
Supporting RFID-based Item Tracking Applications in Oracle

DBMS Using a Bitmap Datatype

Ying Hu Seema Sundara Timothy Chorma Jagannathan Srinivasan

Oracle
One Oracle Drive

Nashua, NH 03062
USA

(ying.hu, seema.sundara, timothy.chorma, jagannathan.srinivasan}@oracle.com

Abstract
Radio Frequency Identification (RFID) based
item-level tracking holds the promise of
revolutionizing supply-chain, retail store, and
asset management applications. However, the
high volume of data generated by item-level
tracking poses challenges to the applications as
well as to backend databases. This paper
addresses the problem of efficiently modeling
identifier collections occurring in RFID-based
item-tracking applications and databases.
Specifically, 1) a bitmap datatype is introduced
to compactly represent a collection of identifiers,
and 2) a set of bitmap access and manipulation
routines is provided. The proposed bitmap
datatype can model a collection of generic
identifiers, including 64-bit, 96-bit, and 256-bit
Electronic Product Codes™ (EPCs), and it can
be used to represent both transient and persistent
identifier collections. Persistent identifier
collections can be stored in a table as a column
of bitmap datatype. An efficient primary B+-
tree–based storage scheme is proposed for such
columns. The bitmap datatype can be easily
implemented by leveraging the DBMS bitmap
index implementation, which typically manages
bitmaps of table row identifiers. This paper
presents the bitmap datatype and related
functionality, illustrates its usage in supporting

RFID-based item-tracking applications, describes
its prototype implementation in Oracle DBMS,
and gives a performance study that characterizes
the benefits of the bitmap datatype.

1. Introduction
Radio Frequency Identification [14] is emerging as key
technology for a wide-range of applications, including
supply chain, retail store, and asset management. RFID
tags can be associated with objects, such as pallets, cases,
and even individual items. By placing RFID tag readers
at various locations, one can track the movement of
objects through supply chain networks, namely, from
manufacturers to retailers, then to consumers. Such item-
level tracking can greatly enhance the efficiency of
business operations. However, it can also result in data
explosion, and hence, efficient means are needed to model
such data.

This paper addresses this problem by proposing a
bitmap datatype to efficiently model different collections
of identifiers that typically occur in item-tracking
applications. A key observation is that although individual
items need to be tracked, they can be tracked more
efficiently by tracking the groups to which they belong.
For instance, a group could be made up of items in the
same proximity (e.g., on the same shelf, or in the same
shipment). Similarly, items could belong to a group based
on a shared property (e.g., items of an identical product,
or manufacturer, or items with the same expiration date).

One alternative to tracking a group of identifiers is to
maintain an item count for the group, where the count can
be viewed as a transformation obtained from an identifier
collection. However, there is a loss of information during
the transformation that makes the approach unsuitable for
the RFID domain, especially when individual items need
to be tracked. For example, in a product recall application,
the exact set of items needs to be identified, as opposed to

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1140

the count. For tracking such collections, the paper
proposes the following:
• a bitmap datatype that compactly1 represents a

collection of RFIDs, that is, their EPCs, and
• the use of bitmap operations to access and manipulate

such collections. These include conversion operations
(EPCs to bitmap, bitmap to count, bitmap to EPCs),
logical operations (AND, OR, MINUS, XOR),
membership testing, bitmap maintenance, and
comparison operations.

By using the bitmap datatype, and its associated
access and manipulation routines, efficient item-tracking
applications can be built.

We propose the following scheme for inventory
tracking. Inventories are maintained at periodic
checkpoints using bitmaps. A bitmap datatype instance is
used to represent the items present in a particular group, at
each checkpoint. A group could consist of a single
product, or a collection of products that share a property.

A Motivating Example: Consider a product recall
application, where products need to be recalled from
various retail stores because of a defect. Consider a table
that maintains the product inventory for retail stores, per
our inventory tracking scheme. In the absence of the
bitmap datatype, a list of EPCs needs to be maintained.
The inventory for a product at various retail stores can be
represented using a collection type as shown in Table 1.

Table 1: Product_Inventory with EPC Collections

product_id store_id time item_collection
epc11
epc12

p1 s1 t1

…
epc21
epc22

p1 s1 t2

…
… … … …

epck1
epck2

p1 s2 t1

…
… … … …

Alternately, the EPC list can be represented using a
bitmap datatype as shown in Table 2, which can lead to
significant storage savings, as we will show.

Table 2: Product_ Inventory with EPC Bitmaps

product_id store_id time item_bmap
p1 s1 t1 bmap1
p1 s1 t2 bmap2
… … … …
p1 s2 t1 bmapk
… … … …

Furthermore, bitmap operations can be used to
perform interesting queries. For example, the following
query can be used to identify the stores that currently
have recalled items:

1 The bitmap itself is compressed using the byte aligned data

compression scheme [4].

SELECT store_id
FROM Product_Inventory
WHERE bmap2Count(bmapAnd(item_bmap,
 epc2Bmap(<recall_items>))) > 0
 AND product_id = <recall_product_id>
 AND time = <current_date>;
Thus, a bitmap AND is sufficient to identify the

recalled items from the shelves.
The key benefits of introducing a bitmap datatype are:

• It compactly represents a collection of identifiers and
the transformation is loss-less, i.e., one can always
extract individual identifiers belonging to the
collection, and

• The typical operations on a pair of collections can
simply be performed using bitmap operations on the
corresponding bitmaps.

The bitmap datatype can be used efficiently to model
both transient and persistent identifier collections. The
persistent identifier collections can be stored in a column
of bitmap datatype. For such bitmap columns, a primary
B+-tree based storage scheme is proposed, which is
compact in storage and provides efficient access to the
internal bitmap structure.

We have implemented a prototype of the bitmap
datatype in Oracle DBMS using the database's type
extensibility mechanism. The implementation reuses
much of the underlying database bitmap index code,
which creates and manipulates compressed bitmaps for
row identifier collections. Performance experiments
conducted with an example data set, using collections of
sizes ranging from 10 to 100,000, implemented as
compressed bitmaps, show storage savings on the order of
2 to 8 times over native collections. The query
performance on collections modelled as bitmaps is the
same or better than collections stored natively. The
bitmap datatype based configuration shows performance
gains for queries on collections of size > 1000. These
gains are in the range of 10% to 1280%.

