
View Matching for Outer-Join Views

Per-Åke Larson Jingren Zhou

Microsoft Research
{palarson, jrzhou}@microsoft.com

Abstract

Prior work on computing queries from mate-
rialized views has focused on views defined by
expressions consisting of selection, projection,
and inner joins, with an optional aggregation
on top (SPJG views). This paper provides the
first view matching algorithm for views that
may also contain outer joins (SPOJG views).
The algorithm relies on a normal form for
SPOJ expressions and does not use bottom-
up syntactic matching of expressions. It han-
dles any combination of inner and outer joins,
deals correctly with SQL bag semantics and
exploits not-null constraints, uniqueness con-
straints and foreign key constraints.

1 Introduction

Appropriately selected materialized views can speed
up query processing greatly but only if the query opti-
mizer can determine whether a query or part of query
can be computed from existing materialized views.
This is the view matching problem. Most work on view
matching has focused on views defined by expressions
consisting of selection, projection, and inner joins, pos-
sibly with a single group-by on top (SPJG views). In
this paper we introduce the first view matching algo-
rithm for views where some of the joins may be outer
joins (SPOJG views).

The simplest approach to view matching is syntac-
tic; essentially bottom-up matching of the operator
trees of query and view expressions. However, algo-
rithms of this type are easily fooled by expressions that
are logically equivalent but syntactically different. A
more robust approach is based on logical equivalence
of expressions, which requires converting the expres-
sions into a common normal form. SPJ expressions
can be converted to a normal form consisting of a
Cartesian product of all operand tables, followed by
a selection and projection. More recently, Galindo-
Legaria [5] showed that SPOJ expressions also have

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

a normal form, called join-disjunctive normal form,
which is the basis for our algorithm.

Example 1. Suppose we create the view shown below
against tables in the TPC-R database.

create view oj view as
select o orderkey, o custkey, l linenumber,
l quantity, l extendedprice, p partkey,
p name, p brand, p retailprice

from part left outer join
(orders left outer join lineitem

on (l orderkey=o orderkey))
on (p partkey=l partkey)

The following query asks for total quantity sold for
each part with partkey < 100, including parts with no
sales. Can this query be computed from the view?

select p partkey, p name, sum(l quantity)
from (select * from parts where p partkey < 100) p
left outer join lineitem
on (l partkey=p partkey)

group by p partkey, p name

The two expressions look very different but the
query can in fact be computed from the view. The join
between Orders and Lineitem will retain all Lineitem
tuples because the join matches a foreign key declared
between l orderkey and o orderkey. If the Orders ta-
ble contains some orders without matching Lineitem
tuples, they would occur in the result null-extended on
all Lineitem columns. The outer join with Part will
retain all real {Lineitem, Order} tuples because this
join is also a foreign-key join but it will eliminate all
tuples that are null-extended on Lineitem columns.
Part tuples that did not join with anything will also
be retained in the result because the join is an outer
join. Hence, the view will contain one complete tu-
ple for each Lineitem tuple and also some Part tuples
null-extended on columns from Lineitem and Orders.
Hence, the view contains all required tuples and that
the query can be computed from the view as follows.

select p partkey, p name, sum(l quantity)
from oj view
where p partkey < 100
group by p partkey, p name

Now consider the following query. Can this query
be computed from the view?

select o orderkey, l linenumber, l quantity
from orders left outer join lineitem
on (l orderkey=o orderkey)

445



The answer is no. The constraints defined on the
TPC-R database allow Orders tuples without match-
ing Lineitem tuples. If such an orphaned Orders tuple
occurs in the database, it will be retained in the query
result because the join is an outer join. It will also
be retained in the result of the first join of the view
because it is null-extended on all Lineitem columns,
but it will be eliminated by the predicate of the second
join of the view. Hence, the orphaned Orders tuple
will not occur in the result of the view and the query
cannot be computed from the view.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the notation used in the rest of the
paper. In Section 3, we describe the join-disjunctive
form of outer-join expressions and give an algorithm
for computing the normal form. Section 4 shows how
to determine containment of SPOJ expressions. We
describe when and how the required tuples can be ex-
tracted from a SPOJ view in Section 5. Section 6 ties
it all together by showing how to determine whether a
SPOJ expression can be computed from a SPOJ view
and how to construct the substitute expression. Ag-
gregation views are discussed in Section 7. Initial ex-
perimental results are presented in Section 8. Finally,
we survey related work in Section 9 and conclude in
Section 10. Due to space limitations, we omit most
proofs; all proofs can be found in [10].

2 Definitions and Notations

The selection operator will be denoted in the normal
way as σp where p is a predicate. Projection (without
duplicate elimination) will be denoted by πc where c
is a list of columns. Borrowing from SQL, we use the
shorthand T.∗ where T is a single table or a set of
tables. T.∗ denotes all columns of table(s) T . We also
need an operator that removes duplicates (similar to
SQL’s select distinct), which we denote by δ.

A predicate p referencing some set S of columns
is said to be strong or null-rejecting if it evaluates to
false or unknown as soon as one of the columns in S is
null. We will also use a special predicate null(T ) that
evaluates to true if a tuple is null-extended on table T .
The notation null(S), where S = {S1, S2, . . . , Sn}, is a
shorthand for null(S1)∧. . .∧null(Sn) and ∼null(S) is
a shorthand for ∼null(S1) ∧ . . . ∧ ∼null(Sn). null(T )
and ∼null(T )can be implemented in SQL as “T.c is
null” and “T.c is not null”, respectively, where c is
any non-nullable column of T .

A schema S is a set of attributes (column names).
Let T1 and T2 be tables with schemas S1 and S2,
respectively. The outer union, denoted by T1 � T2,
first null-extends (pads with nulls) the tuples of each
operand to schema S1 ∪ S2 and then takes the union
of the results (without duplicate elimination). Outer
union has lower precedence than join.

A tuple t1 is said to subsume a tuple t2 if they are
defined on the same schema, t1 agrees with t2 on all
columns where they both are non-null, and t1 contains
fewer null values than t2. The operator removal of sub-
sumed tuples of T , denoted by T ↓, returns the tuples

of T that are not subsumed by any other tuple in T .
The minimum union of tables T1 and T2 is defined

as T1 ⊕ T2 = (T1 � T2)↓. Minimum union has lower
precedence than join. It can be shown that minimum
union is both commutative and associative.

Let T1 and T2 be tables with disjoint schemas S1

and S2, respectively, and p a predicate referencing
some subset of the columns in (S1 ∪ S2). The (inner)
join of the tables is defined as T1 ��p T2 = {(t1, t2)|t1 ∈
T1, t2 ∈ T2, p (t1, t2)}. The left outer join can then be
defined as T1 �p T2 = (T1 ��p T2)⊕T1. The right outer
join is T1 �p T2 = T2 �p T1. The full outer join is
T1 ×p T2 = (T1 ��p T2) ⊕ T1 ⊕ T2.

We assume that base tables contain no subsumed
tuples. This is usually the case in practice because
base tables typically contain a unique key. We also as-
sume that predicates are null-rejecting on all columns
that they reference.

