
AFilter: Adaptable XML Filtering with
Prefix-Caching and
Suffix-Clustering

K. Selçuk Candan
Wang-Pin Hsiung
Songting Chen
Junichi Tatemura
Divyakant Agrawal

2© NEC Corporation 2006

Motivation: Efficient Message Filtering

Aim:
• large number of filter statements
• high throughput

Is this
message
relevant to
any
business
process?

4© NEC Corporation 2006

Assumptions

XML Data stream

Filter Statements

Messages are in
some XML format

Expressions are
of type, P{/, // ,*}

Path

5© NEC Corporation 2006

XML Path Filtering

XML Data stream

Filter Statements

Messages are in
some XML format

Expressions are
of type, P{/, // ,*}

What is the most appropriate
internal (index+runtime)
representation?

Path

6© NEC Corporation 2006

Approach I: Finite Automata

• Input (path) is a string
– of elements from a root to a leaf

• Filter statements are
– (path) expressions with wildcards

• So why not use DFA/NFAs?
– YFilter [Diao et al.], XScan [Ives et al.], XQRL [Florescu et al.],

7© NEC Corporation 2006

Finite Automata

• Each data node causes a state transition in the
underlying FA representation of the filters

Figure taken from YFilter

8© NEC Corporation 2006

Finite Automata

• Each data node causes a state transition in the
underlying representation of the filters

Figure taken from YFilter

• Problem in
– deep
– recursive

data

• Number of active states can be exponentially
large [Diao et al.], [Green et al.],

9© NEC Corporation 2006

Finite Automata

• Each data node causes a state transition in the
underlying FA representation of the filters

Figure taken from YFilter

• Use “lazy” state enumeration as opposed to
an “eager” approach [Green et al.]

– Helps, but still exponential in query depth

10© NEC Corporation 2006

Approach 2: Push Down Automata

• Use a stack to organize the data&states
XPush [Gupta et al.],SPEX [Olteanou et al.],XSQ [Peng et al.]

Figure taken from XPush
Stack-based memory
management for the states

11© NEC Corporation 2006

Push Down Automata

• Use a stack to organize the data&states
XPush [Gupta et al.],SPEX [Olteanou et al.],XSQ [Peng et al.]

Figure taken from XPush

• Depending on the approach used the number
of active states can be
– exponentially large in the number of predicates

(XPush)
– quadratic in the depth of the stream (SPEX)
– query_size * depth_of_document (PathM)

12© NEC Corporation 2006

Other Approaches

• XTrie [Chan et al.]

– Uses “tries” for path string matching
– Benefits from prefix commonalities
– No suffix sharing across filter statements

• FiST [Kwon et al.]

– Filters the entire (twig) statement holistically
– Little sharing across filter statements

• TurboXPath [Josifovski et al.]

– Avoids FAs
– Little sharing across filter statements

• [Bar-Yossef et al.]
– Effective use of buffers
– Little sharing across filter statements

13© NEC Corporation 2006

Observations

• Major savings in execution time can only come
from simultaneous prefix and suffix sharing
– can we actually do this?

• Active state enumeration is costly
– can we have a compact representation and lazy

(triggered) enumeration?

• We shouldn’t need too much memory for correct
filtering
– can we take the use of memory under our control?

14© NEC Corporation 2006

AFilter (a modular architecture)

SHARE BOTH PREFIXES & SUFFIXES

LAZY RESULT
ENUMERATION

(TRIGGERS)

MEMORY
MNGMT.

(CACHING)

(1)

(2)(3)

15© NEC Corporation 2006

AFilter

LAZY RESULT
ENUMERATION

(TRIGGERS)

MEMORY
MNGMT.

(CACHING)

Linear size indexing of
filter statements

16© NEC Corporation 2006

AxisView (blueprint for filters)

17© NEC Corporation 2006

AxisViewOne node per
symbol

One “assertion”
per query step

18© NEC Corporation 2006

AxisView Edges from
leaves to root

19© NEC Corporation 2006

AxisView One trigger per
query

20© NEC Corporation 2006

PRLabel-tree (optional, trie)

Prefix labels

21© NEC Corporation 2006

SFLabel-tree (optional, trie)

Suffix labels

22© NEC Corporation 2006

AFilter

MEMORY
MNGMT.

