
Charu C. Aggarwal

T J Watson Research Center

IBM Corporation

Hawthorne, NY

USA

On Biased Reservoir Sampling in the

Presence of Stream Evolution

VLDB Conference, Seoul, South Korea, 2006



Synopsis Construction in Data Streams

• Synopsis maintenance is an important problem in massive

volume applications such as data streams.

• Many synopsis methods such as wavelets, histograms and

sketches are designed for use with specific applications such

as approximate query answering.

• An important class of stream synopsis construction methods

is that of reservoir sampling (Vitter 1985).

• Great appeal because it generates a sample of the original

multi-dimensional data representation.

• Can be used with arbitrary data mining applications with little

changes to the underlying algorithms.



Reservoir Sampling (Vitter 1985)

• In the case of a fixed data set of known size N , it is trivial to

construct a sample of size n, since all points have an inclusion

probability of n/N .

• However, a data stream is a continuous process, and it is

not known in advance how many points may elapse before

an analyst may need to use a representative sample.

• The base data size N is not known in advance.

• A reservoir or dynamic sample is maintained by probabilistic

insertions and deletions on arrival of new stream points.

• Challenge: Probabilistic insertions and deletions always need

to maintain unbiased sample.



Reservoir Sampling

• The first n points in the data stream are added to the reser-

voir for initialization.

• Subsequently, when the (t+1)th point from the data stream

is received, it is added to the reservoir with probability n/(t+

1).

• This point replaces a randomly chosen point in the reservoir.

• Note: Probability of insertion reduces with stream progres-

sion.

• Property: The reservoir sampling method maintains an un-

biased sample of the history of the data stream (proof by

induction).



Observations

• In an evolving data stream only the more recent data may

be relevant for many queries.

• For example, if an application is queried for the statistics

for the past hour of stream arrivals, then for a data stream

which has been running over one year, only about 0.01% of

an unbiased sample may be relevant.

• The imposition of range selectivity or other constraints on

the query will reduce the relevant estimated sample further.

• In many cases, this may return a null or wildly inaccurate

result.



Observations

• In general, the quality of the result for the same query will

only degrade with progression of the stream, as a smaller and

smaller portion of the sample remains relevant with time.

• This is also the most important case for stream analytics,

since the same query over recent behavior may be repeatedly

used with progression of the stream.



Potential Solutions

• One solution is to use a sliding window approach for restrict-

ing the horizon of the sample.

• The use of a pure sliding window to pick a sample of the

immediately preceding points may represent another extreme

and rather unstable solution.

• This is because one may not wish to completely lose the

entire history of past stream data.

• While analytical techniques such as query estimation may be

performed more frequently for recent time horizons, distant

historical behavior may also be queried periodically.



Biased Reservoir Sampling

• A practical solution is to use a temporal bias function in order

to regulate the choice of the stream sample.

• Such a solution helps in cases where it is desirable to obtain

both biased and unbiased results.

• In some data mining applications, it may be desirable to bias

the result to represent more recent behavior of the stream.

• In other applications such as query estimation, while it may

be desirable to obtain unbiased query results, it is more criti-

cal to obtain accurate results for queries over recent horizons.

• The biased sampling method allows us to achieve both goals.



Contributions

• In general, it is non-trivial to extend reservoir maintenance

algorithms to the biased case. In fact, it is an open problem

to determine whether reservoir maintenance can be achieved

in one-pass with arbitrary bias functions.

• We theoretically show that in the case of an important class

of memory-less bias functions (exponential bias functions),

the reservoir maintenance algorithm reduces to a form which

is simple to implement in a one-pass approach.

• The inclusion of a bias function imposes a maximum require-

ment on the sample size. Any sample satisfying the bias

requirements will not have size larger than a function of N .



Contributions

• This function of N defines a maximum requirement on the

reservoir size which is significantly less than N .

