Kifer

Faculty of Computer Science
Free University of Bolzano

State University of New York
at Stony Brook

XXXII Conference on Very Large Data Bases
VLDB 2006

Seoul, Korea, 15th September 2006

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

F-Logic (Frame-Logic)

F-Logic

object-oriented formalism [Kifer & Lausen, JACM 1985]

raised interest in the academia and commercially

⋆ building ontologies
⋆ reasoning in the Semantic Web

meta-querying capability

we will use a subset of F-Logic queries called F-Logic-Lite

Restrictions in F-Logic Lite

no negation

no default inheritance

limited form of cardinality constraints

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Query containment

Well known problem in:
1 query optimisation
2 schema integration
3 object classification (in DLs)
4 service discovery
5 . . .

amounts to check whether the result of a query is always
contained in the result of another, for all databases

Query containment under constraints

QC considering only databases that satisfy certain
constraints

relevant cases:

1 functional and inclusion dependencies
2 extended ER schemata
3 Description Logic knowledge bases

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Our contribution

1 we give a relational encoding of F-Logic Lite

axioms in first-order rules

2 we consider containment of conjunctive meta-queries over
relations encoding F-Logic Lite under the above rules

3 we provide a technique to decide query containment in
such a case

4 we prove that checking containment is in NP

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Outline

1 Introduction

2 Preliminaries

3 The encoding

4 Deciding containment by chasing

5 Complexity

6 Conclusions

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

F-Logic formalism by examples

Classes, subclasses and members

john:student states that object john is a member of
class student;

freshman::student and student::person state that
class freshman is a subclass of the class student and
student is a subclass of person

The above statements imply, for instance, that the following
F-Logic formulae are true:

1 john:person (john is a student)

2 freshman::person (class freshman is a subclass of
person)

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

F-Logic formalism by examples (contd.)

Attributes

john[age->33] means that object john has an attribute,
age, whose value is 33;

an attribute may have more than one value

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

F-Logic formalism by examples (contd.)

Signature statements: type constraints

person[age*=>number] (type constraint) says that the
attribute age of class student has the type number

this type is inherited by subclasses and class instances of
person

this acts as a constraint on the statements of the form
john[age->33]

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

F-Logic formalism by examples (contd.)

Signature statements: cardinality constraints

person[age {0:1} *=> number] says that the attribute
age has at most one value

person[name {1:*} *=> string] says that the name

attribute is mandatory in class person

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

A F-Logic feature

Classes are also objects

statements like student:class are correct

in this case students occurs as an object instead of a
class

it does not follow from this and the previous statements
that john:class, freshman:class, or student::class

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Meta-queries examples

Query ?- X::person. could have answers X =

employee and X = student

Query ?- student[Att*=>string]. could have answers
Attr = name and Attr = major

Query ?- student[Att*=>string], john[Att->Val].
asks for attributes of class student of type string that
have a defined value for object john;

john does not need to be a member of student

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Meta-query Containment

Consider the meta-queries:
q1(A,B) :- T1[A*=>T2], T2::T3, T3[B*=>].

q2(A,B) :- T1[A*=>T2], T2[B*=>].

q1 asks for pairs of attributes A,B s.t. the range of A is
contained in the domain of B

it is easy to see that q1 is contained in q2

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Low-level encoding of F-Logic Lite

member(O, C): object O is a member of class C .
This is the encoding for O : C .

sub(C1, C2): class C1 is a subclass of class C1.
This encodes the statement C1 :: C2.

data(O, A, V): attribute A has value V on object O. This
is the encoding for O[A->V].

type(O, A, T): attribute A has type T for object O (recall
that in F-logic classes are also objects). This encodes the
statements of the form O[A*=>T].

mandatory(A, O): attribute A is mandatory for object
(class) O, i.e., it must have at least one value for O. This
is an encoding of statements of the form O[A {1:*}*=>].

funct(A, O): A is a functional attribute for the object
(class) O, i.e., it can have at most one value for O. This
statement encodes O[A {0:1}*=>].

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Axioms

Type correctness

member(V , T) :- type(O, A, T), data(O, A, V)

Subclass transitivity

sub(C1, C2) :- sub(C1, C3), sub(C3, C2)

Membership property

member(O, C1) :- member(O, C), sub(C , C1)

Functional attribute property

V = W :- data(O, A, V), data(O, A, W), funct(A, O).
Notice that the equality predicate is used in the head.

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Axioms (contd.)

Mandatory attributes definition

∀O, A ∃V data(O, A, V) :- mandatory(A, O)
Notice that this is not a Datalog rule: there is an existentially
quantified variable in the head

Inheritance of types from classes to members

type(O, A, T) :- member(O, C), type(C , A, T)

Inheritance of types from classes to subclasses

sub(C , C1), type(C1, A, T)

Supertyping

type(C , A, T) :- type(C , A, T1), sub(T1, T)

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Axioms (contd.)

