Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	0	00000000	0000	000000	O

Efficient and Decentralized PageRank Approximation in a P2P Network

<u>Josiane Xavier Parreira</u> * , Debora Donato [¢] , Sebastian Michel * , Gerhard Weikum *

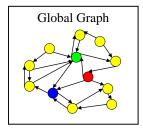
Max-Planck Institute for Computer Science
 Oniversità di Roma "La Sapienza"

September 13, 2006

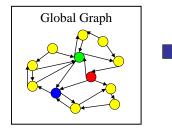
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

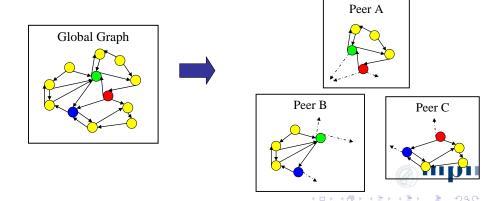
Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	0		0000	000000	O
Outline					


- 2 Related Work
- 3 The JXP Algorithm
- 4 Mathematical Analysis
- **5** Experimental Results
- 6 Conclusions and Ongoing Work

Introduction ●00	Related Work O	JXP Algorithm 00000000	Mathematical Analysis 0000	Experimental Results 000000	Conclusion 0
Introduction					
Introdu	iction				



Introduction ●00	Related Work O	JXP Algorithm 00000000	Mathematical Analysis 0000	Experimental Results 000000	Conclusion 0
Introduction					
Introdu	iction				



Introduction ●00	Related Work O	JXP Algorithm 00000000	Mathematical Analysis 0000	Experimental Results 000000	Conclusion 0
Introduction					
Introdu	iction				

Introduction ●00	Related Work 0	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Introduction					
Introdu	iction				

Introduction ○●○	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Introduction					
Introdu	ction				

Goal

Compute "global" authority scores of pages in the network.

Introduction ○●○	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Introduction					
Introdu	ction				

Goal

Compute "global" authority scores of pages in the network.

Problems

- Peers have only local (incomplete) information
- Pages might link to or be linked by pages at other peers

• No control over overlaps between local graphs

Introduction 00●	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Introduction					
PageRa	ank				

PageRank [Brin and Page, WWW'98]

- Importance of a page depends on the importance of the pages that point to it
- Stationary distribution of a Markov chain that describes a random walk over the graph
- Can be computed using the power iteration method

PageRank Formulation

$$PR(q) = \epsilon imes \sum_{p \mid p
ightarrow q} PR(p) / out(p) + (1 - \epsilon) imes 1 / N$$

(日)

Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	●		0000	000000	O
Polatod	\A/ould				

Efficient PR

- Graph Aggregation [Broder et al., WWW'04]
- Iterative Aggregation [Langville & Meyer, WWW'04]

Decentralized PR

• Local PageRank & ServerRank [Wang & DeWitt, VLDB'04]

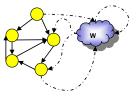
イロト 不得 トイヨト イヨト

-

• BlockRank [Kamvar et al., Stanford Tech. Report'03]

Markov Chains Aggregation/Disaggregation Techniques

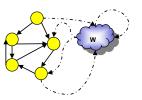
- Kemeny & Snell [1963]
- Stewart [1994]
- Meyer [2000]


Introduction 000	Related Work 0	JXP Algorithm ●○○○○○○○	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Summary					
JXP AI	gorithm				

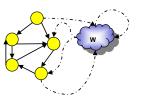
JXP Algorithm

- Decentralized algorithm for computing authority scores of pages in a P2P Network, with arbitrary overlapping
- Runs locally at every peer
- No coordinator, asynchronous
- Combines local PageRank computations + Meetings between peers

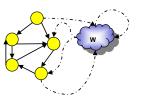
• JXP scores converge to the true global PageRank scores


Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
World node					
World I	Node				

Introduction 000	Related Work 0	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
World node					
World I	Node				