• In the case of the memory-less bias functions, we will show

that this maximum sample size is independent of N and is

therefore bounded above by a constant even for an infinitely

long data stream.

• We will theoretically analyze the accuracy of the approach

on the problem of query estimation.

• Test the method for the problem of query estimation and

data mining problems.



Bias Function

• The bias function associated with the rth data point at the

time of arrival of the tth point (r ≤ t) is given by f(r, t).

• The probability p(r, t) of the rth point belonging to the reser-

voir at the time of arrival of the tth point is proportional to

f(r, t).

• The function f(r, t) is monotonically decreasing with t (for

fixed r) and monotonically increasing with r (for fixed t).

• Therefore, the use of a bias function ensures that recent

points have higher probability of being represented in the

sample reservoir.



Biased Sample

• Definition: Let f(r, t) be the bias function for the rth point

at the arrival of the tth point. A biased sample S(t) at the

time of arrival of the tth point in the stream is defined as

a sample such that the relative probability p(r, t) of the rth

point belonging to the sample S(t) (of size n) is proportional

to f(r, t).

• For the case of general functions f(r, t), it is an open problem

to determine if maintenance algorithms can be implemented

in one pass.



Challenges

• In the case of unbiased maintenance algorithms, we only need

to perform a single insertion and deletion operation periodi-

cally on the reservoir.

• In the case of arbitrary functions, the entire set of points

within the current sample may need to re-distributed in order

to reflect the changes in the function f(r, t) over different

values of t.

• For a sample S(t) this requires Ω(|S(t)|) = Ω(n) operations,

for every point in the stream irrespective of whether or not

insertions are made.



Memoryless Bias Functions

• The exponential bias function is defined as follows:

f(r, t) = e−λ(t−r) (1)

• The parameter λ defines the bias rate and typically lies in the

range [0,1] with very small values.

• A choice of λ = 0 represents the unbiased case. The expo-

nential bias function defines the class of memory-less func-

tions in which the future probability of retaining a current

point in the reservoir is independent of its past history or

arrival time.

• Memory-less bias functions are natural, and also allow for

an extremely efficient extension of the reservoir sampling

method.



Maximum Reservoir Requirements

• Result: The maximum reservoir requirement R(t) for a ran-
dom sample (without duplicates) from a stream of length t
which satisfies the bias function f(r, t) is given by:

R(t) ≤
t∑

i=1

f(i, t)/f(t, t) (2)

• Proof Sketch:

– Derive expression for probability p(r, t) in terms of reservoir
size n and bias function f(r, t).

p(r, t) = n · f(r, t)/(
t∑

i=1

f(i, t)) (3)

– Since p(r, t) is a probability, it is at most 1.

– Set r = t to obtain result.



Maximum Reservoir Requirement for
Exponential Bias Functions

• The maximum reservoir requirement R(t) for a random sam-

ple (without duplicates) from a stream of length t which

satisfies the exponential bias function f(r, t) = e−λ(t−r) is

given by:

R(t) ≤ (1 − e−λt)/(1 − e−λ) (4)

• Proof Sketch: Easy to show by instantiating result for gen-

eral bias functions.



Constant Upper bound for Exponential
Bias Functions

• Result: The maximum reservoir requirement R(t) for a ran-

dom sample from a stream of length t which satisfies the

exponential bias function f(r, t) = e−λ(t−r) is bounded above

by the constant 1/(1 − e−λ).

• Approximation for small values of λ: The maximum reser-

voir requirement R(t) for a random sample (without dupli-

cates) from a stream of length t which satisfies the exponen-

tial bias function f(r, t) = e−λ(t−r) is approximately bounded

above by the constant 1/λ.



Implications of Constant Upper Bound

• For unbiased sampling, reservoir size may be as large as

stream itself- no longer necessary for biased sampling!

• The constant upper bound shows that maximum reservoir

size is not sensitive to how long the points from the stream

are being received.

• Provides an estimate of the maximum sampling requirement.

