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Abstract

We present DITN, a new method of paral-
lel querying based on dynamic outsourcing of
join processing tasks to non-dedicated, hetero-
geneous computers. In DITN, partitioning is
not the means of parallelism. Data layout deci-
sions are taken outside the scope of the DBMS,
and handled within the storage software; query
processors see a “Data In The Network” im-
age. This allows gradual scaleout as the work-
load grows, by using non-dedicated computers.

A typical operator in a parallel query plan
is Exchange [7]. We argue that Exchange
is unsuitable for non-dedicated machines be-
cause it poorly addresses node heterogeneity,
and is vulnerable to failures or load spikes
during query execution. DITN uses an al-
ternate intra-fragment parallelism where each
node executes an independent select-project-
join-aggregate-group by block, with no tuple
exchange between nodes. This method cleanly
handles heterogeneous nodes, and well adapts
during execution to node failures or load spikes.

Initial experiments suggest that DITN performs
competitively with a traditional configuration of
dedicated machines and well-partitioned data
for up to 10 processors at least. At the same
time, DITN gives significant flexibility in terms
of gradual scaleout and handling of heterogene-
ity, load bursts, and failures.

1 Introduction

Parallel query processing [4] has evolved from being
a research idea (e.g., Gamma, XPRS [5, 8]) to being
a standard feature provided by most DBMS vendors
(e.g., Tandem, Teradata, Oracle, Informix XPS, and
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DB2 [20, 22, 14, 2]). The parallelism in these sys-
tems is highly scalable, with vendors reporting good
speedup with even 1000s of parallel nodes [4].

Traditionally, parallel query systems have been clas-
sified as shared nothing (SN), shared memory (SMP),
and shared disk (SD) [19]. But a common character-
istic of all these three types is that they rely on ded-
icated processors, pre-configured and pre-assigned for
the parallel query task.

For SMP systems (and SMP nodes in SD/SN sys-
tems), this coupling is done in hardware. In SD sys-
tems, the compute nodes are often connected by spe-
cialized interconnects to a shared storage. SN systems
are more loosely coupled due to a cluster-architecture.
But the compute nodes still need to be dedicated
for the parallel query task because the data is pre-
partitioned across the compute nodes (typically by
hash or range of a join column value). In general, both
SN and SD systems rely on partitioning as the primary
means of parallelizing expensive query operations such
as hash joins.

In contrast to these dedicated styles of parallel
querying, the modern trend towards grid computing
emphasizes non-dedicated computers. The advantage
is that multiple applications can share machines, and
so the enterprise need not over-provision for the peak
load of any single application. For example, desktop
workstations are used primarily during office hours.

The DITN project at IBM Almaden is exploring
parallel query processing over such non-dedicated com-
puters. There are many challenges:
• We cannot rely on pre-partitioned data if we want

to exploit transiently available nodes.
• Non-dedicated nodes can have volatile loads and

may stall, so dynamic load-balancing is important.
• Grid nodes are often highly heterogeneous in CPU

power. For example, a personal workstation and a
server may be available simultaneously.

• Failures/Addition: Nodes can be added to or un-
plugged from grid at any time. E.g., a workstation
may leave the grid as soon as the user logs in.
While meeting these challenges, DITN’s goal is not

to beat the performance of a dedicated parallel configu-
ration with well-partitioned data. Instead DITN is de-
signed to perform competitively, but at a much lower
cost, because of gradual scaleout and by exploiting
non-dedicated compute nodes. In addition, DITN is
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Figure 1: Architecture of DITN

designed to dynamically adapt to heterogeneity, load
bursts and flaky node availabilities, and perform bet-
ter than traditional DBMSs in such circumstances.

1.1 DITN Architecture

DITN is built as a prototype on top of IBM’s Web-
sphere Information Integrator (I.I.).

Figure 1 shows the architecture of DITN. Its main
virtualization component is a cpuwrapper module for
I.I. I.I. uses wrappers (as in, e.g., [9, 16]) to ob-
tain a relational access interface to heterogeneous data
sources. During its dynamic-programming optimiza-
tion phase, I.I. repeatedly tries to “push down” vari-
ous plan fragments to the wrappers, and chooses the
extent of the push down so as to minimize the overall
plan cost. The cpuwrapper is a special kind of wrap-
per that wraps not data sources, but compute nodes.
We call these compute nodes co-processors.

