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Motivation: Efficient Message Filtering

Aim:
• large number of filter statements
• high throughput

Is this 
message 
relevant to 
any 
business 
process?
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Assumptions

XML Data stream

Filter Statements

Messages are in
some XML format

Expressions are 
of type, P{/, // ,*}

Path
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XML Path Filtering

XML Data stream

Filter Statements

Messages are in
some XML format

Expressions are 
of type, P{/, // ,*}

What is the most appropriate 
internal (index+runtime) 
representation?

Path
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Approach I: Finite Automata

• Input (path) is a string 
– of elements from a root to a leaf

• Filter statements are
– (path) expressions with wildcards 

• So why not use DFA/NFAs?
– YFilter [Diao et al.], XScan [Ives et al.], XQRL [Florescu et al.],
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Finite Automata

• Each data node causes a state transition in the 
underlying FA representation of the filters

Figure taken from YFilter
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Finite Automata

• Each data node causes a state transition in the 
underlying representation of the filters

Figure taken from YFilter

• Problem in
– deep
– recursive 

data

• Number of active states can be exponentially 
large [Diao et al.], [Green et al.],
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Finite Automata

• Each data node causes a state transition in the 
underlying FA representation of the filters

Figure taken from YFilter

• Use “lazy” state enumeration as opposed to 
an “eager” approach [Green et al.]

– Helps, but still exponential in query depth



10© NEC Corporation 2006

Approach 2: Push Down Automata

• Use a stack to organize the data&states
XPush [Gupta et al.],SPEX [Olteanou et al.],XSQ [Peng et al.]

Figure taken from XPush
Stack-based memory 
management for the states
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Push Down Automata

• Use a stack to organize the data&states
XPush [Gupta et al.],SPEX [Olteanou et al.],XSQ [Peng et al.]

Figure taken from XPush

• Depending on the approach used the number 
of active states can be 
– exponentially large in the number of predicates 

(XPush)
– quadratic in the depth of the stream (SPEX)  
– query_size * depth_of_document (PathM)
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Other Approaches

• XTrie [Chan et al.] 

– Uses “tries” for path string matching
– Benefits from prefix commonalities 
– No suffix sharing across filter statements

• FiST [Kwon et al.] 

– Filters the entire (twig) statement holistically 
– Little sharing across filter statements

• TurboXPath [Josifovski et al.]

– Avoids FAs
– Little sharing across filter statements

• [Bar-Yossef et al.]
– Effective use of buffers
– Little sharing across filter statements
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Observations

• Major savings in execution time can only come 
from simultaneous prefix and suffix sharing
– can we actually do this?

• Active state enumeration is costly
– can we have a compact representation and lazy 

(triggered) enumeration?

• We shouldn’t need too much memory for correct 
filtering
– can we take the use of memory under our control?
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AFilter (a modular architecture)

SHARE BOTH PREFIXES & SUFFIXES

LAZY RESULT
ENUMERATION

(TRIGGERS)

MEMORY
MNGMT.

(CACHING)

(1)

(2)(3)
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AFilter

LAZY RESULT
ENUMERATION

(TRIGGERS)

MEMORY
MNGMT.

(CACHING)

Linear size indexing of 
filter statements
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AxisView (blueprint for filters)
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AxisViewOne node per 
symbol

One “assertion”
per query step
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AxisView Edges from 
leaves to root
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AxisView One trigger per 
query
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PRLabel-tree (optional, trie)

Prefix labels
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SFLabel-tree (optional, trie)

Suffix labels
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AFilter

MEMORY
MNGMT.

(CACHING)
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StackBranch (path encoding)

Empty

One stack per 
symbol

Conceptually similar to PathStack [Bruno 
et al.] for structural joins 

Encodes the hierarchical information in 
the current path segment compactly 
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StackBranch (path encoding)

After
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StackBranch (path encoding)

After
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Triggering
Triggering
query steps
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Triggering & following

Advantages:
• edges are never followed if no 

triggering
• benefits from tighter selectivity 

at the leaves
• edges are followed in a 

clustered manner

Can we 
reach the 

root stack?



28© NEC Corporation 2006

Clustered edge following
Hash Join
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Clustered edge following
Hash Join

0

Continue
follow
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Clustered edge following
Hash Join

0 Cont.
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Clustered edge following
Hash Join

0

1

Cont.



32© NEC Corporation 2006

Clustered edge following

0

1 0

- one path match found -

Cont.
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Clustered edge following

0 1

1 0

- one path match found -

Note:
• Memory usage linear (in the depth of the data tree) 

Challenge:
• If we have more memory, can we trade it for efficiency?



34© NEC Corporation 2006

AFilter
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Prefix caching / PRCache

• Observation:
– repeated evaluations of the same candidate assertion at a 

node will always lead to the same result.

(q2,1)
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Prefix caching / PRCache

• Observation:
– repeated evaluations of the same candidate assertion at a 

node will always lead to the same result.

(q2,1)
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Prefix caching / PRCache

PRLabel tree

• Observation:
– repeated evaluations of the same candidate assertion at a 

node will always lead to the same result.

Alt 2. Index and cache only the failures
• prevents non-productive traversals

Alt 1. Index and cache partial 
results against the prefix labels
• prevents redundant traversals
• enables prefix sharing
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Prefix caching / PRCache

PRLabel tree

• Observation:
– repeated evaluations of the same candidate assertion at a 

node will always lead to the same result.

Index and cache partial results 
against the prefix labels

(prevents redundant traversals)

Index and cache only the failures

(prevent non productive traversals)

Note:
• Decouples memory/cache management from correctness.
• The system 

– will work correctly, even if the cache size is zero!
– Will work faster if there is some cache..

Challenge:
• Can we benefit from suffix commonalities across filter statements?
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Suffix compressed traversals

Large number of query steps 
increases the hash join cost during 
edge traversal
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Suffix compressed traversals

SFLabel tree
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Suffix compressed traversals

SFLabel tree
Problem:
• Prefix  caching and suffix 

clustering are not entirely 
compatible.
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Overlaps in Prefix/Suffix labels

assertions
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Overlaps in Prefix/Suffix labels

Problem:
• Use of suffix labels (instead of individual assertions) may hide 

prefix caching opportunities)
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Overlaps in Prefix/Suffix labels

Problem:
• Use of suffix labels (instead of individual assertions) may hide

prefix caching opportunities)

In the paper, we describe
• early unfolding, and
• late unfolding
schemes to discover prefix caching opportunities during suffix
compressed traversals 
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AFilter
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Experiment Setup

• Java (JDK 1.5) implementation
• 1.7GHZ Pentium 4
• Data

– NITF DTD
– Book DTD
– ToXgene data generator [Barbosa et al.]
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Experiment results
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Experiment results
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Experiment results
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Experiment results
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Conclusions

• AFilter
– provides tradeoff between memory and performance and 

can work with only linear memory (if needed)
• decouples memory management from correctness 

– avoids unnecessarily eager result/state enumerations
• triggering benefits lower selectivities at the leaves

– exploits simultaneously various sharing opportunities: 
• common steps (AxisView),
• common prefixes (PRLabel-tree), and 
• common suffixes (SFLabeltree).

• The best results are obtained when both prefix and suffix 
clustering are exploited simultaneously.