Inheritance of mandatory attributes to subclasses

mandatory(A, C) :- sub(C , C1), mandatory(A, C1)

Inheritance of mandatory attributes from classes to their
members

mandatory(A, O) :- member(O, C), mandatory(A, C)

Inheritance of functional property to subclasses

funct(A, C) :- sub(C , C1), funct(A, C1)

Inheritance of functional property to members

funct(A, O) :- member(O, C), funct(A, C)

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Meta-query containment

We denote the set of rules by ΣFL

Meta-queries are conjunctive queries over the predicates
encoding our formalism

Given two (meta)-queries q1 and q2, we say that q1 is
contained in q2 with respect to ΣFL, denoted q1 ⊆ΣFL

q2,
if for every database B that satisfies ΣFL we have
q1(B) ⊆ q2(B)

q(B) denotes the result of query q on B

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Chasing queries

Axioms that encode F-Logic Lite are tuple-generating
dependencies (TGDs) and equality-generating
dependencies (EGDs)

Chase for such classes of queries is known [Fagin et
al. ICDT 2003]

Chasing wrt a TGD generates a new conjunct in the query

Chasing wrt an EGD equals two symbols (a variable and a
constant or two variables)

the chase fails if chasing wrt an EGD equals two constants

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Chasing and chase graph: example

Query to chase

q() :- mandatory(A, T), type(T , A, T)

LEVEL 3

LEVEL 4

LEVEL 2

LEVEL 1

LEVEL 0

data(T , A, v1)

mandatory(A, T) type(T , A, T)

member(v1, T)

mandatory(A, v1)

data(v1, A, v2)

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Property of the chase

This is derived from [Fagin et al. ICDT 2003]

Theorem

Given two conjunctive meta-queries q1 and q2, we have
q1 ⊆ΣFL

q2 if and only if there exists a homomorphism that
sends the conjuncts of body(q2) to conjuncts in chaseΣFL

(q1)
and head(q2) to head(chaseΣFL

(q1))

chaseΣFL
(q1) is the chase of q1 wrt ΣFL

a homomorphism is a function that sends constants into
themselves (and variables to variables or constants),
preserving the structure of the predicates

head(chaseΣFL
(q1)) is the head of q1, possibly altered by

chasing q1

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Observations

Due to an existentially quantified variable in the head of
one of the rules, the chase might be infinite

The previous property does not provide an angorithm for
deciding containment

Plan of attack:

1 prove that if there is a homomorphism from q2 to
chaseΣFL

(q1) with the desired properties, there is another
from q2 to a finite segment of chaseΣFL

(q1)
2 provide an upper bound (max no. of levels) for the above

segment, depending on the queries
3 show that we can check containment by guessing a

homomorphism from q2 to the finite segment

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

How to construct the chase

First we chase wrt all rules except for the one that
“invents” a fresh value (∃ in the head)

We consider all the conjuncts obtained in this way as a
new query (level 0)

Then, we chase such query

. . . all this for technical reasons

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Infinite chase

The only way to have an infinite chase is to have in q1 a set of
conjuncts of the form

mandatory(A1, T1)
type(T1, A1, T2)
. . .

mandatory(Ak−1, Tk−1)
type(Tk−1, Ak−1, Tk)
mandatory(Ak , Tk)
type(Tk , Ak , T1)

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Locality of the chase

In the chase woth TGDs, conjuncts are added according to
more than one existing conjuncts

However, the chase enjoys locality properties:

conjuncts at level 0 act as a map, driving the chase
every added conjunct is due to a conjunct at level 0 and
another (with minor exceptions)
if we consider only the latter, we have paths in the graph
as for IDs; such paths are called primary
Due to the application of some rules, primary paths may
branch

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Proving decidability

Assume there is a homomorphism µ from q2 to
chaseΣFL

(q1) with the desired properties

Consider a graph (forest) of the image of q2 wrt µ,
considering the primary paths among them and the
conjuncts where branching happens

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Proving decidability (contd.)

Regularity

Primary paths evolve according to “regular” patterns

Therefore, it is possible to excise the paths between
adjacent nodes until they cover 2 · |q1| levels or less

after every excision, the obtained conjuncts are still the
image of q2 wrt some homomorphism

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Proving decidability (contd.)

Main result

Consider queries q1, q2; if there is a homomorphism from q2 to
chaseΣFL

(q1) with the desired properties, there is another from
q2 to a set of conjuncts in chaseΣFL

(q1) such that none of
these conjuncts is at level greater than 2 · |q1|

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Complexity: upper bound

Theorem

Checking containment of F-Logic Lite meta-queries can be
decided by a nondeterministic algorithm that runs in
polynomial time in |q1| and |q2|

Proof by guessing |q2| conjuncts in the first 2 · |q1| levels of
chaseΣFL

(q1)

Containment
of Conjunctive

Object
Meta-Queries

Andrea Cal̀ı,
Michael Kifer

Introduction

Preliminaries

The encoding

Deciding
containment
by chasing

Complexity

Conclusions

Conclusions

Wrap-up

F-Logic is a popular tool for building ontologies

We considered a relevant subset called F-Logic Lite

Relational encoding

Meta-query containment by chasing

Complexity result

Future work

Tight lower complexity bound

More expressive query languages

Finding a more general class of queries for which the same
techniques apply

	Introduction
	Preliminaries
	The encoding
	Deciding containment by chasing
	Complexity
	Conclusions

