FlowCube

Constructing RFID FlowCubes for Multi-dimensional Analysis of Commodity Flows

Hector Gonzalez, Jiawei Han, Xiaolei Li

University of Illinois at Urbana-Champaign Department of Computer Science The Datatabase and Information Systems Laboratory

VLDB'06

э

RFID Technology Problem Statement

▶ < ≞ >

æ

Outline

1

Motivation

- RFID Technology
- Problem Statement

PlowGraphs

- Definition
- Alternative Design

3 FlowCubes

- Abstraction Lattice
- FlowCube Design
- Algorithm

RFID Technology Problem Statement

RFID Technology

What is it?

RFID is a technology that allows a reader to detect, from a distance, and without line of sight, a unique electronic product code (EPC) that is transmitted by a tag.

Hector Gonzalez, Jiawei Han, Xiaolei Li

FlowCube

RFID Technology Problem Statement

Why is it important?

• Real time tracking of individual items

- Originating factory
- Locations visited before arrival
- Individuals in charge of quality control
- Improved operational efficiency
 - Reduced product scanning costs
 - Improved inventory management policies
 - More precise product recalls
- Current implementations
 - Pallet tracking at Walmart
 - Airline luggage management pilot at British airways
 - Container tracking initiative by the US Government

< < >> < </p>

RFID Technology Problem Statement

Motivating Example

Problem setup

- A large retailer with RFID tags placed at the item level, sells millions of items per day.
- We store the path traversed by each item:

• laptop 1231 : (factory, 10 days) \rightarrow (warehouse, 2 days) \rightarrow (shelf, 5 days)

printer 2453: (factory, 1 day) \rightarrow (backroom, 1 day) \rightarrow (shelf, 10 days)

Questions

- Summarize the flow patterns of electronic goods in Illinois and contrast it to those of California.
- Find products with correlations between time spent at quality control and returns.
- Identify conditions that increase total path duration for printers in the northeast.

RFID Technology Problem Statement

Problem Statement

FlowCube construction problem

- Fact table: RFID Path data set.
- Dimensions: Item dimensions and path dimensions.
- Measure: Probabilistic workflow summarizing the flow patterns of the paths aggregated in the cell.

Why is this problem hard?

• The fact table is very large (terabytes or maybe petabytes).

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- The number of cuboids is exponential in the number of dimensions.
- Computing the workflow for each cell is expensive.

Definition Alternative Design

▶ < ≞ >

æ

Outline

Motivation

- RFID Technology
- Problem Statement

PlowGraphs

- Definition
- Alternative Design

FlowCubes

- Abstraction Lattice
- FlowCube Design
- Algorithm

Definition Alternative Design

FlowGraph Definition

- Tree shaped workflow that summarizes the flow patterns for an item or group of items.
 - Nodes: Locations
 - Edges: Transitions
- Each node is annotated with:
 - Distribution of durations at the node
 - Distribution of transition probabilities
 - Exceptions to duration and transition probabilities
 - Minimum support: Frequent exceptions
 - Minimum deviation: Surprising exceptions
- Highly compressed and accurate representation

Definition Alternative Design

RFID Data

- Readers generate raw tuples of the form: (EPC, location, time)
- We can sort the tuples on EPC and generate paths of the form:

 $\langle \mathsf{EPC}, (l_1, t_1), (l_2, t_2), ..., (l_k, t_k) \rangle$

where l_i is the i-th location, and t_i is i-th duration.

• The paths can be augmented with item dimensions, e.g.:

 $\langle Product, Manufacturer, Price, (l_1, t_1), (l_2, t_2), ..., (l_k, t_k) \rangle$

item dimensions

path stages

< < >> < </p>

э

Definition Alternative Design

FlowGraph Example

Path Data

FlowCube

id	product	brand	path
1	tennis	nike	(f, 10)(d, 2)(t, 1)(s, 5)(c, 0)
2	tennis	nike	(f,5)(d,2)(t,1)(s,10)(c,0)
3	sandals	nike	(f, 10)(d, 1)(t, 2)(s, 5)(c, 0)
4	shirt	nike	(f, 10)(t, 1)(s, 5)(c, 0)
5	jacket	nike	(f, 10)(t, 2)(s, 5)(c, 1)
6	jacket	nike	(f, 10)(t, 1)(w, 5)
7	tennis	adidas	(f,5)(d,2)(t,2)(s,20)
8	tennis	adidas	(f,5)(d,2)(t,3)(s,10)(d,5)

イロン 不同 とくほう イヨン

æ

Definition Alternative Design

Alternative FlowGraph Design

Duration dependent nodes

- Distinct node for every location and duration combination
- Significantly larger workflow
- Lots of redundancy if durations and transitions are independent of the path.