I.I views the cpuwrapper as a wrapper over a single
data source, “GRID”. I.I tries to push down various
plan fragments to the cpuwrapper, but the only ones
that the cpuwrapper accepts are select-project-join
fragments, with aggregation and group by (SPJAG).
Other, more complex fragments are returned back to
I.I. as not pushdownable to the “GRID” source, and
performed at the I.I. node itself. E.g., in Figure 1, the
OLC join alone is pushed down to the cpuwrapper;
the rest of the query plan is done by I.I.

When I.I. pushes down SPJAGs to the cpuwrap-
per, the cpuwrapper executes them by outsourcing the
work to the co-processors (P1, P2, P3 in the example).
The essence of this outsourcing is to (a) identify idle
co-processors using a grid load monitor, (b) logically

split the input tables into work-units, (c) rewrite the
overall SPJAG as a union of SPJAGs over the work-
units, and (d) execute these SPJAGs in parallel on the
co-processors. In step (d), the cpuwrapper detects and
handles dynamic load-bursts and failures, by reassign-
ing delayed work-units to alternative co-processors.

Outline of the Paper: The rest of the paper elabo-
rates on this process, by describing three key aspects
of DITN. First, DITN relies on a shared storage archi-
tecture to communicate with the co-processors. This is
described in Section 2. Then, Section 3 describes how
DITN breaks up the overall SPJAG into work-units.
Section 4 describes the runtime mechanics of DITN
— how the cpuwrapper orchestrates the parallel ex-
ecution of work-units in a load-resilient fashion, and
how the co-processors perform their work-units. We
present an experimental evaluation of this technique
in Section 5. We discuss related work in Section 6 and
conclude with pointers to future work in Section 7.

2 DITN Storage Architecture

In traditional parallel DBMSs, tables are physically
partitioned (or replicated, if the table is very small)
across the cluster nodes. In order to exploit non-
dedicated compute nodes, DITN does away with this
idea of pre-partitioning data. Instead, the cpuwrapper
treats the co-processors as CPU-only, with Data resid-
ing (logically) In The Network (DITN), on a shared
storage system. In our implementation, this is a
storage-area network, virtualized by IBM’s TotalStor-
age SAN file system (SANFS).

Briefly, the SAN consists of a cluster of disks con-
nected by a high-speed network. The SANFS stripes
files across these disks to provide a single file system
image, with the combined scan bandwidth and ran-
dom I/O throughput (due to multiple disk heads) of
all these disks.

DITN stores each table directly as a single file
on the SANFS. The work-unit allocated to each co-
processor is to do a join of a contiguous segment from
each file. The co-processors access these input files
directly from the SANFS, without communication to
the cpuwrapper (we assume an uncommitted read se-
mantics is okay for the queries).

Traditionally, the DBMS relies on partitioning to
get parallelism in I/O, and to reduce network traf-
fic. Due to striping, DITN gets I/O parallelism di-
rectly from the file system. As regards network traf-
fic, our experimental analysis suggests that in modern
networks, the network bandwidth is much larger than
the bandwidth of query processing operators like sort,
join, and even scan (see Section 2.1 below). So for
moderate scales of parallelism, the network is not a
bottleneck.

DITN derives two advantages by not physically par-
titioning tables on disks:
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Operator Throughput Query
SCAN 7.69MB/s select sum(R.a) from R
SORT 0.48MB/s select max(13-7*R.a) from R
ODBC-SCAN 0.32MB/s select sum(R.a) from R-NN

Table 1: Throughput of query operators (R is a local
table, R-NN is a remote table accessed via ODBC)

• The cost for adding (or removing) a node is low,
and so DITN can use transiently available ma-
chines. DITN can also gradually grow or shrink
the system as the load varies.

• We are not forced to grow CPUs and disks in lock-
step. We can independently scale the CPUs or
disks, depending on which is the bottleneck.

2.1 CSV File-based communication

A key assumption behind DITN is network transfer
costs are a minor part of query processing cost. But
in order to realize these fast transfer rates, we need
to use a file-based data communication scheme. We
explain this with a micro-benchmark experiment.