Frequent incremental maintenance on bitmap datatype
columns is costly. Hence, the bitmap datatype is more
appropriate for scenarios requiring initial bulk-load
followed by batch updates at periodic intervals. For
applications requiring frequent incremental maintenance,
the following hybrid variation of the inventory tracking
scheme is proposed. The inventories are maintained at
periodic checkpoints using bitmaps. For changes
occurring between checkpoints, an item-level table is
maintained. Queries for the specified time period are
answered by merging the latest checkpoint bitmap with
the corresponding duration's item-level data. Section 3.4
briefly describes this hybrid inventory-tracking scheme.

Supporting the bitmap datatype for modelling EPC
collections would allow developing efficient item-
tracking applications. Also, this functionality opens up the
possibility of building interesting RFID-based analytics
for comprehensive supply-chain management.

The bitmap datatype concept is generic and can be
used in any large-scale application. However, our focus is

1141

on the bitmap representation of EPCs and its potential use
in addressing the challenges faced in RFID applications.

The key contributions of the paper are:
• A bitmap datatype in a DBMS, which can be used to

model both transient as well as persistent identifier
collections.

• The use of a bitmap datatype and associated
operations to support RFID-based item tracking
applications.

• An extensible scheme for the bitmap datatype, which
allows creation of bitmaps for classes of identifiers.
Currently, the bitmap datatype can be used to
represent 64-bit, 96-bit, and 256-bit EPC collections.

• An efficient primary B+-tree based storage and
access mechanism for a bitmap datatype column.

• An implementation prototype of the bitmap datatype
in Oracle DBMS, using underlying bitmap index
code for table row identifiers, and its performance
characterization.

1.1 Related Work

There are quite a few papers describing bitmap indexes,
their usage, and performance characteristics [4, 5, 6, 7, 8,
12]. Also, several database systems including IBM DB2,
Oracle, and Sybase support bitmap indexes. However,
none of the systems support a bitmap datatype. Worth
noting is MySQL [13], which has a notion of a set type.
However, the set type is used to represent enumerated sets
of small sizes (64 values). It does not address the issue of
modelling a set or collection of identifiers belonging to a
large sequence, as a bitmap.

Both C++ and Java programming languages support a
bitset class, which can be used to represent a set of bits. A
set of member functions and operations are also supported
on this class. Unlike the bitmap datatype, which can be
used to represent both transient and persistent object
collections, the bitset class is meant for representing only
transient objects. Also, the bitset class does not address
the issue of compactly representing a bitset object by
compressing the sequences of 1s and 0s, and supporting
operations on the compressed objects.

With regard to RFID-based item tracking applications,
interesting usage scenarios have been considered ([9, 10,
11]). However, none of these applications have
considered using a bitmap datatype.

1.2 Outline of Paper

Section 2 describes the bitmap datatype and associated
functionality. Section 3 illustrates the usefulness of the
bitmap datatype by considering several applications.
Section 4 presents a prototype implementation in Oracle
DBMS. Section 5 presents performance experiments and
Section 6 gives conclusion and some future work.

2. Key Concepts
This section gives an overview of EPCs and discusses the
bitmap datatype and related functionality.

2.1 EPC Types

The Electronic Product Code™ (EPC) [1, 2, 3] is the next
generation of product identification scheme. The EPC is a
simple naming scheme that uniquely identifies objects
(items, cases, pallets, locations, etc.) in the supply chain.
The EPC can be used to express a wide variety of
different, existing numbering systems, like the EAN.UCC
System Keys, Unique Identifiers, Vehicle Identification
Number, and other numbering systems.

Like many current numbering schemes used in
commerce, the EPC is divided into numbers that identify
the manufacturer and product type. But, the EPC uses an
extra set of digits, a serial number, to identify unique
items within each group. An EPC number primarily
contains:
1. Header, which identifies the length, type, structure,

version and generation of EPC.
2. Manager Number, which identifies an organizational

entity. The organization is responsible for
maintaining unique numbers in the next two fields.

3. Object Class, which identifies a “class”, or type of
thing.

4. Serial Number, which is the specific instance of the
Object Class being tagged. The managing entity is
responsible for assigning unique, non-repeating serial
numbers for every instance within each object class.

For our discussions in this paper, we refer to the first 3
fields (header, manager number and object class)
collectively as the epc_prefix, since they identify a given
product by a given manufacturer. The serial number
portion of EPC is referred to as epc_suffix since it
identifies the unique instance of an item within its product
family.

2.2 Bitmap Datatype

A new epc_bitmap_segment type is defined to represent a
collection of electronic product codes (EPCs), which
share a common epc_prefix.

 CREATE TYPE epc_bitmap_segment
 (epc_length NUMBER,
 epc_suffix_length NUMBER,
 epc_prefix RAW,
 epc_suffix_start RAW,
 epc_suffix_end RAW,
 epc_suffix_bitmap RAW
);
The epc_length defines the total number of bits in the

EPC, epc_suffix_length defines the number of bits in the
EPC suffix, epc_prefix is a raw that holds the common
EPC prefix part, (header, manager number and object
class), epc_suffix_start is a raw that holds the minimal
EPC suffix in the epc_bitmap_segment, epc_suffix_end is
a raw that holds the maximal EPC suffix in the

1142

epc_bitmap_segment and epc_suffix_bitmap is a raw that
holds the compressed representation of bitmap
corresponding to the EPC suffixes (similar to the row
identifiers’ compressed bitmap as described in [4,5]), all
of which are presumed to have a common EPC prefix.

This type can be used to represent different classes of
EPCs (i.e., 64 bit, 96 bit and 256 bit). Since the individual
attributes within the epc_bitmap_segment type capture
EPC type specification information (EPC length, EPC
prefix length, EPC suffix length etc.), the
epc_bitmap_segment type can represent each of these
EPC classes. Furthermore, even within a given EPC class,
there are a number of different EPC formats (e.g., Global
Location Number-64, Global returnable Asset Identifier-
64 etc.), which vary in prefix/suffix length, etc. By
breaking up the EPC specification into epc_prefix,
epc_suffix_start and epc_suffix_end, these varying
formats within the same EPC class can also be easily
stored, and distinguished from one another, by the
epc_bitmap_segment type.