3

э

Motivation	
lowGraphs	FlowCube D
FlowCubes	

Outline

Motivation

- RFID Technology
- Problem Statement

PlowGraphs

- Definition
- Alternative Design

3 FlowCubes

- Abstraction Lattice
- FlowCube Design
- Algorithm

▶ ★ 필 ▶ ...

э.

æ

Abstraction Lattice FlowCube Design Algorithm

Item abstraction lattice

Item lattice

- Each item dimension has a concept hierarchy
- The set of concept hierarchies for all item dimensions forms an item lattice
- Item dimensions can be aggregated to any level in the item lattice

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

э

Abstraction Lattice FlowCube Design Algorithm

Path abstraction lattice

Path lattice

- the levels of the location and time dimensions of each path stage forms a path lattice
- Path stages can be aggregated to a given level in the path lattice.

Store View

Path views

 Each path can be aggregated at different abstraction levels

1

 We collapse path stages using the location lattice

FlowCube

Abstraction Lattice FlowCube Design Algorithm

FlowCube Design

FlowCube

- Data cube computed on path data set
- Cuboids for interesting levels of the item and path lattices.
- Cells record a FlowGraph as measure.

Example cuboid

cell id	category	brand	path ids
1	shoes	nike	1,2,3
2	shoes	adidas	7,8
3	outerwear	nike	4,5,6

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

→ < Ξ →</p>

э.

э

Abstraction Lattice FlowCube Design Algorithm

Which cells to compute?

Non-Redundant cells

- Cells which FlowGraph can not be inferred from available cells
- If the FlowGraph for milk 2% is the same as for milk then it is redundant
- non-redundant cells generate smaller cuboids and highlight important properties of flow patterns

Frequent cells

- Compute only cells that pass minimum support
- Well supported FlowGraphs are statistically significant
- Iceberg FlowCubes provide significant compression.

イロト イポト イヨト イヨト

FlowCube construction - key ideas

- Compute the FlowGraph for each frequent cell
- Main cost: Determine frequent cells, and frequent path segments (used for exception computation).
- We can compute frequent path segments and cells simultaneously
- Transform the path database into a transaction database and do Apriori mining of frequent cells and frequent path segments
- Compute cells with minimum support, and frequent path segments simultaneously
 - Cross-pruning: Infrequent path segments at high level cells, can not be frequent at low level cells and infrequent cells can not contain frequent path segments
- In a single scan count frequent cells and frequent path segments at every abstraction level

Motivation	
lowGraphs	
lowCubes	Alg

Transaction encoding

Concept hierarchy encoding

• Values for item dimensions encode their abstraction level,

orithm

e.g., Jacket = 1112, outerwear = 111*, clothing = 11**, product = 1***

 Benefit: In a single scan values at all abstraction levels are counted

Path encoding

• Path stages encode their prefix, location level, and time level, e.g., given the path:

 $(\textit{factory},\,10) \rightarrow (\textit{dist},\,2) \rightarrow (\textit{truck},\,1) \rightarrow (\textit{shelf},\,5) \rightarrow (\textit{checkout},\,0)$

we can encode the third stage as

 $(factory:dist,truck,1),\ (factory:Transportation,1),\ (factory:dist:truck,^{\star})$

Benefit: In a single scan paths at at abstraction levels can be counted

Motivation	Abstraction Latti
lowGraphs	FlowCube Desig
lowCubes	Algorithm

Example transaction encoding

Path Database			
id 1 2 3 4 5 6 7 8	product tennis sandals shirt jacket tennis tennis	brand nike nike nike nike nike adidas adidas	$\begin{array}{c} \text{path} \\ \hline (f,10)(d,2)(t,1)(s,5)(c,0) \\ (f,5)(d,2)(t,1)(s,10)(c,0) \\ (f,10)(d,1)(t,2)(s,5)(c,0) \\ (f,10)(t,1)(s,5)(c,0) \\ (f,10)(t,1)(s,5)(c,1) \\ (f,10)(t,1)(w,5) \\ (f,5)(d,2)(t,2)(s,20) \\ (f,5)(d,2)(t,3)(s,10)(d,5) \end{array}$

∜

- 7 {121,221,(f,5),(fd,2),(fdt,2),(fdts,20)}
- 8 {121,221,(f,5),(fd,2),(fdt,3),(fdts,10),(fdtsd,5)}

MotivationAbstractionFlowGraphsFlowCube DFlowCubesAlgorithm

Shared Algorithm

Compute transaction database, count frequent cells and frequent path segments of length 1 into L₁, pre-count high level patterns of length > 1 into P₁

・ロン・西方・ ・ ヨン・ ヨン・

э

- 2 For k = 2, L_{k-1} not empty, k + +
- 3 Generate candidates C_k by joining L_{k-1}
- Prune unpromising candidates
 - Based on P_k
 - Unrelated stages
 - Item and ancestor
- Sollect counts for C_k into L_k and compute P_k