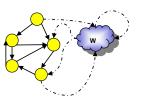

• Special node added to each local graph

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
World node					
World I	Node				

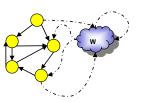

- Special node added to each local graph
- Represents all pages in the network that do not belong to local graph

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
World node					
World I	Node				

- Special node added to each local graph
- Represents all pages in the network that do not belong to local graph
- "Special features":

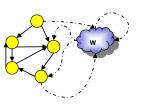


Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
World node					
World I	Node				

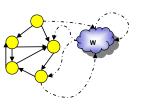

- Special node added to each local graph
- Represents all pages in the network that do not belong to local graph
- "Special features":
 - All links from local pages to external pages point to World Node

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
World node					
World I	Node				

- Special node added to each local graph
- Represents all pages in the network that do not belong to local graph
- "Special features":
 - All links from local pages to external pages point to World Node
 - Links from external pages that point to local pages (discovered during meetings) are represented at the World Node



Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
World node					
World I	Node				


- Special node added to each local graph
- Represents all pages in the network that do not belong to local graph
- "Special features":
 - All links from local pages to external pages point to World Node
 - Links from external pages that point to local pages (discovered during meetings) are represented at the World Node
 - Score and outdegree of these external pages are stored; World Node outgoing links are weighted to reflect score mass given by original link

・ロト ・ 一下・ ・ ヨト

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
World node					
World I	Node				

- Special node added to each local graph
- Represents all pages in the network that do not belong to local graph
- "Special features":
 - All links from local pages to external pages point to World Node
 - Links from external pages that point to local pages (discovered during meetings) are represented at the World Node
 - Score and outdegree of these external pages are stored; World Node outgoing links are weighted to reflect score mass given by original link
 - Self-loop link to represent transitions among external pages

Introduction 000	Related Work 0	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
JXP Algorithm					
The Alg	gorithm				

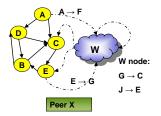
Initialization step

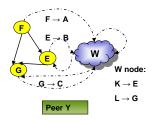
- Local graph is extended by adding the world node;
- \bullet PageRank is computed in the extended graph \rightarrow JXP scores

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
JXP Algorithm					
The Al	gorithm				

Initialization step

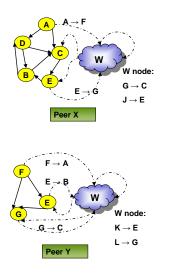
- Local graph is extended by adding the world node;
- $\bullet~$ PageRank is computed in the extended graph $\rightarrow~$ JXP scores

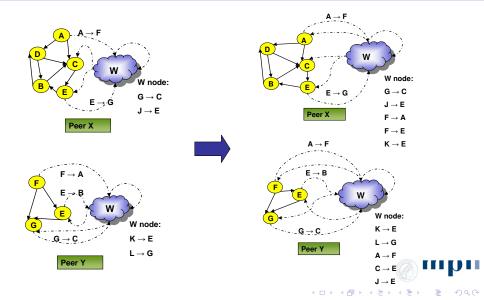

Main Algorithm (for every P_i in the network)


- Select P_j to meet
- Update world node
 - Add edges for pages in P_i that point to pages in P_i
 - If an edge already exists at the world node, the score of the source page is updated by taking the highest of both scores

・ロト ・ 戸 ・ ・ ヨ ・ ・

 $\bullet \ \ Compute \ \ PageRank \rightarrow \ \ JXP \ \ scores$


Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
JXP Algorithm					
Examp	e				



Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
JXP Algorithm					
Examp	e				

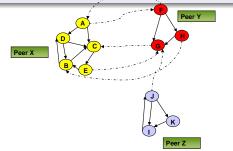
Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
JXP Algorithm					
Exampl	е				

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Peer Selection S	Strategy				
Peer Se	election S [.]	trategy			