3 Join-Disjunctive Normal Form

To reason about equivalence and containment of SPOJ
expressions we convert them into the join-disjunctive
normal form introduced by Galindo-Legaria [5]. We
extend Galindo-Legaria’s definition of join-disjunctive
normal form by allowing selection operators and incor-
porating the effects of primary keys and foreign keys.
In addition, we provide an algorithm to compute the
normal form.

We introduce the idea of join-disjunctive normal
form by an example. Throughout this paper we will
use the following database, modeled on the tables
Customer, Orders, Lineitem of the TPC-R database.

C(ck, cn, cnk),
O(ok, ock, od, otp),
L(lok, ln, lpk, lq, lp)

Nulls are not allowed for any of the columns. Un-
derlined columns form the primary key of each table.
Two foreign key constraints are defined: O.ock refer-
ences C.ck and L.lok references O.ok.

Example 2. Suppose we have the following query

Q = C �ck=ock (O �ok=lok (σlp>50KL)).

The result will contain tuples of three types.

1. COL tuples, that is, tuples formed by concatenat-
ing a tuple from C, a tuple from O and a tuple
from L. There will be one COL tuple for every L
tuple that satisfies the predicate lp > 50K.

2. CO tuples, that is, tuples composed by concate-
nation a tuple from C, a tuple from O and nulls
for all columns of L. There will be one such tuple
for every O tuple that does not join with any L
tuple satisfying lp > 50K.

3. C tuples, that is, tuples composed of a tuple from
C with nulls for all columns of O and L. There
will be one such tuple for every C tuple that does
not join with any tuple in O.

446



The result contains all tuples of C ��ck=ock O ��ok=lok

(σlp>50KL), all tuples of C ��ck=ock O, and also all tu-
ples in C. Each of the three sub-results is represented
in the result in a minimal way. For example, if a tuple
(c1, null, null) appears in the result, then there exists
a tuple c1 in C but there is no tuple o1 in O such that
(c1, o1) appears in C ��ck=ock O.

We can rewrite the expression as the minimum
union of three join terms comprised solely of inner
joins, which is the join-disjunctive form of the origi-
nal SPOJ expression.

Q = (C ��ck=ock O ��ok=lok (σlp>50KL))⊕
(C ��ck=ock O) ⊕ (C)

3.1 Transformation Rules

The following transformation rules are used for con-
verting SPOJ expression to join-disjunctive form.

T1 �p T2 = T1 ��p T2 ⊕ T1;
if T1 = T1↓ and T2 = T2↓ (1)

T1 ×p T2 = T1 ��p T2 ⊕ T1 ⊕ T2;
if T1 = T1↓ and T2 = T2↓ (2)

(T1 ⊕ T2) ��p T3 = T1 ��p T 3 ⊕ T2 ��p T 3;
if T3 = T3↓ (3)

σp(1)(T1 ��p T2 ⊕ T2) = (σp(1)T1) ��p T2;
if p(1) is strong and references only T1 (4)

σp(1)(T1 ��p T2 ⊕ T1) = (σp(1)T1) ��p T2 ⊕ (σp(1)T1);
if p(1) references only T1 (5)

The proofs of the correctness of the first three trans-
formation rules can be found in [5]. The fourth rule
follows from the observation that all tuples originat-
ing from the term T2 in (T1 ��p T2 ⊕ T2) will be null-
extended on all columns of T1. All those tuples will be
discarded if p(1) is strong on T1. The last rule follows
from the obvious rule σp(1)(T1 �p T2) = (σp(1)T1)�p T2

by expanding the two outer joins.

3.2 Join-Disjunctive Normal Form

In this section, we show that a SPOJ expression can
always be converted to join-disjunctive form and that
two SPOJ expressions are equivalent if they have the
same join-disjunctive form. The main theorem is
due to Galindo-Legaria [5]. We retain the proof of
Lemma 1 because it shows how to compute the nor-
mal form but omit the other proofs for lack of space.
Lemma 1. Let Q1 and Q2 be SPOJ expressions in
join-disjunctive form. Then the expressions σp(Q1),
Q1 ��p Q2, Q1�pQ2, and Q1×pQ2 can all be rewritten
in join-disjunctive form.

Proof. We assume that expression Q1 operates on ta-
bles in the set T1. We write Q1 in the form σp11(T11)⊕
σp12(T12)⊕ . . .⊕σp1n(T1n) where T11, T12, . . . , T1n are
subsets of T1. The notation σp1i(T1i) means a selec-
tion with predicate p1i over the Cartesian product of

the tables in T1i, that is, the normal form of a SPJ
expression. Q2 is expressed in the same way but over
the base set T2 and containing m terms.

The case σp(Q1) is straightforward and omitted.
For the case Q1 ��p Q2, repeated application of rule (3)
converts the expression into

σp11(T11) ��p σp21(T21) ⊕ σp12(T12) ��p σp21(T21)⊕
. . . ⊕ σp1n(T1n) ��p σp2m(T2m)

In essence, we are multiplying the two input ex-
pressions producing an output expression containing
nm terms. This expression can be converted into
σp11∧p21∧p(T11 ∪ T21) ⊕ σp12∧p21∧p(T12 ∪ T21) ⊕ . . . ⊕
σp1n∧p2m∧p(T1n ∪ T2m), which is in join-disjunctive
form. The result may actually contain fewer than nm
terms. Suppose predicate p references tables in a sub-
set S of the tables in T1∪T2. Because p is strong on S,
each term that is null-extended on one or more tables
in S, i.e. S 	⊂ (T1i ∪ T2j), will return an empty result
when applying predicate p.

The outerjoin cases, Q1 �p Q2 and Q1 ×p Q2, fol-
low immediately from the join case by first applying
rule (1) or (2), respectively.

Lemma 2. Let σp1(T1) and σp2(T2) be two terms in
the join-disjunctive form of a SPOJ expression. If
T1 ⊂ T2, then p2 ⇒ p1.
Theorem 1 (Galindo-Legaria). The join-
disjunctive form of a SPOJ expression Q is a
normal form for Q.

These lemmas and the theorem imply that deciding
equivalence of two SPOJ expressions can be reduced
to the well-understood problem of deciding equivalence
of SPJ terms with matching source tables in the join-
disjunctive forms of the expressions. The proof does
not consider any constraints on the database. If there
are constraints on the database, two SPOJ expressions
may still be equivalent even if their normal forms dif-
fer, because they may not produce different results on
any valid database instances. The same is true for the
normal form of SPJ expressions.

3.3 Computing the Normal Form

Theorem 1 guarantees that every SPOJ expression has
a unique normal form but we also need an algorithm
for computing the normal form. Lemma 1 and its proof
provide the basis for an algorithm. It shows how to
construct an output expression in normal form from
inputs in normal form. Hence, we can compute the
normal form of an expression by traversing its operator
tree bottom-up.

The algorithm exploits transformation rule (4) to
discard terms that are eliminated by null-rejecting
predicates. Additional terms can be eliminated by
exploiting foreign keys. A term σp1(T1) can be elim-
inated from the normal form if there exists another
term σp2(T2) such that T1 ⊂ T2 and σp1(T1) ⊆
πT1.∗σp2(T2). This may happen if the additional tables
(T2 − T1) in σp2(T2) are joined in through foreign key

447



joins. This is an important simplification because, in
practice, most joins correspond to foreign keys. Since
terms are SPJ expressions, establishing whether the
subset relationship holds is precisely the containment
problem for SPJ expression. The containment testing
algorithm in [8] can be used for this purpose.