The epc_bitmap_segment type defined above is used
to model a collection of EPCs that occur close together,
i.e., they share the EPC prefix and their suffixes are close
together. Thus, the epc_bitmap_segment represents a
bitmap segment. To model a collection of EPCs that can
potentially be arbitrarily dispersed, a multiset type,
epc_bitmap is defined that can hold collections of bitmap
segments (see Figure 1).
 epc_bitmap: multiset of epc_bitmap_segment type

Figure 1: EPC Collection Datatype and Bitmap
Datatype (normally, n >> m)

With the epc_bitmap datatype2 defined, it can now be
used either as a transient type in applications or as a
persistent type in the database by defining a column of
epc_bitmap that can hold multiset values (i.e. nested table
type in Oracle).

For operations that take in two epc_bitmaps, their
epc_length is first compared to make sure that they belong
to the same class (i.e. 64 bit, 96 bit etc.) Then, to further

2 For the purposes of brevity, epc_bitmap datatype is referred as

epc_bitmap later.

ascertain that they are also defined using the same format,
their prefix lengths are compared. Operations across EPC
classes, or even across different EPC formats in the same
class are not supported.

2.3 Operations on Bitmap Datatype

A set of commonly used bitmap operations is defined for
the epc_bitmap. The set of operations can be broadly
classified into the following categories:
�� Conversion Operations: The epc2Bmap and

bmap2Epc functions allow conversion of a set of
EPCs into an epc_bitmap and vice versa. They are
useful during storage of a set of EPCs in the database
as a set of epc_bitmap_segments, and during the
subsequent extraction of the EPCs from the database.
The bmap2Count operation returns a count of the bits
that are set in a given epc_bitmap. It can be used to
determine the total number of items present in an
EPC collection at a given time.

�� Pairwise Logical Operations: These consist of the
bmapAnd, bmapOr, bmapMinus, bmapXor functions.
Given the shelf level analytics application in Section
3, these operations help in determining the changes
on a shelf between two time instances i.e. what items
are still on the shelf between time t1 and t2
(bmapAnd), and what items have been
added/removed from the shelf between time t1 and t2
(bmapMinus).

�� Maintenance Operations: Since the epc_bitmap that
is being defined can occur as a persistent column in a
database table, the column values need to be
incrementally maintained whenever a DML is
performed on the base table. The bmapInsert and
bmapDelete functions take in an epc_bitmap and a
given set of EPCs and construct a new EPC bitmap
by inserting/deleting the given set of EPCs into/from
the original epc_bitmap.

�� Membership Testing Operation: The bmapExists
function can be used to detect the presence/absence
of a specific item in a given epc_bitmap.

�� Comparison Operation: A bmapEqual function is
defined to compare two epc_bitmaps for equality. An
equality check on the epc_bitmaps generated at the
distribution center and the receiving warehouse
ensures that all the items that were shipped are
received.

3. Applications
This section discusses some RFID applications that can
benefit from the proposed epc_bitmap. By default, the
epc_bitmap is suitable for applications that maintain
summary information at periodic intervals. With this
assumption, the use of epc_bitmap in certain application
scenarios is discussed below. These applications can be
broadly categorized as follows:

epc_bitmap_segment_1

epc_bitmap_segment_2

…

epc_bitmap_segment_m

64 20 0x456789ABCDE0 0x012345 0x0789AB bitmap

epc_1

epc_2

…

epc_n

length suffix_length prefix suffix_start suffix_end

epc_bitmap_segment_i

EPC Collection Type

EPC Bitmap Type

1143

• Retail Store Management: Shelf Analytics [9], Theft
Detection [10], and managing Item Returns.

• Supply Chain Management: Managing the recall of
defective products [11].

• Asset Management: Managing and tracking
information for a collection of assets.

Some of these applications may need frequent
incremental maintenance. For such applications, a hybrid
scheme can be used that employs the epc_bitmap in
conjunction with a traditional item-level tracking table.
This scheme is discussed in Section 3.4.

Another interesting application of epc_bitmap is to
build auxiliary structures that can speed up queries
involving epc_bitmap column predicates. This is
discussed in Section 3.5.

3.1 Retail Store Management

The examples in this section take into account how RFID-
tagged items are managed in a retail store.

3.1.1 Shelf Analytics

A retail storeowner is interested in tracking the items on
the store shelves to monitor the purchase, theft and stock
maintenance of items.

 Consider a table that holds inventory for a store as a
collection of shelf-specific item information, as shown in
Table 3. We further assume that a RFID reader on the
shelf sends an inventory of all the items present on the
shelf at regular intervals. The EPCs of all the items
present is then converted into an epc_bitmap and stored in
our representative table.

Table 3: Shelf_Inventory

shelf_id Time item_bmap
sid1 t1 bmap1
sid1 t2 bmap2
… … …
sid2 t1 bmapk
… … …

To determine the items added to a given shelf between

time t1 and t2, one could issue the following query:
SELECT bmap2Epc(bmapMinus(s2.item_bmap,

 s1.item_bmap))
FROM Shelf_Inventory s1, Shelf_Inventory s2
WHERE s1.shelf_id = <sid1> AND
 s1.shelf_id = s2.shelf_id AND
 s1.time = <t1> AND s2.time = <t2>;
Similarly, reversing the order of arguments to the

bmapMinus function, one can determine the number of
items removed from the shelf. In addition, one can track
the count of items by using the bmap2Count function. To
determine the count of items on a shelf at a specific point
in time, one could issue the following query:

SELECT bmap2Count(item_bmap)
FROM Shelf_Inventory
WHERE shelf_id = <sid1> AND time = <t1>;

We can further extend the store model to include
RFID readers in the stock room, cash registers etc. Now,

if an item is missing, we have a record of where the stolen
item was at all times before it was stolen, which can help
in determining the culprit. For example, to determine on
which shelf and what time a particular item (say epc1)
existed, the following query can be issued:

SELECT shelf_id, time
FROM Shelf_Inventory
WHERE bmapExists(item_bmap, <epc1>);

3.1.2 Item Returns

Consider the problem of item returns, which retail stores
and consumers face today, specifically without receipts.
Even with a receipt, with the lack of a mechanism to
uniquely identify an item, retail stores can never be sure
that the item being returned was actually purchased from
the store it is being returned to.

With the usage of epc_bitmaps, this problem can
easily be addressed. Consider a retail store that keeps
department inventory as shown in Table 4.

Also, assume that the store has a return policy that
allows items to be returned within a period of 90 days
from when it was purchased. Now, when an item is
brought back to the store for return, a query can be issued
against the department inventory table to see if the EPC of
the item to be returned (epc1) was ever present in the
store during the last 90 days.