Motivation

- Peers' contribution for the convergence are different
- Finding peers with high contribution would speed up convergence
- "Quality indicator": Number of outgoing links of a peer in the network that are also incoming links in the local graph

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Peer Selection S	Strategy				
Door Se	election S	trategy			


Motivation

• Peers' contribution for the convergence are different

ຮັ

- Finding peers with high contribution would speed up convergence
- "Quality indicator": Number of outgoing links of a peer in the network that are also incoming links in the local graph

Image: A matched block

Introduction 000	Related Work O	JXP Algorithm ○○○○○●○○	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Peer Selection S	Strategy				
Peer Se	election S [.]	trategy			

Good strategy

Find promising peers without increasing much bandwidth consumption

• Caching + statistical synopses

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results 000000	Conclusion 0
Peer Selection S	Strategy				
Door Sa	election S	trategy			

Good strategy

Find promising peers without increasing much bandwidth consumption

• Caching + statistical synopses

Statistical synopses

Approximation technique for comparing data of different peers without explicitly transferring their contents.

- Compact representation of sets
- Can be used to estimate cardinality of the intersection between two sets
- JXP uses Min-Wise Independent Permutations (MIPs) [Broder et al., 1997]

Introduction 000	Related Work O	JXP Algorithm ○○○○○○●○	Mathematical Analysis 0000	Experimental Results 000000	Conclusion 0
Peer Selection S	Strategy				
Pre-me	etings Str	rategy			

- Each peer *P_i* computes *local*(*P_i*) and *successors*(*P_i*) MIPs vectors (256-integer vectors)
- When P_i meets P_j
 - Uses MIPs vectors to estimate percentage of local pages pointed by pages in P_j
 - If percentage above threshold, P_i caches P_j 's ID
 - Uses MIPs again to estimate overlap between the two local graphs
 - If there is high overlap, peers exchange their list of cached ID's and store them in a temporary list
 - Idea: Peers on the temporary list are potential candidates for the next meeting

(日) (同) (日) (日)

Introduction 000	Related Work 0	JXP Algorithm ○○○○○○●	Mathematical Analysis 0000	Experimental Results 000000	Conclusion O
Peer Selection S	Strategy				
Pre-me	etings Sti	rategy			

Pre-meetings phase

- *P_j* contacts peers on the temporary list and ask for their MIPs vectors
- Assign scores to each peer
- For next (real) meeting, P_i chooses P_k where
 - P_k is best scored peer in temporary list, with prob. α

・ロト ・ 理 ・ ・ ヨ ・ ・

- P_k is one of the already cached peers, with prob. β
- P_k is a random peer, with prob. $(1 \alpha \beta)$

Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	O		•000	000000	O

Assumptions

Global transition matrix $\mathbf{C}_{N\times N}$ and global stationary distribution vector $\boldsymbol{\pi}$

Local transition matrix and local stationary distr. (JXP scores)

$$\mathbf{P} = \begin{pmatrix} p_{11} & \dots & p_{1n} & p_{1w} \\ \vdots & \dots & \vdots & \vdots \\ p_{n1} & \dots & p_{nn} & p_{nw} \\ \hline p_{w1} & \dots & p_{wn} & p_{ww} \end{pmatrix}$$

$$p_{ij} = \begin{cases} \frac{1}{out(i)} & \text{if } \exists i \to j \\ 0 & \text{otherwise} \end{cases}$$

$$p_{iw} = \sum_{\substack{i \to r \\ r \notin G}} \frac{1}{out(i)}$$

 $\boldsymbol{\alpha} = \left(\begin{array}{ccc} \alpha_1 & \dots & \alpha_n \mid \alpha_w \end{array}\right)^T$

for every $i, j, 1 \leq i, j \leq n$. (G is the set of local pages)

an

Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	0	00000000	○●○○	000000	O

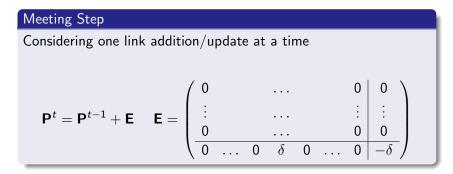
World Node transitions prob.