We now have all the pieces needed to design an al-
gorithm for computing the normal form of a SPOJ
expression. The algorithm, shown in Algorithm 1, re-
cursively applies rules (1) - (3) bottom-up to expand
joins and simplifies the resulting expressions by ap-
plying rules (4) and (5) and the containment rule de-
scribed above. It returns a set of terms (TermSet) cor-
responding to the normal form of the input expression.
Each term is represented by a structure consisting of
a set of tables (Tables) and a predicate (Pred).
Example 3. We compute the normal form of the view

V = C �ock=ck (O ×ok=lok (σlp<20L)))

The algorithm recursively descends the operator
tree. When applied to the innermost join, it produces

V = C �ock=ck (σlp<20∧ok=lok(O, L) ⊕ σlp<20L ⊕ O)
= C �ock=ck (σlp<20∧ok=lok(O, L) ⊕ O)

The term σlp<20L is subsumed by the term
σlp<20∧ok=lok(O, L) because the join is a foreign key
join and therefore eliminated from the result. Next,
the algorithm is applied to the left outer join and pro-
duces the normal form.

V = σlp<20∧ok=lok∧ock=ck(C, O, L)⊕
σlp<20∧ock=ck(C, L) ⊕ σck=ock(C, O) ⊕ C

= σlp<20∧ok=lok∧ock=ck(C, O, L) ⊕ σck=ock(C, O) ⊕ C

The term σlp<20∧ock=ck(C, L) is eliminated because
the predicate ock = ck is null-rejecting on O and O
is not a member of (C, L).

4 Containment of SPOJ Expressions

When computing a query from a view, the issue arises
as to what operations one is willing to apply to the
view. In the context of SPJ views, the operations are
typically restricted to selection, projection and dupli-
cate elimination so that each result tuple is computed
from a single view tuple. When restricted to this set
of operations, a query cannot be computed from the
view unless the query is contained in the view [8].

We retain the same restriction in the context of
SPOJ views, namely, we consider only transformations
where a result tuple is computed from a single view
tuple, but with a slight generalization. We also allow
null substitution, i.e. changing a column value to null.
Given this generalization, we need a way to decide
whether a view contains “enough” tuples.
Definition 4.1. Let T1 and T2 be two tables with the
same schema. T1 is subsumption-contained in T2, de-
noted by T1 ⊂s T2, if for every tuple t1 ∈ T1 there ex-
ists a tuple t2 ∈ T2 such that t1 = t2 or t1 is subsumed

Algorithm 1: Normalize(E)
Input: Expression E
Output: TermSet
/* A term represents a SPJ expression and consists */
/* of a set of tables and a predicate. */
Node = top node of E;
switch type of Node.Operator do
case base table R:
TermSet BT = {{R}, true};
return BT ;

/* Select has an input expression IE and a predicate SP */
case select operator (IE, SP ):
TermSet IT = Normalize(IE);
foreach Term t in IT do
if SP rejects nulls on a table not in t.Tables then
IT = IT − {t}; /*apply rule (4) */

else
t.P red = t.P red ∧ SP ; /*apply rule (5) */

end
return IT ;

/* Join has two input expressions (LE, RE), */
/* a predicate (JP ) and a join type */
case join operator (LE, RE, JP, JoinType):
TermSet LT = Normalize(LE);
TermSet RT = Normalize(RE);
TermSet JT = ∅; /*terms after join */
TermSet EL = ∅; /*terms eliminated by subsumption */
/* Multiply the two input sets (rule (3)) */
foreach Term l ∈ LT do
foreach Term r ∈ RT do
Term t = {(l.Tables ∪ r.Tables), l.P red ∧ r.P red ∧ JP};
/* Apply rule (3) to eliminate terms */
if !(JP rejects nulls on a table not in t.Tables) then
JT = JT ∪ {t};
/* Check whether all tuples in input term are sub- */
/* sumed by the result term by testing containment */
/* of SPJ expressions, see algorithm in [8]. */
if σl.Pred(l.Tables) ⊆ σt.Pred(t.Tables) then
EL = EL ∪ {l};

end
if σr.Pred(r.Tables) ⊆ σt.Pred(t.Tables) then
EL = EL ∪ {r};

end
end

end
end
/* Add inputs from preserved side(s) (rules (1) and (2)) */
switch JoinType do
case full outer:
JT = JT ∪ LT ∪ RT ; break;

case left outer:
JT = JT ∪ LT ; break;

case right outer:
JT = JT ∪ RT ; break;

end
/* Discard terms eliminated by subsumption */
JT = JT − EL;
return JT

end

by t2. An expression Q1 is subsumption-contained in
an expression Q2 if the result of Q1 is subsumption-
contained in the result of Q2 for every valid database
instance.

The following theorem reduces the problem of test-
ing containment of SPOJ expressions to the known
problem of testing containment of SPJ expressions.
This can be done using, for example, the containment
testing algorithm in [8].
Theorem 2. Let Q1 and Q2 be two SPOJ expres-
sions and Q′

1 and Q′
2 their join-disjunctive forms.

448



Then Q1 ⊂s Q2 if and only if the following condi-
tion holds: for every term σp1(S) in Q′

1, there ex-
ists a term σp2(T ) in Q′

2 such that S ⊆ T and
σp1(S) ⊆ πS.∗σp2(T ).
Corollary 1. Let Q1 and Q2 be two SPOJ expres-
sions. If Q1 	⊂s Q2 then Q1 cannot be computed from
the result of Q2 using a combination of selection, pro-
jection, null substitution, and removal of subsumed tu-
ples for every database instance.

This important corollary follows immediately from
the theorem because we require that each result tuple
can be constructed from a single view tuple.

5 Recovering All Tuples of a Term

The result tuples of a term in the normal form of a
SPOJ view are implicitly contained in the result the
view. A tuple t in the result of a term σp1(S1) may
occur explicitly in the result of the view or it may be
subsumed by another tuple t′ generated by a wider
term σp2(S2), i.e. a term with the property S1 ⊂ S2.
In fact, there may be many tuples in the result that
subsume t. Suppose we have a SPJ query σp3(S1) and
we have shown that all tuples needed by the query are
contained in the term σp1(S1) of the view. To compute
the query from the view, we first recover the result of
σp1(S1) from the view result. The following example
illustrates the steps necessary.
Example 4. Consider the following view.

V = (σcn<5C) �ock=ck (O �ok=lok (σlp<20L))
= σcn<5∧lp<20∧ok=lok∧ock=ck(C, O, L)⊕

σcn<5∧ck=ock(C, O) ⊕ σcn<5C

Its normal form shows that the view consists of
three types of tuples: COL tuples without null exten-
sion, CO tuples null extended on L, and C tuples null
extended on O and L. Suppose we want to recover the
tuples generated by the term σcn<5∧ck=ock(C, O). All
the desired tuples are composed of a real C tuple and a
real O tuple, i.e. they are not null-extended on C and
O. We first apply the selection σ∼null(C)∧∼null(O)V
to eliminate all tuples that do not satisfy this require-
ment. The selection can be simplified to σ∼null(O)V
because no tuples of V are null-extended on C.