We run queries that aggregate records from a table
R with a single integer column “a”. The queries are
designed so that their cost is dominated by a single
operator. We run this query with R table of differ-
ent sizes, fit a linear curve, and thereby calculate an
operator throughput, defined as the number of bytes
that operator can process in a second. Table 1 lists
some operators and their observed throughputs. Note
first that all these throughputs are much lower when
compared to network throughputs – in a LAN point-
to-point bandwidths of 2 or 4 Gbps are common, and
aggregate bandwidth can reach 10 Gbps with modern
switches and backplanes. This large difference between
query operator and network throughputs is the justifi-
cation for not co-locating data with compute node (via
partitioning) – the network can ship data faster than
query operators can process them.

But an important qualifier to this reasoning is that
DITN should transfer work-units to the co-processors
at the full network bandwidth. Realizing this is tricky.
For example, the ODBC scan throughput is only
0.32MB/s – this is far less than the ideal throughput
of 7.69MB/s that is theoretically achievable (the scan
throughput is 7.69MB/s, and the network bandwidth
in this experiment is 1 Gbps, so we should be able to
scan remote data at 7.69MB/s).

Our solution to this problem is to keep the work-
units as comma separated value files, rather than as
database tables. So when a co-processor accesses its
work-unit, it directly reads a corresponding byte range
from the CSV file for each input table.

3 Intra-Fragment Parallelism

Having described the DITN storage architecture, we
now turn to work allocation. The task is to break

Figure 2: Exchange-based plan for OxLxC

up the SPJAG over tables in the shared storage into
SPJAGs over work-units that can be done on the co-
processors.

Traditionally, work allocation is parallel query plans
is done through Exchange [7] operators (also known as
TQs [2]). Both base tables and intermediate results
are split according to the join column as part of query
execution, and each node gets to operate on a table
subset with particular hash value (or range) of the join
column. Figure 2 shows an example plan.

The problem with this work allocation approach is
that Exchange assumes significant homogeneity and
predictability of CPU speeds on the co-processors.
• First, since tuples are shipped between plans, Ex-

change is very vulnerable to load spikes and failures
at even a single compute node.

• Second, all nodes must run the same query plan.
This is inefficient if the nodes have different CPU
speeds, memory, etc. For example, a node with
more memory may want to do a 1-pass hash-join
while another with less memory does a merge join.

• Tuple shipping between plans also typically forces
each node to run the same release of the same
DBMS, which is restrictive over a grid.
To avoid these limitation, we outsource not at the

operator level but rather at the join fragment level.
We adopt a zero-communication, “embarrassingly par-
allel” method of splitting a SPJAG: we send the entire
SPJAG to each co-processor, to be run independently.
To divide the work, we divide the input into work units.

Given a join over tables T1, T2, . . . Tk, we logically
divide each input into partitions Ti = T 1

i ∪T 2
i ∪· · ·∪T pi

i .
The join becomes a cross-product (T 1

1 ∪ · · · ∪ T p1
1 ) ×

· · · × (T 1
k ∪ · · · ∪ T pk

k ). Each component of this cross-
product is assigned to a separate co-processor, so we
use m = Πk

i=1pi co-processors in total. The I.I. node
performs a top-level union of the results from each co-
processor.

This division of the cross-product into work-units,
and the assignment of work-units to processors, must
be done carefully. In order to minimize the over-
all query response time, larger tables must be bro-
ken down into more logical partitions, and larger work
units must be assigned to faster nodes. The cpuwrap-
per performs this optimization by modeling the query
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response time as a function of the work unit sizes and
the node speeds, and solving a linear program to min-
imize the expected response time. Before describing
this, we briefly discuss aggregation and group by.
Aggregate pushdown:

Besides joins, it also useful to push down aggregates
and group bys, because they can substantially reduce
the amount of data that needs to be communicated
back from the co-processors to the cpuwrapper.

We use this simple transformation that is applica-
ble for aggregates such as SUM and COUNT:
AGG(GROUP BY (∪n

i=1Ri) =
SUM(GROUP BY (∪n

i=1AGG(GROUP BY (Ri))))
This transformation can also be used for AVG,
STDEV, etc. by writing them in terms of these
aggregates (e.g., AVG = SUM/COUNT).

We apply this transformation by pushing down the
group by and aggregation into the co-processor (so
that each co-processor does the full SPJAG over its
work-unit), and then doing a top-level group by and
aggregation at the I.I. to combine the aggregates from
each co-processor.

Figure 3 illustrates this aggregate pushdown.
.