$$p_{wi}^{t} = \sum_{\substack{r \to i \\ r \in W^{t}}} \frac{\alpha(r)^{t}}{out(r)} \cdot \frac{1}{\alpha_{w}^{t-1}} \quad p_{ww}^{t} = 1 - \sum_{i=1}^{n} p_{wi}^{t}$$

 W^t : Set of pages represented at the World Node during meeting t

Random Jumps

$$\mathbf{P}' = \epsilon \mathbf{P} + (1-\epsilon)\frac{1}{N} (1 \dots 1 | (N-n))$$



Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	0	00000000	००●०	000000	O

Meeting StepConsidering one link addition/update at a time $\mathbf{P}^t = \mathbf{P}^{t-1} + \mathbf{E}$ $\mathbf{E} = \begin{pmatrix} 0 & \dots & 0 & 0 \\ \vdots & \dots & \vdots & \vdots \\ 0 & \dots & 0 & 0 \\ \hline 0 & \dots & 0 & \delta & 0 & \dots & 0 & -\delta \end{pmatrix}$

Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	O		00●0	000000	O
Marthau					

Theorem 1

The JXP score of the world node, at every peer in the network, is monotonically non-increasing.

Proof: Based on the study of the sensitivity of Markov Chains [Cho & Meyer, 1999].

Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	O		000●	000000	O
Mather	natical Ar	nalysis			

Theorem 2

The sum of scores over all pages in a local graph, at every peer in the network, is monotonically non-decreasing.

Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	0		000●	000000	O
Mather	natical Ar	nalysis			

Theorem 2

The sum of scores over all pages in a local graph, at every peer in the network, is monotonically non-decreasing.

Theorem 3

Consider the true stationary probabilities (PR scores) of pages $i \in G$ and the World Node w, π_i and π_w , and their JXP scores after t meetings α_i^t and α_w^t . The following holds throughout all JXP meetings:

 $0 < \alpha_i^t \leq \pi_i$ for $i \in G$ and $\pi_w \leq \alpha_w^t < 1$.

Introduction	Related Work	JXP Algorithm	Mathematical Analysis	Experimental Results	Conclusion
000	O		000●	000000	O
Mather	natical Ar	nalysis			

Theorem 2

The sum of scores over all pages in a local graph, at every peer in the network, is monotonically non-decreasing.

Theorem 3

Consider the true stationary probabilities (PR scores) of pages $i \in G$ and the World Node w, π_i and π_w , and their JXP scores after t meetings α_i^t and α_w^t . The following holds throughout all JXP meetings:

 $0 < \alpha_i^t \le \pi_i$ for $i \in G$ and $\pi_w \le \alpha_w^t < 1$.

Theorem 4

In a fair series of JXP meetings, the JXP scores of all nodes converge to the true global PR scores.

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results	Conclusion O
JXP Accuracy a	and Convergence				
Setup					

Amazon collection

- 55,196 pages
- 237,160 links
- 10 categories (e.g. Computers, Sports, Travel, etc)

Web collection

- 103,591 pages
- 1,633,276 links
- 10 categories (e.g. Movies, Music, Politics, etc)

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results	Conclusion O
JXP Accuracy a	nd Convergence				
Setup					

Amazon collection

- 55,196 pages
- 237,160 links
- 10 categories (e.g. Computers, Sports, Travel, etc)

Web collection

- 103,591 pages
- 1,633,276 links
- 10 categories (e.g. Movies, Music, Politics, etc)

Setup

• 100 peers (10 peers/category)