The predicate ∼null(C) can be implemented in
SQL as “C.col is not null” where col is any C
column guaranteed to be non-null in the result of
σcn<5∧ck=ock(C, O). A column is guaranteed to be
non-null if it is either declared with not null or occurs
in a null-rejecting predicate. In our case, we can use
cn or ck because of the predicate (cn < 5∧ ck = ock).

We also have to make sure that we get tuples with
the correct duplication factor. A CO tuple (tc, to) that
satisfies the predicate (cn < 5 ∧ ck = ock) may have
joined with one or more L tuples. Hence, if we simply
project V onto the columns of C and O (without du-
plicate elimination), the result may contain multiple
duplicates of tuple (tc, to) and the result is not correct
according to SQL bag semantics. Duplicate elimina-
tion will eliminate all such duplicates, but it may also

remove legitimate duplicates. It will work correctly
only if the result of σcn<5∧ck=ock(C, O) has a unique
key. In our case, ok is a unique key for the term so we
can safely apply duplicate elimination. Consequently,
we can recover the result of the term from the view as
follows

σcn<5∧ck=ock(C, O) = δ(πC.∗,O.∗(σO.ck �=nullV ))

The following theorem shows how to recover the
tuples of a SPJ term from a SPOJ view when a unique
key is available.
Theorem 3. Let σP (R) be a SPJ term of a view
V . If σP (R) has a unique key, then σP (R) =
δ(πR.∗σ∼null(R)V ).

Now we consider how to recover the tuples of a SPJ
term when no key is available.
Example 5. Consider the following view.

V = (σlp<20O) �ock=ck (σcn<5C)
= σcn<5∧ock=ck∧lp<20(C, O) ⊕ σlp<20O

Suppose that a unique key of O is not available in
the view output. If so, can we still recover the term
σlp<20O from the view? The answer is yes. We can-
not apply duplicate elimination but it is not needed.
Consider a tuple to in the result of σlp<20O. The tuple
may not join with any tuple in σcn<5C, in which case
it will occur once in the view result (null extended on
C). If the tuple joins with a tuple tc, the combined
tuple (to, tc) will occur in the view result. However,
because the join condition ock = ck corresponds to
a foreign key constraint, we know that it cannot join
with more than one C tuple. In other words, every
tuple in σlp<20O will occur exactly once in the view re-
sult. Hence, no duplicate elimination is needed and the
tuples can be recovered by σlp<20O = πO.∗σ∼null(O)V .

The example illustrates a case with a single exten-
sion join. An extension join is an equijoin matching a
foreign key constraint where the foreign key columns
are declared non-null and reference a unique key. An
extension join merely extends each input tuple with a
additional columns. Reference [8] introduced the no-
tion of the hub of a SPJ expression and gave a proce-
dure for computing the hub. The hub of a term σP (R)
is the smallest subset S of R such that every table in
R−S is joined in through a sequence of extension joins.
The following theorem shows how to exploit this idea
to recover additional terms.
Theorem 4. Let σP (R) be a SPJ term of a view V .
Then σP (R) = πR.∗σ∼null(R)V if every term σq(T )
in the normal form of V such that R ⊂ T , has a hub
equal to the hub of σP (R).

Note that the condition is trivially satisfied for the
maximal term of V (the term with the maximal set of
tables) because there are no terms with a larger set of
tables.

So far we have assumed that the view outputs at
least one non-null column for every table in R. We
now relax this assumption and consider what can be

449



done if the view outputs a non-null column for only
a subset of the tables. The following theorem states
under what conditions we can still correctly extract
the desired tuples.

Theorem 5. Let σP (R) be an SPJ term of a view
V and S a subset of R such that the view outputs at
least one non-null column for each table in S. Then
σ∼null(R)V = σ∼null(S)V if, for every term σq(T ) in
the normal form of V such that T ⊂ R, the set (R−
T ) ∩ S is non-empty.

Proof. The purpose of the predicate ∼null(R) is to re-
ject all tuples that are null-extended on any table of R,
that is, tuples originating from any term σq(T ) where
T ⊂ R. Tuples originating from a term σq(T ) with
T ⊂ R will be null-extended on tables in (R − T ).
If S overlaps with (R − T ) then the reduced predi-
cate ∼null(S) will reject all tuples originating from
σq(T ). Consequently, if the condition holds for every
term with T ⊂ R, the reduced predicate will reject
exactly the same tuples as the original predicate.

6 Computing a Query from a View

We now have the main tools needed to decide whether
a SPOJ query can be computed from a SPOJ view.
This section pulls them together into a decision pro-
cedure and describes how to construct the substitute
expression. Here is the high-level steps of the view
matching algorithm; the steps are described in more
detail in separate sections.

Algorithm SPOJ-View-Matching:

1. Convert both the query Q and the view V to join-
disjunctive normal form.

2. Check whether Q is subsumption-contained in V .
3. Check whether all terms in Q can be recovered

from V .
4. Determine residual predicates, that is, query

predicates that must be applied to the view.
5. Check whether all columns required by residual

predicates and output expressions are available in
the view output.

6. If the view passes all tests above, construct the
substitute expression.

We will illustrate the algorithm using the following
view and query.

V1 =πlok,ln,lq,lp,od,otp,ck,cn,cnk(σcnk<10(C)
�ock=ck (σotp>50(O) ×ok=lok σlq<100(L)))

Q1 =πlok,lq,lp,od,otp(σotp>150(O) �ok=lok σlq<100(L))

6.1 Converting to Normal Form

Conversion to join-disjunctive normal form is simply a
matter of applying algorithm Normalize described in

Section 3.3. Applying the algorithm to our example
view and query produces the following expressions.

V1 = πlok,ln,lq,lp,od,otp,ck,cn,cnk

(σcnk<10∧ck=ock∧otp>50∧ok=lok∧lq<100(C, O, L)⊕
σcnk<10∧ck=ock∧otp>50(C, O) ⊕ σotp>50(O)⊕
σotp>50∧ok=lok∧lq<100(O, L) ⊕ σlq<100(L))

Q1 = πlok,lq,lp,od,otp(σotp>150∧ok=lok∧lq<100(O, L)⊕
σlq<100(L))

6.2 Checking Containment

To check that the view contains all tuples required by
the query we must check containment of each term of
the query (Theorem 2). That is, for every term σp1(S)
in the query, we must find a term σp2(T ) in the view
such that S ⊆ T and p1 ⇒ p2.

The query term with base (O, L) has the same base
as the fourth term in the view. To ensure containment
the following condition must hold

(otp > 150 ∧ ok = lok ∧ lq < 100) ⇒
(otp > 50 ∧ ok = lok ∧ lq < 100).

The condition can be simplified to (otp > 150) ⇒
(otp > 50), which trivially holds. Hence, the view
contains all tuples required by the first term.

The second term of the query matches the last term
of the view. In this case, the condition equals (lq <
100) ⇒ (lq < 100), which of course holds. Hence, all
tuples required by this term of the query are contained
in the view. We conclude that the view contains all
tuples required by the query.

6.3 Checking Recovery

Checking whether the tuples of a term can be recov-
ered from the view consists of the following steps:

1. Check whether duplicate elimination is required
by comparing hubs (Theorem 4).

2. If duplicate elimination is required, find a unique
key of the term (Theorem 3) and check whether
the view outputs the required columns.