Figure 3: Query Plan for DITN O ./ L

3.1 Work Allocation Strategies

The cpuwrapper has two work allocation decisions:
• it divides the join cross-product space into work

units
• it allocates work units to co-processors

The total work that needs to be performed in eval-
uating a join can be visualized as a hyper-rectangle
corresponding to the cross-product of the input rela-
tions. Figure 4 illustrates this for a two table join.
The total join work corresponds to the volume inside
this hyper-rectangle, because each value in the cross-
product must be determined to lie either within or
outside the join result.

Figure 4: Exchange-Style Work Allocation for O ./ L

Figure 5: DITN Work Allocation for O ./ L

In the Exchange style of work allocation, careful
partitioning ensures that the only work units that need
to be evaluated are the diagonal work units – when the
tables are laid out according to the partitioning. For
more than two-table joins, there may not be a single
layout of the tables that eliminates off-diagonal work;
so we may need to perform exchange on the interme-
diate results in the query plan. This tuple exchange is
intrinsically vulnerable to failures and stalls, because
reassigning the intermediate tuples that have been sent
to a stalled node involves recomputing those tuples
from scratch.

We have studied two alternative styles of dividing
up the cross-product space into work units that avoid
these problems:
• Divide by RIDs (Record IDs), as per the existing

table clustering.
• Divide by RIDs, with dynamic partitioning of the

largest two tables.

Input Division by RID
The simplest method of dividing the inputs is to

use their existing clustering on disk, and divide the
input files by RID, as in Figure 5. This corresponds
to dividing the logical input tables by their RIDs.

Thus each T j
i is a contiguous set of tuples, as iden-

tified by their RID. The advantage is that each co-
processor processes a contiguous set of tuples from the
input table, which provides substantial I/O efficiencies
for join algorithms that scan their inputs (e.g., hash
join, merge join, clustered index join).

The cpuwrapper can implement this RID based
splitting in many ways. If the data is stored in reg-
ular database table format, we can specify a direct
predicate on the RID, or a predicate on the clustering
column, to the query sent to each co-processor. For
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our Apache-Derby co-processor, RID-based splitting
is even easier since the tables can be stored as CSV
files. We simply divide up the file byte range. Our
co-processor uses a file wrapper that takes in a byte
range over a CSV file, and returns a tuple cursor. Note
that the byte offsets chosen by the cpuwrapper need
not align with record boundaries. The file wrapper
searches in the vicinity of the byte offset to determine
the closest record delimiter.

The drawback with this method is the extra work
needed to perform the off-diagonal work units. Given
a fixed number of co-processors, the presence of these
additional work units forces the cpuwrapper to make
each work-unit larger, and thereby increases the re-
sponse time for performing the join.
Dynamic partitioning the largest two tables

A simple optimization avoids the off-diagonal work
units for the two largest tables that are being joined.
Before executing the SPJAG, the cpuwrapper explic-
itly re-partitions the two largest tables (that are con-
nected by an equi-join predicate) by sorting (or hash-
partitioning) on the join column connecting them.
Then we can divide these two tables by the join-column
value, rather than RID.

This is like doing an Exchange on the 2 largest ta-
bles. But we do not ship tuples to the co-processors
– data remains in the SANFS. So each node can run
its own plan, and if one node fails or stalls, we can
re-allocate its work-unit to another node.

Since we avoid exchanging tuples in the middle of
query plans, this method can only partition each table
along one column. So the exchange-style work alloca-
tion will theoretically perform better than this method
for joins involving more than two tables. For example,
in a TPC-H equijoin of Lineitem (L), Orders (O), and
Customers (C), this method partitions Lineitem and
Orders by orderkey. But, unlike Exchange, it cannot
re-partition the Lineitem ./ Orders result on custkey
for the join with Customers.

This is the tradeoff we make for the flexibility of
heterogeneity and load resilience. Our experiments
suggest that this performance loss is negligible with
this optimization, because the largest tables tend to
dominate the cost of join processing (Section 5).

We now flesh out the RID-based work allocation
scheme, to decide how to split each input table and
allocate work units to the co-processors.

3.1.1 Symmetric Work Allocation Scheme

We first devise a work allocation scheme assuming that
the co-processors are equally powerful, i.e., they take
identical time to join inputs of identical size. We then
generalize this in Section 3.1.2.