SELECT 1 FROM Dept_Inventory
WHERE bmapExists(item_bmap, <epc1>)
AND dept_id = <did>
AND time > (<current_date> - 90);
If the item is not found, it implies that either the item

was bought more than 90 days ago and thus is no longer
eligible for a return, or the item never existed in the store
and wasn’t bought from it.

Table 4: Dept_Inventory

dept_id time item_bmap
did1 t1 bmap1
did1 t2 bmap2
… … …
did2 t1 bmapk
… … …

This can not only reduce the return fraud faced by
retail stores, but also benefit the customer who genuinely
wants to return purchases but has lost the receipt. Since
the retail stores can do the lookup based on EPCs, a
receipt is no longer the only proof of purchase.

3.2 Supply Chain Management

The epc_bitmap can be used for supply chain
management, which typically involves tracking items
across manufacturers, distribution warehouses, and retail
stores. RFIDs, with their ability to uniquely identify a
particular item, are also being considered as a viable
solution for product recalls [11].

A key factor during product recalls is the need to
determine quickly whether products should be recalled,
then rapidly identify recalled products and remove them

1144

from the field. To gain some idea of the potential benefits,
imagine a large organization forced to launch a mass
recall due to product contamination or tampering. The
capability to automatically identify which batch each
individual item came from would minimize the cost of
withdrawing the product and of conducting the recall, and
could potentially allow companies to be far more precise
in the withdrawal process.

Storing a set of EPCs as an epc_bitmap allows
efficient operation on the sets. As “A Motivating
Example” illustrates in section 1, the epc_bitmap and its
operations can be very useful to find out which stores
currently have recalled items.

3.3 Asset Management

RFID technology is also suitable for tracking assets (such
as confidential documents, laptops, containers of
hazardous material, equipments, and valuables) within an
organization. In addition, they can be used for building
rental item applications such as for libraries and video
stores.

For example, one can also maintain epc_bitmaps
corresponding to collection of items that share a certain
property. Let an additional table be maintained that keeps
track of a property pertaining to book collections as
shown in Table 5.

Table 5: Property_Inventory

Fiction NonFiction Adventure Romance …
bmap1 bmap2 bmap3 bmap4 …

To determine the shelves where the books with

property Adventure and Romance, are currently present
in the library, one can issue the following query:

SELECT s.shelf_id
FROM Shelf_Inventory s
WHERE bmap2Count(
 bmapAnd(s.item_bmap,
 SELECT bmapAnd(p.Adventure,

 p.Romance)
 FROM Propery_Inventory p)) > 0;
 AND s.time=<current_date>;

3.4 Hybrid Scheme for Item Tracking

In some RFID applications, individual item-level
information can be maintained using an item-level table.
For example, the following table can be used to keep track
of items being inserted (‘I’) or deleted (‘D’) from a shelf.

Table 6: Shelf Inventory Item Events

shelf_id time item operation
sid1 t1 epc1 ‘I’
sid1 t2 epc2 ‘D’
… … … …
sid2 t1 epck …
… … … …

Although this table allows for updates to be done very

frequently, based on the events (insertion and deletion of

items), it is not suitable for performing queries that
require consolidation of information. For example, to
determine the items present on a shelf at a given time, a
table scan is required that consolidates the information by
scanning over all rows holding events for the shelf. For
such queries, pre-computing items present on the shelf at
periodic checkpoints and maintaining them in an
epc_bitmap-based table (as in Table 3) would be
appropriate. When the current data needs to be archived,
applications can choose to generate epc_bitmap based
information with a finer (or coarser) granularity, or an
automatic tuning algorithm can generate the epc_bitmaps,
optimally based on the query time and data storage and
other variants for the applications.

Thus, a hybrid scheme (see Figure 2) can be
implemented, which uses the two tables together to
process user queries. The item-level table only tracks the
item insertion/removal events, whereas the epc_bitmap-
based table keeps consolidated information at periodic
checkpoints. The starting checkpoint epc_bitmap entry is
merged with the corresponding duration’s item level data
to answer queries for a specified time period.

Figure 2: Hybrid Scheme
For historical data, either the same configuration can

be retained, or one can maintain only the epc_bitmap-
based summary information of appropriate granularity.

However, the epc_bitmap might not be a good
candidate for some applications (such as automatic
baggage handling, postal mail dispatch), because unlike
the retail sector, the items in these applications do not
lend themselves well to grouping based on a common
property, thus precluding the use of an epc_bitmap for
these cases.

3.5 Epc_bitmap-based Auxiliary Structures

Epc_bitmap can also be used to build auxiliary
structures on tables with epc_bitmap columns. The basic
idea is to create a summary bitmap by performing an
epc_bitmap operation (OR, AND) on a collection of
epc_bitmaps. Subsequently, the summary bitmap can be
used to derive information about the collection of
epc_bitmaps. For example, for a summary bitmap sbmap
created using OR operation on {bmap1, …, bmapk}:

 bmapExists(sbmap)
 → ∃ i ∈ 1…k: bmapExists(bmapi)
 ¬(bmapExists(sbmap)
 → ∀ i ∈ 1…k: ¬ bmapExists(bmapi)

Periodic Checkpoints (maintained as bitmaps)

Item Insertions & Deletions (maintained as events)

CK_T0 CK_T1 CK_T2

t0 t1 t2

1145

Thus, indexing structures can be built which exploit
these properties of summary bitmaps. Specifically, a
Summary Bitmap Table consisting of <scalar column
interval, summary bitmap, rid list>, can be
created, where each row holds an OR-based summary
bitmap for the scalar column interval and the
corresponding set of row identifiers. A query involving
bmapExists() predicate ANDed with a predicate on
the scalar column can now be processed efficiently. For
example, the predicate bmapExists(item_bmap,

<epc1>) AND time > <t1> can be processed by
checking for the existence of <epc1> in summary bitmaps
corresponding to time > t1 and only for those that evaluate
to true, the corresponding set of bitmaps are searched.

Similarly, a Summary Bitmap tree can be created by
constructing summary bitmaps recursively in a bottom-up
manner, from leaf nodes to parent nodes. Use of summary
bitmap trees for processing bmapExists() queries is
discussed in Section 4.

4. Implementing the Epc_bitmap in Oracle
DBMS
This section discusses the implementation of an
epc_bitmap in Oracle DBMS that supports bitmap
indexes.