3. Check whether the view outputs sufficient non-
null columns (Theorem 5).

Our example view references tables C, O, and L and
outputs at least one non-null column from each table.
We can use C.ck, O.otp, and L.ok as non-null columns.
C.ck is a primary key and as such must be non-null,
O.otp and L.lq are referenced by null-rejecting predi-
cates.

The first term of the query matches the fourth term
of the view. The hub of the fourth term of the view is
{L} because the join between L and O matches a for-
eign key constraint and the foreign key column L.lok
is declared non-null. The COL term (the first term)
of the view is the only term whose base is a superset of
{O, L}. The hub of the COL term is also {L} because

450



the join between O and C is also a foreign key join.
Hence, the conditions of Theorem 4 are satisfied and
no duplicate elimination is needed.

The fourth term of the view references tables O and
L, so we have R = {O, L} and S = {O, L}. The third
and the fifth terms of the view have bases that are
subsets of R. The third term has base T = {O}.
Consequently, the set (R−T )∩S = ({O, L}−{O})∩
{O, L} = {L} is non-empty. The fifth term has base
T = {L} and, again, the set (R−T ) ∩ S = ({O, L}−
{L}) ∩ {O, L} = {O} is non-empty. If follows that we
can extract the tuples of the fourth term of the view
using the predicate O.otp 	= null and L.lq 	= null.

The second term of the query matches the last term
of the view. The hub of the last term is obviously
{L}. We already determined that the hub of the first
and the fourth terms of the view is also {L}. Those
are the only terms whose base is a superset of {L}.
Consequently, no duplicate elimination is required for
this term either.

The last term of the view has base {L}. The view
does not contain any terms whose base is a subset of
{L} so the conditions of Theorem 5 are automatically
satisfied. If follows that we can extract the tuples of
this term using the predicate L.lq 	= null.

We have thus determined that the required tuples
can be extracted from the view as follows:

σotp>50∧ok=lok∧lq<100(O, L) = σotp�=null∧lq �=nullV

σlq<100(L) = σlq �=nullV

6.4 Residual Predicates

Query predicates may be more restrictive than the
view predicates. We must eliminate all tuples that
do not satisfy the query predicate but the view may
not output all the necessary columns. Fortunately, we
may not need to apply the complete query predicate;
parts of the predicate that are already enforced by the
view predicate can be eliminated. In addition, we can
exploit equivalences among columns in the view result.

Suppose we have a query term with predicate Pq =
p1∧p2∧. . .∧pn (in conjunctive normal form) and a cor-
responding view term with predicate Pv. A conjunct
pi of the query predicate can be eliminated if Pv ⇒ pi,
that is, if pi already holds for all tuples generated by
the appropriate term in the view. The implication can
be tested using, for example, the subsumption algo-
rithm described in [8].

Applying this to the first term of our example query,
we get the following three implications:

(otp > 50 ∧ ok = lok ∧ lq < 100) ⇒ (otp > 150)
(otp > 50 ∧ ok = lok ∧ lq < 100) ⇒ (ok = lok)
(otp > 50 ∧ ok = lok ∧ lq < 100) ⇒ (lq < 100)

It is easy to see that second and third implication hold
but the first one does not. Hence, the residual predi-
cate for the first term is (otp > 150).

For the second term we get the implication (lq <
100) ⇒ (lq < 100) which trivially holds. Hence, no

further predicate needs to be applied for the second
term.

6.5 Availability of Output Columns

Before proceeding further we need to discuss how to
exploit column equivalences. A column equivalence
class is a set of columns that are known to have the
same value in all tuples produced by an expression.
Equivalence classes are generated by column equality
predicates, typically equijoin conditions. A straight-
forward algorithm for computing equivalence classes
is provided in [8].

A SPOJ expression consists of multiple SPJ terms,
each one with its own equivalence classes. Once we
have recovered the tuples generated by a term of a
view, we can safely exploit its equivalence classes in
residual predicates applied to that term. Applying
the residual predicates may create new column equiv-
alences that should be added to the term’s equivalence
classes. These updated equivalence classes can then be
exploited in output expressions and also when creating
grouping columns (covered in Section 7.2).

For our example view, only three terms have non-
trivial equivalence classes: {{ck, ock}, {ok, lok}} for
the first term, {{ck, ock}} for the second term, and
{{ok, lok}} for the fourth term. For the query, only the
first term has a non-trivial equivalence class, namely,
{{ok, lok}}.

We are now ready to check whether all required
columns are available. The columns available in the
view output are lok, ln, lq, lp, od, otp, ck, cn, and cnk.
The first query term has one residual predicate: (otp >
150). otp is a view output column so the predicate can
be applied. The second query term required has no
residual predicates. The query output columns are lok,
lq, lp, od, otp, which are all available as view output
columns. Hence, all required columns are available.

6.6 Constructing the Substitute Expression

Once we reach this stage, we know that the query can
be computed from the view. All that remains is to
construct the substitute expression, i.e. an expression
that computes the query from the view. This consists
of applying the following steps to each SPJ term of the
query and combining the resulting expressions with
minimum union operators (⊕).

1. Recover the SPJ term from the view using a se-
lection with the appropriate null and ∼null pred-
icates constructed earlier. Apply duplicate elimi-
nation if needed.

2. Restrict the result using a selection with the ap-
propriate residual predicates, if any. Exploit view
equivalence classes as needed.

3. Apply projection (without duplicate elimination)
to reduce the result to the required output
columns. Exploit query equivalence classes as
needed. Return null for any output column origi-
nating from a table not in the base of the term.

451



For our example query and view, this process pro-
duces the following result.

Q1 = πlok,lq,lp,od,otp(σotp>150(σotp�=null∧lq �=nullV1))
⊕ πlok,lq,lp,null,null(σlq �=nullV1)

= πlok,lq,lp,od,otp(σotp>150∧lq �=nullV1)
⊕ πlok,lq,lp,null,null(σlq �=nullV1)

The innermost selection of each term performs the
recovery. As determined earlier, no duplicate elim-
ination is required. The selection σotp>150 applies
the residual predicate needed for the first term. The
projections reduce the tuples to the desired output
columns. Note that the columns od and otp have been
replaced by nulls in the second term. The first part
of the expression can be simplified by combining the
two selections and the predicate otp 	= null can be
discarded because the predicate (otp > 150) is null-
rejecting on otp.

So far so good but, unfortunately, the resulting ex-
pression cannot be evaluated because no commercial
database systems supports minimum union directly.
However, minimum union can be expressed in SQL,
which is the topic of the next subsection.