We assume in this paper that the number m of co-
processors to use is specified as a policy parameter by
the application developer or database administrator

(we discuss future work to automatically estimate m
in Section 7).

Given a number m of equally powerful co-
processors, the optimization problem for outsourcing
SPJAG processing to co-processors is to determine,
• the number of partitions pi to split each table Ti

into, and
• the size of each partition ti,j = |T j

i |, 1 ≤ i ≤ k, 1 ≤
j ≤ pi

Note: We represent the sizes ti,j , |Ti| and |T j
i | in bytes

rather than tuples, for ease of analysis.
Let JoinCost(x1, x2, . . . , xk) be the cost of processing
a work-unit of size x1 × x2 × · · ·xk at a co-processor.
Then, the response time (RT) is given by (di is an
index into the work-units of i’th table):

RT = max
di∈[1,pi]∀1≤i≤k

(JoinCost(t1,d1 , t2,d2 , . . . tk,dk
))

It is easy to see that the response time is minimized
when the work units are of equal size along each di-
mension.

Theorem 1 For a fixed p1, p2, . . . pk, assuming that
JoinCost is monotonically increasing in each of its
arguments, RT is minimized when ti,j1 = ti,j2 ∀1 ≤
i ≤ k, 1 ≤ j1, j2 ≤ pi.
Proof Sketch: Since JoinCost is monotonic, min-
imizing RT is equivalent to minimizing, for each di-
mension 1 ≤ i ≤ k, the largest partition maxj(ti,j).
This happens when partitions are equal-sized along
each dimension. �

By this theorem, RT =
JoinCost(|T1|/p1, |T2|/p2, . . . |Tk|/pk). Our next
task is to find p1, p2, . . . pk.

The only restriction on p1, p2, . . . pk is that they be
positive integers, and that Πk

i=1pi = m. To mini-
mize RT we ideally want to know the exact form of
the JoinCost function. Unfortunately we are deal-
ing with remote, possibly heterogeneous join proces-
sors. So DITN currently assumes that JoinCost is
a symmetric polynomial function of its inputs, with
non-negative coefficients:

JoinCost = λ1

∑
i∈[1,k](|Ti|/pi)+

λ1,2

∑
i1,i2∈[1,k](|Ti1 ||Ti2 |/(pi1pi2))+

λ2

∑
i1∈[1,k](|Ti1 |2/(p2

i1
)) + · · ·

where λ1, λ1,2, λ2, ... ≥ 0.

This is a fairly general cost model which accounts
for most of the typical join algorithms used – e.g.,
for hash and merge joins the linear terms dominate,
in nested loop joins the quadratic terms matter, etc.
Since we don’t know the internal details of the co-
processors, we assume that the cost is symmetric in
the input sizes.
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Theorem 2 Assuming that JoinCost is a sym-
metric polynomial function of its arguments, with
non-negative coefficients, RT is minimized when
|T1|/p1 = |T2|/p2 = · · · |Tk|/pk.
Proof Sketch: Since JoinCost is symmetric, all the
terms that are equivalent under transposition of input
arguments (e.g., { (|T1|/p1)2(|T2|/p2)2(|T3|/p3),
(|T1|/p1)(|T2|/p2)2(|T3|/p3)2,
(|T1|/p1)2(|T2|/p2)(|T3|/p3)2 } ) must have the
same, non-negative coefficient. The product of
these symmetric terms is some power of the
product of the inputs (in the previous example,
(|T1|/p1)5(|T2|/p2)5(|T3|/p3)5), and hence a constant
— because m = Πk

i=1pi. The result follows by
AM-GM inequality. �

Thus, the optimal work allocation is to have an
equal split within each table, and to make the parti-
tions of all tables be approximately equal. For exam-
ple, in a TPC-H database, a large table like Lineitem
should be split into more segments than a smaller table
like Orders or Customer.
Impact of dynamic partitioning optimization:
The optimization described above is easily generalized
to handle the case where the cpuwrapper partitions
the two largest tables (say T1, T2) according to their
join column.