4.1 Epc_Bitmap and Associated Operations

Oracle DBMS bitmap index implementation manages
compressed bitmaps for a collection of table row
identifiers. The set of row identifiers are converted into
bitmaps using the equality-encoding scheme. Also, Oracle
DBMS allows for efficient compression [4, 5] of these
bitmaps and supports performing bitmap operations on the
compressed format. The DBMS bitmap index code is
modified to take in EPC values instead of table row
identifiers to support epc_bitmap functionality. Since the
EPC is already a unique identifier, its value is directly
mapped to a bit position (or bit[epc_suffix_current-
epc_suffix_start]=1).

Furthermore, the existing code for supporting table
row identifier based bitmaps is based on the fact that all
the rowids belong to the same table or table partition. This
concept was extended to support the notion of
epc_prefixes which was used to group (or segment)
bitmaps with a common prefix together into smaller
collections.

Epc_bitmap Format: To support an arbitrarily
dispersed set of EPCs, epc_bitmap is defined as a multiset
type (or nested table type in Oracle) that can hold
collections of epc_bitmap_segments, as described in
section 2.2. Within each of the epc_bitmap_segments, the
shared information (such as epc_length,…) is stored as
type attributes. The epc_suffix_bitmap attribute, of type
RAW, stores the compressed bitmap representation of a
collection of electronic product codes sharing the same

prefix (as shown in Figure 1). In Oracle DBMS,
maximum size of RAW is 2000 bytes. Thus, a collection
of EPCs is grouped into different epc_bitmap_segments,
either because their epc_prefixes are different, or because
the previous epc_suffix_bitmap could not hold any more
EPCs.

The compression of the bitmap is achieved using the
byte-aligned bitmap coding scheme [4]. The bitmap is
compressed by storing it as sequence of atomic units or
bitmap atoms. A bitmap atom holds one control byte (for
describing how an atom is organized), zero or more than
zero gap bytes (for specifying the distance from the
previous atom), and zero or more than zero map bytes (for
specifying how the bits are set in the bytes). The detailed
compression scheme is described in [4].

 Conversion Routines: The epc2Bmap routine
generates the epc_bitmap. It determines the format
information, namely the type of EPC (64-bit, or 96-bit, or
256-bit), and the segmentation information (prefix and
suffix lengths) from the EPC itself. Based on this
information, individual epc_bitmap_segments are
constructed by segmenting the whole collection of EPCs
into smaller collections of EPCs sharing the same
epc_prefix. The common information (epc_length,…) is
then extracted and the epc_suffixes are converted into a
compressed bitmap - epc_suffix_bitmap, using the
modified bitmap index code.

The prototype implementation currently handles a
homogeneous collection of EPCs, that is, collections of all
64-bit EPCs, or 96-bit EPCs, etc. However, it can be
extended to handle heterogeneous collections of EPCs.
This can be done by taking the epc_length and the
epc_suffix_length into account during the epc_bitmap
construction and in the processing of various bitmap
operations.

Both bmap2Epc and bmap2Count routines take an
epc_bitmap as input. The bmap2Epc constructs the
original collection of EPCs, by first generating a set of
epc_suffixes from each bitmap atom of the compressed
bitmap - epc_suffix_bitmap in each of epc_bitmap_
segments, and combining each pair of (epc_prefix and
epc_suffix) into each EPC, and then repeating the above
for the next epc_bitmap_segment until the last
epc_bitmap_segment. The bmap2Count routine calculates
the count of bits set in each bitmap atom of the
epc_suffix_bitmap for each of epc_bitmap_segments and
returns the sum of the counts.

Other Routines: Because epc_suffix_bitmap is a
compressed bitmap representation, the other epc_bitmap
routines corresponding to AND, OR, etc. are implemented
to take in or return a compressed bitmap format. These
routines are more efficient, compared with the embedded
bitwise operators that take in and return an uncompressed
bitmap format because compressed bitmaps consume
much less memory and disk space.Moreover, all bitwise
operations are done at the bitmap atom level, i.e. only the
interesting bitmap atoms are used, because each bitmap

1146

atom holds the gap information (or position information)
that helps determine the interaction between two bitmap
atoms from corresponding epc_bitmaps (which obviously
must share the same epc_prefix).

4.2 Transient and Persistent Epc_bitmap

Both transient and persistent epc_bitmap can be created.
However, persistent epc_bitmap instances require special
handling, as described below.

A persistent epc_bitmap is stored in an epc_bitmap
column. The epc_bitmap_segments corresponding to an
epc_bitmap column are stored together in a separate
primary B+-tree structure (i.e. an index-organized table in
Oracle [15]), with the key columns: nested_table_id,
epc_length, epc_suffix_length, epc_prefix,
epc_suffix_start, and non-key columns: epc_suffix_end,
epc_suffix_bitmap (see Figure 3). This allows for
• efficient access to epc_bitmap_segments belonging to

a row since nested_table_id (shown as
epcbmp_id_1, …, epcbmp_id_n in Figure 3) is
part of the primary key columns.

• utilization of the prefix key compression option on
the primary B+-tree to get compact storage.

• preservation of the table row clustering property, i.e.,
the epc_bitmap column is stored outside of the table,
and hence does not impact the table storage
characteristics.

• efficient piece-wise maintenance of
epc_bitmap_segments, i.e. only the relevant
epc_bitmap_segments (instead of all
epc_bitmap_segments) need to be maintained during
DML, like LOB piece-wise operations .

data1 data2 data3 epc_bitmap
… … … nest_table_id_1
… … … nest_table_id_2
… … … …
… … … nest_table_id_n

nest_table
_id_i

Epc_
length

epc_
suffix_length

epc_
prefix

epc_
suffix_start

Figure 3: Persistent Epc_bitmap Storage Scheme

4.3 Bulk-load/Incremental Maintenance of a Table
with an Epc_bitmap Column

Currently, both bulk-load and incremental maintenance is
done at the row level by transforming the input EPC
collections into a corresponding set of
epc_bitmap_segments (using epc2bmap routine) and
storing the resulting <nested_table_id, epc_length,
epc_suffix_length, epc_prefix, epc_suffix_start,
epc_suffix_end, epc_suffix_bitmap> in the associated
primary B+-tree. Similarly, the delete operation results in
the deletion of the corresponding set of
epc_bitmap_segments, and update is implemented as a
delete operation followed by insert.