6.7 Computing Minimum Union Using SQL

Let’s analyze what the minimum union in the substi-
tute expression actually does. All tuples generated by
the first SPJ term will remain in the result. A tuple t2
generated by the second SPJ term will be eliminated
from the results if it is subsumed by a tuple t1 gen-
erated by the first term. Tuple t2 must be null on all
columns from table O, so tuple t1 subsumes t2 if it
agrees with t2 on all columns from table L. We can
express this in SQL using an exists subquery.
// first term
select lok, lq, lp, od, otp
from V1
where otp > 150 and lq is not null
union all
// second term
select lok, lq, lp, null, null
from V1 vo
where lq is not null
and not exists (select * from V1 vi

where vi.otp > 150 and vi.lq is not null
and vi.lok = vo.lok and vi.ln = vi.ln
and vi.lq = vo.lq and vi.lp = vo.lp)

The where clause in the subquery can be simpli-
fied by observing that {lok, ln} is a unique key of the
second SPJ term of the query. If two tuples agree
on the key, they must agree on all other columns as
well. Even so, this expression may be rather ineffi-
cient because of the join of the view with itself. We
can eliminate the join and compute the second term
using a group-by with having as follows.
// first term
select lok, lq, lp, od, otp
from V1
where otp > 150 and lq is not null

union all
// second term
select lok, lq, lp, null, null
from V1
where lq is not null
group by lok, ln, lq, lp
having sum(case when otp > 150

and lq is not null then 1 else 0 end) = 0

The predicate “lq is not null” recovers all tuples of
the second SPJ term. The group-by brings together
all tuples that agree on all columns originating from
L. Note that the list of grouping columns includes
the unique key (lok, ln) of the term. The aggregation
function sum() counts the number of tuples in each
group that belong to the first SPJ term. If there are
one or more such tuples, the output tuple from the
group is rejected because it is subsumed by a tuple
included in the first SPJ term. Note that the initial
SQL expression is always a valid way of computing the
minimum union, while the second expression is more
efficient but requires a unique key. 1

This example illustrates the general procedure
for constructing a substitute expression using only
SQL constructs. Suppose we need to construct the
SQL statement for a SPJ term with base R =
{R1, R2, . . . , Rn}. Denote the predicate required
for tuple recovery by Pv1 and the residual predi-
cate by Pr1. Suppose the query outputs columns
C1, C2, . . . , Ck from tables R (possibly mapped to
equivalent columns). The view may output additional
columns, which we denote by Ck+1, Ck+2, . . . , Cm.
Some of the tuples generated by σp(R) may be sub-
sumed by tuples generated by other SPJ terms. We
need only consider one such term which we denote
by σq(R+) and call the maximally subsuming term.
σq(R+) is the term in the query whose base, R+, is
the smallest superset of R. (That is, no other term
has a base that is a superset of R and a subset of
R+.) Suppose R+ = {R1, R2, . . . , Rn, S1, . . . , St}. We
denote the tuple recovery predicate and residual pred-
icates of σq(R+) by Pv2 and Pr2, respectively. Note
that σp(R) does not have a maximally subsuming term
if R includes all source tables of the view.

We distinguish two cases depending on whether
columns forming a unique key of term σp(R) are avail-
able in the view output or not. (Query equivalence
classes can be applied when looking for key columns.)

If a key of term σp(R) is not available, dupli-
cate elimination cannot be applied but in that case,
it should not be necessary either (verified in earlier
steps). In this case, we use the following SQL expres-
sion. If R includes all source tables of the query, the
last part of the expression (the part enclosed in square
brackets) is omitted.
select C1, C2, . . ., Ck, null, . . ., null
from view v1
where Pv1 and Pr1
[and not exists (select * from view v2

1The columns (lok, ln) are a key not only of the term but also
of the complete view V . This fact can be exploited to remove
the group by and convert the having clause to a select.

452



where Pv2 and Pr2
and v1.C1=v2.C1 and . . . and v1.Cm=v2.Cm)]

If the key is available, we use the following SQL
expression. Note that the grouping is on all columns
from R that are output by the view so all key columns
are automatically included. The having clause is omit-
ted if R includes all source tables of the query.
select C1, C2, . . ., Ck, null, . . ., null
from view
where Pv1 and Pr1
group by C1, C2, . . ., Cm
[having sum(case when Pv2 and Pr2 then 1 else 0) = 0]

After the expressions for all SPJ terms of the query
have been constructed, we simply tie them together
using union all.

6.8 Avoiding Minimum Union and Duplicate
Elimination

Minimum union and duplicate elimination are not al-
ways necessary to answer a query from a SPOJ view.
For a certain type of queries, a single scan of the view
result, with possible selection and projection, is suffi-
cient. Consider the following query

Q2 = πlok,lq,lp,od,otp(σlq<100(L) �ok=lok σotp>50(O))
�ck=ock σcnk<10(C)

= πlok,lq,lp,od,otp(σlq<100(L)⊕
σotp>50∧ok=lok∧lq<100(O, L)⊕
σcnk<10∧ck=ock∧otp>50∧ok=lok∧lq<100(C, O, L))

By checking containment and recovery, we find that
query Q2 can be computed from view V1. The query
has the same predicates as the view so no residual
predicates are required. For each term t of the query,
every term in the view whose base is a superset of
the base of t is also included in the query result. It
follows that, for each tuple in the query, every tuple
in the view that can potentially subsume it appears in
the query result too. In other words, the subsumption
relationships of the view still hold for the query. We
can rewrite the query Q2 as a single scan of the view
V1 combining the recovery predicates for each query
term.

Q2 = πlok,lq,lp,od,otp(σ(∼null(C)∧∼null(O)∧∼null(L))∨

(null(C)∧∼null(O)∧∼null(L))∨

(null(C)∧null(O)∧∼null(L))V1

The following theorem shows under what circum-
stances a query can be answered by a single scan of
the view result, applying residual predicates to indi-
vidual terms respectively.
Theorem 6. Let Q be a query that can be computed
from a view V . The query can be computed from the
view using a single scan if, for each term σ(S) in Q,
the following conditions are satisfied:

1. The view also contains a term σ(S).

2. Every term σ(T ) in V such that S ⊂ T is also
required to compute the query.

3. Residual predicates, if any, reference only tables
in S.

The intuition behind this theorem is that as long as
the subsumption relationships of the view hold also in
the query, the query can be answered by a single scan.

Consider the following query Q3. The only differ-
ence between Q2 and Q3 is that Q3 has a more restric-
tive predicate on table L. In this case, L is the only
table involved in a residual predicate.

Q3 = πlok,lq,lp,od,otp(σlq<50(L) �ok=lok σotp>50(O))
�ck=ock σcnk<10(C)

By Theorem 6, Q3 can be rewritten as

Q3 = πlok,lq,lp,od,otp(σ(∼null(C)∧∼null(O)∧∼null(L)∧lq<50)∨

(null(C)∧∼null(O)∧∼null(L)∧lq<50)∨

(null(C)∧null(O)∧∼null(L)∧lq<50)V1)

The selection predicate can be simplified to (lq <
50)∧((∼null(C)∧∼null(O))∨(null(C)∧∼null(O))∨
(null(C) ∧ null(O))). Note that if Q3 had a residual
predicate on either C or O, the query could not be
computed by simple selections.

7 Aggregation Views

In this section, we turn to outer-join views with aggre-
gation, that is, views defined by a SPOJ expression and
a single group-by operation on top. Aggregation func-
tions are limited to sum and count to keep the views
incrementally maintainable. For aggregation views,
we consider substitute expression composed of selec-
tion, projection, and aggregation, but disallow mini-
mum union.

Aggregation views require three modifications of
the view matching algorithm described in Section 6.
In steps one and two, the conversion to normal form
and checking of containment is applied to the view
and query expressions without aggregation (the SPOJ
part). Step three, checking recovery, changes signifi-
cantly as described in details in Section 7.1 below. An
new step must also be added (after step four) to check
whether further aggregation is needed and possible.