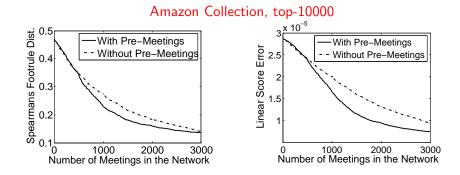
Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results	Conclusion O
JXP Accuracy a	and Convergence				
Setup					

Amazon collection

- 55,196 pages
- 237,160 links
- 10 categories (e.g. Computers, Sports, Travel, etc)

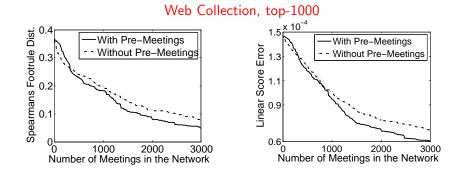
Web collection

- 103,591 pages
- 1,633,276 links
- 10 categories (e.g. Movies, Music, Politics, etc)


Setup

• 100 peers (10 peers/category)

Evaluation Measures


- "Global" JXP ranking vs. Global PageRank ranking
- Spearman's Footrule Distance at top-k
- Linear Score Error at top-k

For a footrule distance of 0.2 number of meetings was reduced from 1,770 to 1,250

For a footrule distance of 0.1 number of meetings was reduced from 2,480 to 1,650

• • • • • • • • • •

Introduction 000	Related Work O	JXP Algorithm 00000000	Mathematical Analysis 0000	Experimental Results 000●00	Conclusion O
JXP Accuracy a	nd Convergence				

Bandwidth Consumption

Web Collection

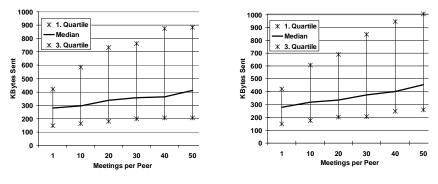


Figure: Without pre-meetings

Figure: With pre-meetings

э

Message size (in KBytes) for the Web crawl setup

Introduction 000	Related Work O	JXP Algorithm 00000000	Mathematical Analysis 0000	Experimental Results	Conclusion 0
JXP in P2P Sea	arch				
IXP in	DOD Sea	rch			

JXP integrated into our P2P search engine Minerva. (Minerva Project Website: http://www.minerva-project.org)

Setup

- Bigger subset of Web (250,760 docs & 3,123,993 links)
- 40 peers, high overlap
- 15 queries ^a, using the Minerva query routing mechanism
- Results were ranked in two ways:
 - tf*idf only
 - weighted sum of tf*idf and JXP scores
- Precision at top-10 measured (based on manually assessments)

^ataken from Borodin et al., ACM TOIT, 2005

Introduction 000	Related Work O	JXP Algorithm	Mathematical Analysis 0000	Experimental Results ○○○○○●	Conclusion O
JXP in P2P Sea	arch				
Results					

Query	tf*idf	(0.6 tf*idf + 0.4 JXP)
affirmative action	40%	40%
amusement parks	60%	60%
armstrong	20%	80%
basketball	20%	60%
blues	20%	20%
censorship	30%	20%
cheese	40%	60%
iraq war	50%	30%
jordan	40%	40%
moon landing	90%	70%
movies	30%	100%
roswell	30%	70%
search engines	20%	60%
shakespeare	60%	80%
table tennis	50%	70%
Average	40%	57%

© mpn

æ

く直→

Introduction 000	Related Work 0	JXP Algorithm 00000000	Mathematical Analysis	Experimental Results 000000	Conclusion
Conclusion					

Conclusions and Ongoing Work

Conclusions

- JXP algorithm for dynamically computing authority scores of pages distributed in a P2P network
- Fully decentralized (no coordinator), asynchronous
- Combines local PageRank computation with meetings between peers
- JXP scores are proved to converge to global PageRank scores

Ongoing Work

• Integrate JXP into the query routing mechanism [P2PIR'06]

- JXP in dynamic networks
- Adapt JXP to work in the presence of malicious peers