4.4 Query Processing on a Table with an Epc_bitmap
Column

Currently, epc_bitmap operations are evaluated in a row-
by-row manner by executing the corresponding function
on the epc_bitmap instance. If an epc_bitmap operation is
used as predicate, for example bmap2Count(bmap_col)
> 5, a functional B-tree index, which is a B+-tree index
built on the value of bmap2Count(bmap_col), can be
defined to speed up the processing.

Other special index structures for certain epc_bitmap
operations are also conceivable. The following section
discusses these ideas. These ideas have not been
implemented in the current version and are part of our
future work.

4.5 Speeding up Queries Involving Epc_bitmap
Column Predicates

As discussed in Section 4.4, epc_bitmap operations are
evaluated in a row-by-row manner. However, by creating
specialized index structures, one can speed up queries
involving predicates on epc_bitmap columns.

Consider this query involving the bmapExists
operator:

SELECT 1 FROM Shelf_Inventory
WHERE bmapExists(<item_bmap>, <epc1>);

To efficiently process such a query, one could build a
summary bitmap tree structure, which is constructed in a
bottom-up manner as follows: each leaf node holds a link
(row identifier) to one index column epc_bitmap. The
parent level epc_bitmaps are constructed by summarizing
over the child node epc_bitmaps. The summarization
itself is performed as an epc_bitmap operation (bmapOr
in this case). Thus, the root and branch nodes hold links to
their children, as well as to the summary epc_bitmap as
shown in Figure 4.

To process queries with predicates involving
bmapExists, the following depth-first search algorithm
can be used:

epc_suffix_end epc_suffix_bitmap

primary
B+-tree
structure

primary key columns

non-key columns

1147

DFS(X, epc):
X: a node in the tree index;
epc: a given epc;
bmp(X): the epc_bitmap associated with node
 X;

if (bmapExists(bmp(X), epc)== TRUE)
{ if (X == leaf node)
 report bmp(X);
 else
 for each child node V of X do
 DFS(V, epc);
}

Figure 4: A Summary Bitmap Tree Structure to
Speed up the bmapExists Operation

It takes O(m*logmN) in the worst case (m: fan-out, N:

number of rows) to get the first epc_bitmap candidate, or
O(1) to return no candidate. Maintaining the index is also
efficient when inserting (or deleting) a row with an
epc_bitmap column into (or from) a table. Only parent
branch nodes and root nodes need to be updated, using the
bmapOr operation for inserts and the bmapMinus
operation for deletes (or bmapXor for both operations), all
of which are very fast. Occasionally insert operations can
cause node split requiring rebuilding of related parent
nodes, similar to split operation in a B+-tree index.

5. Performance Evaluation
These performance experiments compare the performance
of storing an EPC collection as an epc_bitmap column vs.
as a collection column. The analysis and experiments
conducted fall into the following categories:
• Storage Comparison: These experiments characterize

the storage benefits of the epc_bitmap.
• Performance of Bulk-load Operations: These

experiments characterize the performance of loading
data for the two configurations.

• Performance of Queries involving Operations on
Collections: Queries involving COUNT, EXISTS,
MINUS, are compared for the two configurations.
Performance of logical (AND, OR) operations is
similar to that of MINUS operation, and hence is not
included in this paper.

5.1 Experimental Setup

The experiments are performed in Oracle 10g Release 1
DBMS, and SunOS 5.8, installed on an Ultra-60 Sparc
Workstation with two UltraSparc-II/360 MHz CPUs and
1024 MB of main memory. The database is configured to
use 128 MB database cache with a 8KB block size.

Two tables, one for the EPC collection datatype, and
the other for epc_bitmap, are defined as follows:

CREATE TABLE epc_coll
(time TIMESTAMP PRIMARY KEY,
 epcs epc_table)

where epc_table is an index-organized nested table
type with elements of the form (epc_value), which
holds individual EPCs. The primary key for the index-
organized table is (nested_table_id, epc_value), and

CREATE TABLE epc_bmp
(time TIMESTAMP PRIMARY KEY,
 epcs epc_bitmap)

where epc_bitmap is the index-organized nested
table type with elements of epc_bitmap_segment type
as defined in section 2.2 and described in section 4.
These tables represent the shelf analytics scenario as
described in section 3.

The data set consists primarily of EPC-64 collections,
where the epc_suffix (20 bits) and the lower part of the
epc_prefix (4 bits) are randomly generated with a uniform
distribution. Because the dataset size is dependent on not
only the number of rows, but also the number of EPCs in
each row, the two parameters are adjusted to make the
final table size comparable. This section presents the
results from the following five configurations: A) 720
rows with 100000 EPCs in each row; B) 7200 rows with
10000 EPCs in each row; C) 72000 rows with 1000 EPCs
in each row; D) 720000 rows with 100 EPCs in each row;
and E) 7200000 rows with 10 EPCs in each row.

In the configurations A, B, and C, the time interval is
set to 1 hour and rows are generated for 30, 300, and 3000
days respectively. For example, 720 (=24*30) rows are
generated for 30 days. Further, EPC collections of size
100000, 10000 and 1000 are assumed to typically
represent the number of items in a department and/or
shelf. In the configuration D, the time interval is set to
1/10 hour and the duration is 3000 days, while in the
configuration E, it is set to 1/100 hour and the duration is
3000 days. Other configurations are not included in this
paper because the performance trend is apparent from the
above configurations.

5.2 Storage Comparison

This experiment demonstrates the storage advantages of
the epc_bitmap. When there are 100 or more EPCs in a
row, the storage size of the epc_bitmap is 6-8 times
smaller than that of the EPC collection type (see Figure
5). Even when there are 10 EPCs in a row, the storage
size of epc_bitmap is still 2 times smaller, compared with
the EPC collection type. As described above, the datasets
used are synthetic with a uniform distribution. Thus, the

root
node

leaf
nodes

branch
nodes …

…

EPC
Bitmap
column

Bmp1

Bmp2

Bmp3

Bmp4

Ptr_bmp1 Ptr_bmp2

Bmpn

Ptr_bmpn

Table

A Summary Bitmap Tree

…

…

1148

storage advantages for real world data sets (i.e. more
clustered) are expected to be better.