(CACHING)

23© NEC Corporation 2006

StackBranch (path encoding)

Empty

One stack per
symbol

Conceptually similar to PathStack [Bruno
et al.] for structural joins

Encodes the hierarchical information in
the current path segment compactly

24© NEC Corporation 2006

StackBranch (path encoding)

After

25© NEC Corporation 2006

StackBranch (path encoding)

After

26© NEC Corporation 2006

Triggering
Triggering
query steps

27© NEC Corporation 2006

Triggering & following

Advantages:
• edges are never followed if no

triggering
• benefits from tighter selectivity

at the leaves
• edges are followed in a

clustered manner

Can we
reach the

root stack?

28© NEC Corporation 2006

Clustered edge following
Hash Join

29© NEC Corporation 2006

Clustered edge following
Hash Join

0

Continue
follow

30© NEC Corporation 2006

Clustered edge following
Hash Join

0 Cont.

31© NEC Corporation 2006

Clustered edge following
Hash Join

0

1

Cont.

32© NEC Corporation 2006

Clustered edge following

0

1 0

- one path match found -

Cont.

33© NEC Corporation 2006

Clustered edge following

0 1

1 0

- one path match found -

Note:
• Memory usage linear (in the depth of the data tree)

Challenge:
• If we have more memory, can we trade it for efficiency?

34© NEC Corporation 2006

AFilter

35© NEC Corporation 2006

Prefix caching / PRCache

• Observation:
– repeated evaluations of the same candidate assertion at a

node will always lead to the same result.

(q2,1)

36© NEC Corporation 2006

Prefix caching / PRCache

• Observation:
– repeated evaluations of the same candidate assertion at a

node will always lead to the same result.

(q2,1)

37© NEC Corporation 2006

Prefix caching / PRCache

PRLabel tree

• Observation:
– repeated evaluations of the same candidate assertion at a

node will always lead to the same result.

Alt 2. Index and cache only the failures
• prevents non-productive traversals

Alt 1. Index and cache partial
results against the prefix labels
• prevents redundant traversals
• enables prefix sharing

38© NEC Corporation 2006

Prefix caching / PRCache

PRLabel tree

• Observation:
– repeated evaluations of the same candidate assertion at a

node will always lead to the same result.

Index and cache partial results
against the prefix labels

(prevents redundant traversals)

Index and cache only the failures

(prevent non productive traversals)

Note:
• Decouples memory/cache management from correctness.
• The system

– will work correctly, even if the cache size is zero!
– Will work faster if there is some cache..

Challenge:
• Can we benefit from suffix commonalities across filter statements?

39© NEC Corporation 2006

Suffix compressed traversals

Large number of query steps
increases the hash join cost during
edge traversal

40© NEC Corporation 2006

Suffix compressed traversals

SFLabel tree

41© NEC Corporation 2006

Suffix compressed traversals

SFLabel tree
Problem:
• Prefix caching and suffix

clustering are not entirely
compatible.

42© NEC Corporation 2006

Overlaps in Prefix/Suffix labels

assertions

43© NEC Corporation 2006

Overlaps in Prefix/Suffix labels

Problem:
• Use of suffix labels (instead of individual assertions) may hide

prefix caching opportunities)

44© NEC Corporation 2006

Overlaps in Prefix/Suffix labels

Problem:
• Use of suffix labels (instead of individual assertions) may hide

prefix caching opportunities)

In the paper, we describe
• early unfolding, and
• late unfolding
schemes to discover prefix caching opportunities during suffix
compressed traversals

45© NEC Corporation 2006

AFilter

46© NEC Corporation 2006

Experiment Setup

• Java (JDK 1.5) implementation
• 1.7GHZ Pentium 4
• Data

– NITF DTD
– Book DTD
– ToXgene data generator [Barbosa et al.]

47© NEC Corporation 2006

Experiment results

48© NEC Corporation 2006

Experiment results

49© NEC Corporation 2006

Experiment results

50© NEC Corporation 2006

Experiment results

51© NEC Corporation 2006

Conclusions

• AFilter
– provides tradeoff between memory and performance and

can work with only linear memory (if needed)
• decouples memory management from correctness

– avoids unnecessarily eager result/state enumerations
• triggering benefits lower selectivities at the leaves

– exploits simultaneously various sharing opportunities:
• common steps (AxisView),
• common prefixes (PRLabel-tree), and
• common suffixes (SFLabeltree).

• The best results are obtained when both prefix and suffix
clustering are exploited simultaneously.