Aggregation views normally contain a count(*)
column because it is needed for incremental main-
tenance. To assist tuple recovery, we assume that
the view also contains a not-null count for each ta-
ble that may be null-extended but does not output
a non-nullable and non-aggregated column. The not-
null count of T is denoted by nn count(T ). In SQL, a
not-null count for a table T is simply count(T.c) where
c is any column of T that is not nullable.

7.1 Tuple Recovery

For aggregation views, the procedure for recovering the
required tuples consists of the following steps.

453



1. Check whether all terms required by the query
have the correct duplication factor.

2. Check whether terms not required by the query
can be eliminated.

3. Construct recovery predicates if required columns
are available in the view output.

Step one is necessary to ensure that sum and count
aggregated columns will be correct. A query term may
be mapped to a view term that includes additional
source tables. These additional joins may change the
duplication factor, that is, if the view term is projected
onto the same tables as the query term, the result may
not contain the correct number of duplicates of each
row. If so, a sum or a count taken from the view would
be incorrect. Two terms are guaranteed to produce
rows with the same number of duplicates if they have
the same hub [8], so this step boils down to computing
the hubs and verifying that they are equal. The notion
of hubs and how to compute the hub of an expression
are explained in [8].

In a non-aggregation view, we recover the terms one
by one but this is not always possible for aggregation
views. Rows originating from different terms may be-
long to the same group. If so, they will be merged
into the aggregates of the group’s result row. Once
the details have been lost through aggregation, it is no
longer possible to tease apart the contributions from
different terms.

For steps two and three above, we first divide the
terms of the view into two sets: terms required by the
query and excess terms, that is, terms not required.
Suppose the view contains an excess term σp(S). We
need to eliminate all tuples of σp(S) but this is not
possible if the aggregation may combine tuples from
σp(S) into the same group as tuples from a required
term. The following theorem states a sufficient condi-
tion, which is the test we apply in step two. The test
is stricter than absolutely necessary but it is simple
and covers most of the cases occurring in practice. A
more general theorem is covered in reference [10].
Theorem 7. Let σp(S) be an excess SPJ term of an
aggregation view. The tuples of σp(S) are guaranteed
to remain in separate groups if the view’s grouping
columns functionally determine a unique key of σp(S).

In step three, recovery predicates are constructed.
Section 6.3 describes how to construct selection pred-
icates that recover all tuples of a term. The predi-
cates can use non-aggregated output columns that are
not nullable and also the not-null count columns men-
tioned above. Theorem 5 states that a (required) term
should be checked against every other term σq(T ) in
the normal form. For aggregation view, it is sufficient
to check it against excess terms only because we do
not extract each required term separately .

7.2 Further Aggregation

The groups formed by the query can be computed from
the groups of the view if the group-by list of the query
is a subset of or equal to the group-by list of the view.

That is, if the view is grouped on expressions A, B,
C then the query can be grouped on any subset of
A, B, C, including the empty set. As shown in [16],
this is stricter than absolutely necessary; it is sufficient
that the grouping expressions of the view functionally
determine the grouping expressions of the query. If
the grouping list of the query functionally determines
the grouping list of the view and vice-versa, no fur-
ther aggregation is necessary. If further aggregation is
needed, we apply the grouping list of the query.
Example 6. Suppose we have the following outer-
join aggregation view. The normal form contains three
terms with patterns SOL, S, and O.
create view revenue by custsupp as
select o custkey, s suppkey, s name,
sum(l quantity*l extendedprice) as rev,
count(l quantity) as cntq, count(*) as cnt

from supplier full outer join
(orders left outer join lineitem

on (l orderkey=o orderkey))
on (s suppkey=l suppkey)

group by o custkey, s suppkey, s name

Can the following query be computed from the view
and, if so, how?
select c nationkey, sum(l quantity*l extendedprice)
from (orders left outer join lineitem
on (o orderkey = l orderkey)) q1, customer

where c custkey = o custkey
group by c nationkey

Clearly the view cannot match the complete query.
However, if we pre-aggregate the result of the left-
outer-join expression by customer key, we obtain a
matchable subquery.
select c nationkey, sum(sm1)
from (select o custkey,

sum(l quantity*l extendedprice) sm1
from orders left outer join lineitem

on (o orderkey = l orderkey)
group by o custkey ) as q1, customer

where c custkey = o custkey
group by c nationkey

The normal form of the inner subquery contains
two terms with patterns OL and O. The OL term of
the query is contained in the SOL term of the view
and with the correct duplication factor (step one) be-
cause Supplier is joined in through an extension join.
The excess S term can be eliminated (step two), be-
cause the required terms both have not-null o custkey
values while the S term is null extended on O and
L. Hence, we can recover the required terms using
the predicate o custkey 	= null. Further grouping on
o custkey is also needed. Combining everything to-
gether produces the following rewrite of the query.
select c nationkey, sum(sr)
from (select o custkey, sum(rev) sr

from revenue by custsupp
where o custkey is not null
group by o custkey) as q1, customer

where o custkey = c custkey
group by c nationkey

454



8 Experimental Results

We ran a series of experiments on Microsoft SQL
Server 2005 Beta2 to evaluate the performance ben-
efit of using an outer join view. We followed our al-
gorithms to detect if an outer join view is useable and
manually rewrote queries to use the view.

The experiments were performed on a workstation
with two 3.20 GHz Xeon processors, 2GB of memory
and three SCSI disks. All queries were against a 1GB
version (SF=1) of TPC-H database.

In the first experiment, we created an outer join
view of the tables Customer, Orders, Lineitem and
ran a set of queries requesting different tuple patterns.
We also list abbreviated normal forms, leaving out de-
tailed predicates and output columns.
V1 : π(σ(C) ⊕ σ(C, O) ⊕ σ(C,O, L))
create view V1 as
select c custkey, c name, c nationkey, o orderkey,
o custkey, o orderdate, o totalprice, l orderkey,
l linenumber, l partkey, l quantity, l extendedprice

from (customer left outer join orders
on (c custkey = o custkey))

left outer join lineitem on (o orderkey=l orderkey
and l extendedprice > 50K)

Q1 : π(σ(C,O, L))
select V1.∗
from customer, orders, lineitem
where c custkey = o custkey
and o orderkey = l orderkey
and l extendedprice > 50K
and c custkey > 100K

Q2 : π(σ(C,O) ⊕ σ(C, O, L))
select V1.∗
from (customer join orders on (c custkey = o custkey

and c custkey > 100K))
left outer join lineitem on (o orderkey=l orderkey

and l extendedprice > 50K)

Q3 : π(σ(C,O) ⊕ σ(C, O, L))
select V1.∗
from (customer join orders on (c custkey = o custkey)
left outer join lineitem on (o orderkey=l orderkey

and l extendedprice > 75K)

Q4 : π(σ(C,O))
select c custkey, c name, c nationkey, o orderkey,
o custkey, o orderdate, o totalprice

from customer, orders
where c custkey = o orderkey

Term COL CO C

Cardinality 1897761 431165 50004

Table 1: View V1 Configuration

Table 1 shows cardinalities of different terms in the
view V1. Q1, Q2 and Q4 can be answered by a sin-
gle scan of V1 with different predicates. Q3 requires
computing minimum union and Q4 requires duplicate
elimination. Their rewrites in SQL are shown below.
Q′