5.3 Performance of Bulk-load Operations

The bulk load performance is important for the
epc_bitmap because the epc_bitmap is most useful in
OLAP, where a data warehouse is initially loaded and
periodically refreshed. Unlike the collection datatype
where no transformation is required, the epc_bitmap will
incur a compressed bitmap construction cost, since the
raw data (i.e. a collection of EPCs) needs to be
transformed into an epc_bitmap before it can be inserted
into a table.

The configuration B is used in this experiment. Figure
6 shows the experiment results. In summary, although the
epc_bitmap’s construction phase takes time, the overall
bulk load time of the epc_bitmap is still 3.7 times faster
than that of the EPC collection datatype. The difference is
due to the storage advantages of epc_bitmap and the fact
that bulk-load is an I/O intensive operation.

The result for other configurations is similar to this
configuration, and hence is not included in this paper.
Also, the performance of batch maintenance operations is
similar to that of bulk-load operations, and hence is not
included in this paper.

0 500 1000 1500

MBytes

7200000rows 10EPCs

720000rows 100EPCs

72000rows 1000EPCs

7200rows 10000EPCs

720rows 100000EPCs Epc_bitmap
Type

Collection Type

Figure 5: Storage Comparison between Epc_bitmap
type and Collection Type

8782

2367

0

2000

4000

6000

8000

10000

Se c o n d s

Col l ect i on T ype Epc_bi tmap T ype

 Figure 6: Bulk Load Performance Comparison
between Epc_bitmap Type and Collection Type

5.4 Queries involving Epc_bitmap Columns

This set of experiments shows that the query performance
of the epc_bitmap is better than that of the EPC collection
datatype when there are 1000 or more EPCs in a row.
The benefits are due to the compact nature of epc_bitmaps
and because most of epc_bitmap operations are

significantly faster, especially for EPC collections with
1000 or more EPCs. The results from configurations D
and E are not presented because they are similar to
configuration C.

5.4.1 Query 1: Count Number of Items Present at a
Specific Time

This query is used to count the number of items present at
a specific time.

The queries used for the collection type and the
epc_bitmap are as follows:

SELECT COUNT(*) FROM epc_coll a,
 TABLE(a.epcs) b

WHERE a.time = '2004-03-04 10:00 AM';

SELECT bmap2Count (epcs) FROM epc_bmp

 WHERE time = '2004-03-04 10:00 AM';

Figure 7 shows the experiment results. For the
configuration C, there is no difference in query time
between the epc_bitmap and the collection type (0.007sec
in both cases). But for the configuration B, the query time
for epc_bitmap and collection type is 0.017sec, 0.020sec
respectively and for the configuration A, the query time is
0.075sec vs 0.175sec respectively.

Thus, when there are 1000 or more EPCs in a row, the
query performance using the epc_bitmap is better than the
query using the collection type.

0

0.05

0.1

0.15

0.2

72000r ows 1000EPCs 7200r ows 10000EPCs 720r ows 100000EPCs

S
ec

on
ds

Collect ion
Type
Epc_bitmap
Type

Figure 7: Query 1 Performance

5.4.2 Query 2: Enumerate Items Removed between
Two Time Intervals

This query is used to enumerate the items removed from a
shelf between two time intervals. The queries used for the
collection type and the epc_bitmap are as follows:

SELECT b.epc_value FROM epc_coll a,
 TABLE(a.epcs) b

WHERE a.time = '2004-03-04 10:00 AM'
MINUS
SELECT b2.epc_value FROM epc_coll a2,

 TABLE(a2.epcs) b2
WHERE a2.time = '2004-03-04 11:00 AM';

SELECT * FROM TABLE(SELECT

 bmap2Epc(bmapMinus(p1.epcs,p2.epcs))
 FROM epc_bmp p1, epc_bmp p2
 WHERE p1.time = '2004-03-04 10:00 AM' AND

 p2.time = '2004-03-04 11:00 AM');

Figure 8 shows the experiment results. In
configuration C, there is no difference in query time
between epc_bitmap and collection type (0.020sec in both
cases). But the query time for epc_bitmap and collection

1149

type is 0.036sec and 0.160sec respectively for
configuration B and 0.255sec vs 1.930sec respectively for
configuration C.

Thus, for a large collection of EPCs, the epc_bitmap
MINUS operation is clearly better than the SQL built-in
MINUS operation.

0

0.5

1

1.5

2

2.5

72000rows 1000EPCs 7200rows 10000EPCs 720rows 100000EPCs

S
ec

on
ds

Collection
Type

Epc_bitmap
Type

Figure 8: Query 2 Performance

5.4.3 Query 3: Report All Observations When a Given
EPC was Present

This query reports all observations when a given EPC was
present. The queries used for the collection type and the
epc_bitmap are as follows:

SELECT a.time FROM epc_coll a
WHERE EXISTS(SELECT 1 FROM TABLE(a.epcs) b

 WHERE b.epc_value = ‘400003000300052A’);

SELECT time FROM epc_bmp
WHERE bmapExists(epcs, ‘400003000300052A’);

Figure 9 shows the experiment results. The query
times for the epc_bitmap and the collection type are
203sec and 329.5sec respectively for configuration C,
44.3sec and 326.4sec respectively for configuration B,
and 25.12sec and 322.5sec respectively for configuration
A.

Thus, when there are 1000 or more EPCs in a row, the
query using the epc_bitmap is better than the query using
the collection type. The query performance of epc_bitmap
degrades steeply for configuration C in comparison with
configuration B. This performance degradation is due to
the execution of epc_bitmap routines in an external
process, resulting in context switch between the external
process and database process, once for each row
processed. If the epc_bitmap operations are natively
implemented in the database kernel, the performance in
configuration C should be comparable to other
configurations.