• We can maintain the maximum theoretical reservoir size if

sufficient main memory is available.



Simple Reservoir Sampling Algorithm

• We start off with an empty reservoir with capacity n = [1/λ],

and use the following replacement policy to gradually fill up

the reservoir.

• Let us assume that at the time of (just before) the arrival

of the tth point, the fraction of the reservoir filled is F(t) ∈

[0,1].

• When the (t +1)th point arrives. we deterministically add it

to the reservoir.

• However, we do not necessarily delete one of the old points

in the reservoir.



Simple Reservoir Sampling Algorithm

• We flip a coin with success probability F(t).

• In the event of a success, we randomly pick one of the old

points in the reservoir, and replace its position in the sample

array by the incoming (t + 1)th point.

• In the event of a failure, we do not delete any of old points

and simply add the (t + 1)th point to the reservoir. In the

latter case, the number of points in the reservoir (current

sample size) increases by 1.



Simple Reservoir Sampling Algorithm

• Result: The simple reservoir sampling algorithm, when im-

plemented across different reservoir sizes, results in an ex-

ponential bias of sampling, and the parameter of this bias is

the inverse of the reservoir size.

• Proof Sketch: Use induction.



Observations

• One observation about this policy is that it is extremely sim-

ple to implement in practice: No more difficult to implement

than the unbiased policy.

• Another interesting observation is that the insertion and dele-

tion policies are parameter free, and are exactly the same

across all choices of the bias parameter λ.

• The only difference is in the choice of the reservoir size which

depends on λ.

• Because of the dependence of ejections on the value of F(t),

the reservoir fills up rapidly at first. As the value of F(t)

approaches 1, further additions to the reservoir slow down.



Strong Space Constraints

• The dependence of the reservoir size on the application-

specific parameter λ can sometimes be a constraint.

• What do we do when the available space for sampling is less

than the reservoir size implied by this application specific

parameter?

• How do we work with a smaller reservoir while retaining the

properties of the reservoir sampling method?



Reducing Reservoir Size

• Note that the insertion policy of the simple reservoir sampling

algorithm is deterministic.

• What happens when we retain the same deletion policy, but

we also introduce a constant insertion probability pin?



Reducing Reservoir Size

• Result: Using a constant insertion probability of pin with

parameter λ retains exponential bias but reduces the reservoir

size by a factor pin (to pin/λ).

• Thus, if the deterministic policy results in a reservoir size

1/λ > M , where M is the available space, we can use pin =

M · λ, and a reservoir size of M .

• Proof of Correctness: By induction.



Dilemma

• We start off with an empty reservoir.

• Result: The expected number of points in the stream to be

processed before filling up the reservoir completely is O(n ·

log(n)/pin).

• For small values of pin, the fillup time for the reservoir can

be quite large.

• Means that we have to work with unncessarily small samples

for a while.

• We solved the reservoir size problem, but ended up with an

initialization problem instead!



Solution

• The reservoir size is proportional to the insertion probability

pin for fixed λ.

• When the reservoir is relatively empty, we do not need to use

a reservoir within the memory constraints.

• Rather, we can use a larger value of pin, and “pretend” that

we have a fictitious reservoir of size pin/λ available.

• Note that the value of F(t) is computed with respect to the

size of this fictitious reservoir for the deletion policy.

• As soon as this fictitious reservoir is full to the extent of the

(true) space limitations, we eject a certain percentage of the

points, reduce the value of pin to p′in and proceed.



Result

• If we apply the reservoir sampling algorithm for any number

of iterations with parameters pin and λ, eject a fraction 1 −

(p′in/pin) of the points, and then apply it again for any number

of iterations with parameters p′in and λ, the resulting set of

points satisfies the exponential bias function with parameter

λ.



Observations

• The factor q by which the reservoir is reduced in each itera-

tion does not affect the method.