3:

select * from V1

where l extendedprice > 75K
union all
select c custkey, c name, c nationkey, o orderkey,
o custkey, o orderdate, o totalprice
null, null, null, null, null

from V1

where o orderkey is not null
group by c custkey, c name, c nationkey,
o orderkey, o custkey, o orderdate, o totalprice

having sum(case when l extendedprice > 75K
then 1 else 0 end) = 0

Q′
4:

select Q4.∗ from V1

where o custkey is not null
group by Q4.∗

0

5

10

15

20

25

30

35

40

45

Query 1 Query 2 Query 3 Query 4
Ex

ec
ut

io
n 

Ti
m

e 
(s

ec
on

ds
)

No View Outer Join View Full View

Figure 1: Using Outer Join Views
Figure 1 compares the performance of the original

queries and their corresponding rewrites using V1. Q1

can also be answered by a normal view over the three
tables (with the same join predicates of V1). Compared
with using the normal view, there is little overhead of
using the outer join view V1. Using V1 improves query
performance for the first three queries but Q′

4 requires
expensive aggregation and the overhead outweighs the
benefit. This is an example where an outer join view
should not be used even though the query can be com-
puted from the view. As for other types of materialized
views, the decision should be made by the optimizer
in a cost-based fashion.

In the second experiment, we created an aggrega-
tion view to compute total lineitem quantity for every
nation, order status and shipment. The aggregation
query Q5 on the next page can be computed from the
view.

create view V2 as
select c nationkey, o orderstatus, l shipmode,
sum(l quantity) sq, count(*) cn

from (customer left outer join orders
on (c custkey = o custkey))

left outer join lineitem on (o orderkey=l orderkey
and l extendedprice > 50K)

group by c nationkey, o orderstatus, l shipmode

Q5:
select c nationkey, o orderstatus,
sum(l quantity), count(*)

from (customer join orders
on (c custkey = o custkey))

455



left outer join lineitem on (o orderkey=l orderkey
and l extendedprice > 50K)

group by c nationkey, o orderstatus

Q′
5:

select c nationkey, o orderstatus, sum(sq), sum(cn)
from V2

where o orderstatus is not null
group by c nationkey, o orderstatus

View V2 contains 625 rows. Q5 can be answered
from V2 using a selection and further aggregation, as
shown in Q′

5. This reduced the execution time by four
orders of magnitude, from 28.3 sec to 0.001 sec.

9 Related Work

To the best of our knowledge, this paper is the first
to study view matching for outer join views. We build
directly on two earlier papers: Galindo-Legaria’s paper
on join-disjunctive form for SPOJ expressions [5] and
Goldstein and Larson’s paper on view matching [8].
Other related work falls into two categories: work on
outer joins and work on view matching.

Rewrite rules for outer join expressions are impor-
tant for query optimization. This is the topic of a series
of papers by Galindo-Legaria and Rosenthal culminat-
ing in [6], which provides a comprehensive set of sim-
plification and reordering rules for SPOJ expressions.
This work was extended by Bhargava, Goel, and Iyer
in [2, 7] and by Rao et al in [13, 14].

Larson and Yang [9, 17] were the first to describe
a view-matching algorithm for SPJ queries and views.
Chaudhuri et al. [4] published the first paper on incor-
porating the use of materialized views into query op-
timization, in their case, a System-R style optimizer.
Levy, Mendelzon and Sagiv [11] studied the complex-
ity of rewriting SPJ queries using views and proved
that many related problems are NP-complete. Srivas-
tava et al. [15] present a view-matching algorithm for
aggregation queries and views. Chang and Lee [3] rec-
ognized that a view can sometimes be used even if it
contains extra tables. Pottinger and Levy [12] consid-
ered the view-matching problem for conjunctive SPJ
queries and views in the context of data integration
where the requirements are somewhat different.

Oracle was the first commercial database system to
support materialized views [1]. The query rewrite al-
gorithm is briefly described in the Oracle manuals. Za-
harioudakis et al. [18] describe a view-matching algo-
rithm implemented in DB2 UDB. The algorithm per-
forms a bottom-up matching of query graphs but does
not require an exact match.

10 Concluding Remarks

This paper provides the first view matching algorithm
for views and queries containing outer joins (SPOJG
views). By converting expressions into join-disjunctive
normal form, the view matching algorithm is able to
reason about semantic equivalence and subsumption
instead of being based on bottom-up syntactic match-
ing of expressions. The algorithm deals correctly with

SQL bag semantics and exploits not-null constraints,
uniqueness constraints and foreign key constraints.
Experimental results on a few queries show substan-
tial improvements in query performance, especially for
aggregation queries.

Efficient incremental update of SPOJG views is an
important issue. The join-disjunctive normal form is
very helpful here because it makes it possible to de-
tect SPJ terms that are unaffected by an update. Our
results on incremental update will be reported in a
separate paper.

References
[1] R. G. Bello, K. Dias, A. Downing, J. J. Feenan, Jr., J. L.

Finnerty, W. D. Norcott, H. Sun, A. Witkowski, and M. Zi-
auddin. Materialized views in Oracle. VLDB, 1998.

[2] G. Bhargava, P. Goel, and B. R. Iyer. Hypergraph based
reorderings of outer join queries with complex predicates.
SIGMOD, 1995.

[3] J.-Y. Chang and S.-G. Lee. Query reformulation using ma-
terialized views in data warehouse environment. DOLAP,
1998.

[4] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views.
ICDE, 1995.

[5] C. Galindo-Legaria. Outerjoins as disjunctions. SIGMOD,
1994.

[6] C. Galindo-Legaria and A. Rosenthal. Outerjoin simplifica-
tion and reordering for query optimization. TODS, 22(1),
1997.

[7] P. Goel and B. R. Iyer. Sql query optimization: Reordering
for a general class of queries. SIGMOD, 1996.

[8] J. Goldstein and P.-Å. Larson. Optimizing queries using
materialized views: A practical, scalable solution. SIG-
MOD, 2001.

[9] P.-Å. Larson and H. Z. Yang. Computing queries from
derived relations. VLDB, 1985.

[10] P.-Å. Larson and J. Zhou. View matching for outer-join
views. Technical report, Microsoft Resarch, MSR-TR-2005-
78, 2005.

[11] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava.
Rewriting aggregate queries using views. PODS, 1995.

[12] R. Pottinger and A. Y. Levy. A scalable algorithm for
answering queries using views. VLDB, 2000.

[13] J. Rao, B. G. Lindsay, G. M. Lohman, H. Pirahesh, and
D. E. Simmen. Using eels, a practical approach to outerjoin
and antijoin reordering. ICDE, 2001.

[14] J. Rao, H. Pirahesh, and C. Zuzarte. Canonical abstraction
for outerjoin optimization. SIGMOD, 2004.

[15] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy.
Answering queries with aggregation using views. VLDB,
1996.

[16] W. P. Yan and P.-Å. Larson. Eager aggregation and lazy
aggregation. VLDB, 1995.

[17] H. Z. Yang and P.-Å. Larson. Query transformation for
PSJ-queries. VLDB, 1987.

[18] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and
M. Urata. Answering complex sql queries using automatic
summary tables. SIGMOD, 2000.

456