0

50

100

150

200

250

300

350

72000rows
1000EPCs

7200rows
10000EPCs

720rows
100000EPCs

S
ec

on
ds

Collection
Type
Epc_bitmap
Type

Figure 9: Query 3 Performance

5.4.4 Query 2 with Variant Datasets

Earlier in Section 5.4.2, the epc_bitmap MINUS operation
performance was presented for a single dataset. This
subsection discusses performance of the epc_bitmap
MINUS operation by varying the difference between the
two epc_bitmaps being compared. We take configuration
B and generate the datasets with {1, 10, 100, 1000, 2500,
5000, 7500, 10000} different EPCs between two time
intervals. The query using the collection datatype is as
follows:

SELECT count(*) FROM
 (SELECT b.epc_value FROM epc_coll a,
 TABLE(a.epcs) b
 WHERE a.time = ‘2004-03-04 10:00 AM’
 MINUS
 SELECT b2.epc_value FROM epc_coll a2,
 TABLE(a2.epcs) b2
 WHERE a2.time = ‘2004-03-04 11:00 AM’);
The query using the epc_bitmap is as follows:
SELECT bmap2Count(bmapMinus(p1.epcs,

 p2.epcs))
FROM epc_bmp p1, epc_bmp p2
WHERE p1.time = ‘2004-03-04 10:00 AM’ AND
 p2.time = ‘2004-03-04 11:00 AM’;

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 10 100 1000 2500 5000 7500 10000

S
ec

on
ds

Collect ion Type

Epc_bitmap
Type

Figure 10: Query 2 with Variant Data Set
Performance

The query using the epc_bitmap MINUS/COUNT
operation is about 3 times faster than the query using the
built-in SQL MINUS/COUNT operation on the collection
datatype (Figure 10). The difference is consistently
observed for varying datasets. Similar results are observed
for other configurations as well (i.e. configurations B and
C, etc).

5.5 Discussion

The above experiments were performed with randomly
generated data having a uniform distribution. In the real
world, where most of the EPCs in a collection are likely
to be clustered, the epc_bitmaps are expected to be more
compact and efficient, resulting in even better
performance.

Also, as noted before, the above scheme was
implemented by extending the bitmap indexing
technology of the Oracle database management system,
and the experimental results are specific to the given
implementation. However, the results are generic in
nature, and similar results are expected for a bitmap
datatype implemented in other database systems.

1150

6. Conclusion and Future Work
The paper makes a case for supporting an epc_bitmap
datatype in a DBMS to handle the emerging class of
RFID-based item tracking applications. Specifically,
RFID tagged items, identified by their electronic product
codes (EPCs) can be tracked in groups based on a
common property such as their location, container, and
expiration date. Such collections of EPCs can be
represented by an epc_bitmap, which can be accessed and
manipulated using epc_bitmap operations, to build
efficient RFID-based item-tracking applications.

The epc_bitmap proposed in the paper can support a
variety of classes of EPCs (64-bit, 96-bit, and 256-bit
EPCs) and can be used to represent both transient and
persistent EPC collections. The epc_bitmap supports
conversion, maintenance, comparison and pair-wise
logical operations.

A wide range of RFID applications, including retail
store shelf analytics, product recall, item returns, and asset
management, can be supported using the epc_bitmap, as
illustrated in the paper. However, the epc_bitmap might
not be a good candidate for the applications that do not
lend themselves well to grouping based on a common
property.

The epc_bitmap can be easily implemented in a
DBMS leveraging the bitmap index code, used to manage
bitmaps of table row identifiers. One such implementation
was built using Oracle DBMS, and the performance
experiments conducted demonstrate both the storage
savings and query performance benefits.

Providing epc_bitmap and its associated operations in
a DBMS should enable building interesting RFID
applications. In the future, we plan to support
epc_bitmap’s piece-wise maintenance operations and
index-based evaluation of queries involving epc_bitmap
column predicates. Also, we will perform more
experiments (especially on the hybrid scheme described in
section 3.4), and explore the similar use of epc_bitmap to
support table row identifier collections and life science
identifier collections.

7. Acknowledgments
We thank Jay Banerjee and Susan Mavris for their helpful
suggestions and for their support.

8. References
[1] Brock, D., Cummins, C., “EPCTM Tag Data

Specification”,
http://www.autoidlabs.com/whitepapers/MIT-AUTOID-
WH025.pdf, June 2003.

[2] Engels, D., “The use of the Electronic Product CodeTM”,
http://www.autoidlabs.com/whitepapers/mit-autoid-
tr009.pdf, February 2003.

[3] Engels, D., “EPC-256: The 256-bit Electronic Product
CodeTM Representation”,

http://www.autoidlabs.com/whitepapers/mit-autoid-
tr010.pdf, February 2003.

[4] Antoshenkov, G., “Byte Aligned Data Compression”,
U.S. Patent No: 142640, October 1993.

[5] Jakobsson, H., “Bitmap Indexing in Oracle Data
Warehousing”, Database seminar at Stanford University.
http://www-
db.stanford.edu/dbseminar/Archive/FallY97/slides/oracl
e/, October 1997.

[6] Chan, C. Y., Ioannidis, Y.E., “An Efficient Bitmap
Encoding Scheme for Selection Queries”, Proceedings
of the ACM SIGMOD Int. Conf. on Management of
Data, pp.215-226, 1999.

[7] Chan, C. Y., Ioannidis, Y.E., “Bitmap Index Design and
Evaluation”, Proceedings of the ACM SIGMOD Int.
Conf. on Management of Data, pp.355-366, 1998.

[8] O’Neil, P. and Quass, D., “Improved Query Performance
with Variant Indexes”, Proceedings of the ACM
SIGMOD Int. Conf. on Management of Data, pp. 38-49,
1997.

[9] Collins, J., “Wipro Starts Up RFID Retail Pilot”,
http://www.rfidjournal.com/article/view/1064, July
2004.

[10] Adams, C., “RFID and Supply Chain Theft”,
http://www.rfidjournal.com/article/view/485, 2004.

[11] Costlow, T., “Product Recalls Spur Move Toward
RFID”, Design News,
http://www.designnews.com/article/CA442376.html?ind
ustryid=22213, August 2004.

[12] Wu, K., Otoo, E., Shoshani, A., “On the Performance of
Bitmap Indices for High Cardinality Attributes”,
Proceedings of the 30th Int. Conf. on Very Large Data
Bases, pp. 24-35, September 2004

[13] Hillyer, M., “The MySQL SET Datatype”,
http://dev.mysql.com/tech-resources/articles/mysql-set-
datatype.html, May 2004

[14] Chawathe, S. S., Krishnamurthy V., Ramachandran S.,
Sarma S., “Managing RFID Data”, Proceedings of the
30th Int. Conf. on Very Large Data Bases, pp. 1189-
1195, September 2004

[15] Srinivasan, J., Das, S., Freiwald, C., Chong, E.I.,
Jagannath, M., Yalamanchi, A., Krishnan, R., Tran, A.,
DeFazio, S., Banerjee, J., “Oracle8i Index-Organized
Table and its Applications to New Domains”,
Proceedings of the 26th Int. Conf. on Very Large Data
Bases, pp. 285-296, Sept. 2000.

1151