• A particularly useful choice of parameters is to start off with

pin = 1, to pick q = 1/nmax, and eject exactly one point in

each such phase.

• Extremely fast fill up: almost like deterministic policy!



Effects of Approach on Reservoir
Initialization

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
R

A
C

T
IO

N
A

L 
R

E
S

E
R

V
O

IR
 U

T
IL

IZ
A

T
IO

N

PROGRESSION OF STREAM (POINTS)

VARIABLE RESERVOIR SAMPLING
FIXED RESERVOIR SAMPLING



Applications

• Can be directly used for applications in which bias is required.

• What if we want unbiased results from a given application?

• Reservoir sampling provides this flexibility.

• Assume function of the form:

G(t) =
t∑

i=1

ci · h(Xi) (5)



Query Resolution

• Function G(t) is general enough to work for count and sum

queries.

• Define random variable H(t) as follows:

H(t) =
t∑

r=1

(Ir,t · cr · h(Xr))/p(r, t)

• Ir,t is an indicator function depending upon whether or not

the r-th point is included in reservoir at t.

• H(t) can be easily estimated form the reservoir.



Results

• E[H(t)] = G(t)

• V ar[H(t)] =
∑t

r=1 K(r, t)

where K(r, t) = c2r · h(Xr)2 · (1/p(r, t) − 1)

• Key Observation: The value of K(r, t) is dominated by the

behavior of 1/p(r, t) which is relatively small for larger values

of r.

• However, for recent horizon queries, the value of cr is 0 for

smaller values of r.

• This reduces the overall error for recent horizon queries.



Experimental Results

• Network Intrusion Data Set

• Clustered Synthetic Data Set with Drifting Clusters

• Applications (1) Query Processing (2) Classification (3) Evo-

lution Analysis





Query Estimation

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

USER SPECIFIED HORIZON

A
B

S
O

LU
T

E
 E

R
R

O
R

BIASED RESERVOIR
UNBIASED RESERVOIR

1 2 3 4 5 6 7 8 9 10

x 10
4

0.04

0.045

0.05

0.055

0.06

0.065

USER SPECIFIED HORIZON

A
B

S
O

LU
T

E
 E

R
R

O
R

BIASED RESERVOIR
UNBIASED RESERVOIR

• Sum Query Estimation Accuracy with User-defined horizon

(Synthetic Data Set)

• Count Query Estimation Accuracy with User-defined horizon

(Network Intrusion Data Set)



Query Estimation

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

USER SPECIFIED HORIZON

A
B

S
O

LU
T

E
 E

R
R

O
R

BIASED RESERVOIR
UNBIASED RESERVOIR

0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

PROGRESSION OF DATA STREAM

A
B

S
O

LU
T

E
 E

R
R

O
R

BIASED RESERVOIR
UNBIASED RESERVOIR

• Range Selectivity Estimation Accuracy with User-defined

horizon (Synthetic Data Set)

• Error with stream Progression (Fixed Horizon h = 104)



Classification

0.5 1.5 2.5 3.5 4.5

x 10
5

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

PROGRESSION OF STREAM (points)

C
LA

S
S

IF
IC

A
T

IO
N

 A
C

C
U

R
A

C
Y

UNBIASED RESERVOIR
BIASED RESERVOIR

1 2 3 4

x 10
5

0.75

0.8

0.85

0.9

0.95

1

PROGRESSION OF STREAM (points)

C
LA

S
S

IF
IC

A
T

IO
N

 A
C

C
U

R
A

C
Y

UNBIASED RESERVOIR
BIASED RESERVOIR

• Network Intrusion

• Synthetic Data



Evolution Analysis

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

• Unbiased Reservoir Sampling



Evolution Analysis

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

-3-2-101234-1.5-1-0.500.511.522.5�
BiasedReservoirSampling



Conclusions and Summary

• Technique for biased reservoir sampling.

• Quality does not degrade with progression of the stream.

• Useful for both biased and unbiased applications.