6 Return $\bigcup_i L_i$

MotivationAbstraction LatFlowGraphsFlowCube DesiFlowCubesAlgorithm

Shared Algorithm

Compute transaction database, count frequent cells and frequent path segments of length 1 into L₁, pre-count high level patterns of length > 1 into P₁

< < >> < </p>

2 For
$$k = 2$$
, L_{k-1} not empty, $k + +$

- Senerate candidates C_k by joining L_{k-1}
 - Prune unpromising candidates
 - Based on P_k
 - Unrelated stages
 - Item and ancestor
- Sollect counts for C_k into L_k and compute P_k

6 Return $\bigcup_i L_i$

MotivationAbstraction LatFlowGraphsFlowCube DesiFlowCubesAlgorithm

Shared Algorithm

Compute transaction database, count frequent cells and frequent path segments of length 1 into L₁, pre-count high level patterns of length > 1 into P₁

< < >> < </p>

2 For
$$k = 2$$
, L_{k-1} not empty, $k + +$

- Senerate candidates C_k by joining L_{k-1}
- Prune unpromising candidates
 - Based on P_k
 - Unrelated stages
 - Item and ancestor
- Solution Collect counts for C_k into L_k and compute P_k

Seturn $\bigcup_i L_i$

MotivationAbstraction LatFlowGraphsFlowCube DesFlowCubesAlgorithm

Shared Algorithm

Compute transaction database, count frequent cells and frequent path segments of length 1 into L₁, pre-count high level patterns of length > 1 into P₁

2 For
$$k = 2$$
, L_{k-1} not empty, $k + +$

- Senerate candidates C_k by joining L_{k-1}
- Prune unpromising candidates
 - Based on P_k
 - Unrelated stages
 - Item and ancestor
- Sollect counts for C_k into L_k and compute P_k

D Return U_i L_i

MotivationAbstraction LatFlowGraphsFlowCube DesiFlowCubesAlgorithm

Shared Algorithm

Compute transaction database, count frequent cells and frequent path segments of length 1 into L₁, pre-count high level patterns of length > 1 into P₁

2 For
$$k = 2$$
, L_{k-1} not empty, $k + +$

- Senerate candidates C_k by joining L_{k-1}
- Prune unpromising candidates
 - Based on P_k
 - Unrelated stages
 - Item and ancestor
- Sollect counts for C_k into L_k and compute P_k

6 Return $\bigcup_i L_i$

Motivation	Abstraction Lattic
owGraphs	FlowCube Desig
lowCubes	Algorithm

Alternative - Cubing based algorithm

Cubing algorithm

Using a bottom up algorithm, construct an Iceberg data cube on the item dimensions. Run a frequent pattern mining algorithm on each cell of the cube, and build the FlowGraphs.

Issues

- FlowGraphs are holistic measures difficult to compute bottom up
- cross pruning opportunities between path and item lattices are lost, e.g., infrequent path segments at high level cells are repeatedly counted on every cell
- Large cost of storing lists of transaction identifiers during cuboid phase

Abstraction Lattice FlowCube Design Algorithm

ъ

Experimental Setup

Data synthesis

- Synthetic path generator, emulates large retailer
- Path dimensions have 3 levels each
- Location, and duration dimensions 2 levels each
- Process: generate item dimensions, generate path, assign durations

Algorithms

- Shared: simultaneous counting + pruning
- BUC: cubing + Apriori
- Basic: Shared without pruning

Motivation	
lowGraphs	FlowCul
FlowCubes	Algorith

Experiments

Path database size

- Construction time vs db size
- min sup = 0.01, item dimensions = 5
- Shared scales well, cubing slows with dense cube

Minimum support

- Construction time vs support
- Paths = 100,000, item dims = 5
- Shared better, basic improves when few candidates

Motivation	
lowGraphs	FlowCube
-lowCubes	Algorithm

Experiments

Number of dimensions

- Construction time vs item dimensions
- min sup = 0.01, paths = 100,000
- spare cube \Rightarrow similar performance

Item density

- Construction time vs Item dimension density
- Paths = 100,000, item dims = 5, a dense, c sparse
- Shared much better in dense cubes

Motivation	Abstraction Lattice
lowGraphs	FlowCube Design
FlowCubes	Algorithm

Experiments

Path density

- Construction time vs distinct paths
- min sup = 0.01, paths = 100,000, item dims = 5
- dense paths \Rightarrow shared shines

Pruning power

- Candidates to evaluate, with and without pruning
- Pruning techniques provide dramatic advantage

Motivation	Abstraction Lattice
FlowGraphs	FlowCube Design
FlowCubes	Algorithm

Conclusions

- FlowGraph: Succinct summary of general flow patterns and exceptions.
- FlowCube: Data cube on paths with FlowGraphs for measure. OLAP over flow patterns.
- Algorithm: Shared computation of frequent cells, and frequent path segments.