We have p1 = p2, and Theorem 2 generalizes to
T2/p2 = T3/p3 = · · · = Tk/pk. The partitioning of
T1 and T2 allows us to make each pi larger (and each
work-unit smaller) because we now have only k − 1
terms in the product (m = Πk

i=2pi).
The only constraint is that in general we will not be

able to achieve |T1|/p1 = |T2|/p2. We resolve this by
choosing the number of partitions for the larger table
(say p1) according to Theorem 2, and setting the other
number (p2) to be the same. We can use standard
skew-avoidance techniques (like [23]) to ensure that
all partitions within T1 and T2 are of approximately
the same size.
Join vs Data-Access response time
This RT that we have optimized for is the time for
performing the join processing within each work unit.
But this operation goes in parallel with the data access
from the storage software. So, the overall response
time for the SPJAG fragment is:

max(JoinCost( |T1|/p1, |T2|/p2, . . . |Tk|/pk), (1)
ξ(|T1|/s1 + |T2|/s2 + · · ·))

where si stands for the degree of striping of the
tables, and ξ is the scan cost per byte.

Notice that the data access cost is independent
of how we partition the input tables. For an I/O
bound workload, this cost will dominate. But the DBA
can scale up such a workload without using more co-
processors, by adding more disks to the storage pool.

3.1.2 Asymmetric Work Allocation Scheme

When the co-processors are not identical, they have
different JoinCost functions. We solve for this situa-
tion by first doing the work allocation symmetrically,
as in Section 3.1.1, and then adjusting the allocation
to account for heterogeneity.

Consider the Orders ./ Lineitem query and assume
that we have arrived with the symmetric work alloca-
tion of Figure 5. If the co-processors P1 . . . P10 have
different JoinCost functions, each work-unit will com-
plete at a different time. So our strategy is to consider
adjacent work-units (like P1 and P2) that have differ-
ent expected response times, and move the edge shared
by them so that the we increase the size of the work-
unit with the faster co-processor, and decrease the size
of the work-unit with the smaller co-processor.

This process can be generalized as follows.
Suppose that o1, o2 are the sizes of the parti-

tions of Orders, l1,1, . . . l1,5 are the sizes of the par-
titions of Lineitem along the row corresponding to
o1, and l2,1, . . . l2,5 are the sizes of the partitions
of Lineitem along the row corresponding to o2 —
note that with asymmetric co-processors we must con-
sider such non-grid like work allocations also. Now,
RT = maxi1∈[1,2]i2∈[1,5] JoinCostj(oi1 , li1,i2), where
JoinCostj is the cost function of the processor allo-
cated to each work-unit.

To solve this, we assume that JoinCost’s are
linear symmetric functions of the input sizes:
JoinCostj(x, y) = λj(x + y), where λj is a cost cali-
bration factor that the cpuwrapper learns from a grid
load monitor.

This leads to a system of linear in-equations:
RT ≥ λj(oi1 + li1,i2) ∀ 1 ≤ i1 ≤ 2, 1 ≤ i2 ≤ 5∑5

i2=1(li1,i2) = |Lineitem| ∀ 1 ≤ i1 ≤ 2∑2
i1=1(oi1) = |Orders|

oi1 ≥ 0, li1,i2 ≥ 0 ∀ 1 ≤ i1 ≤ 2, 1 ≤ i2 ≤ 5

We solve this linear program to find the partition
size o1, o2, and l1,1, . . . l2,5. This method is easily gen-
eralized to joins of more than 2 tables as well.

There are two current restrictions of our method.
The first restriction is that we need to pick an al-

location of co-processors to work-units (i.e., the λjs)
beforehand, arbitrarily. One afterward do we choose
the work-unit sizes for each co-processor. This can be
sub-optimal, but relaxing it (e.g., by adding a 0-1 in-
dicator variable that denotes whether a particular pro-
cessor is allocated to a particular work-unit) will make
the problem integer programming. We have found this
pre-allocation to work well in our initial experiments.

Second, we adjust the partition sizes according to
a specific ordering of the tables. For example, in the
Orders ./ Lineitem query, we adjust the Lineitem par-
tition sizes for each Orders partition, and adjust the
Orders partition sizes only overall. So the Orders par-
tition for P1 and P2 must be of the same size. The or-
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dering of the tables we choose is from largest to small-
est. Our intuition is that we need the most flexibility
in choosing work-unit sizes only for the largest table.

4 DITN Runtime

We have seen how the cpuwrapper divides an SPJAG
into work-units for each co-processor. We now discuss
how these work units are executed, as part of the over-
all query execution.

During query execution, the I.I. views the cpuwrap-
per as a source that serves the overall SPJAG result.
I.I. uses a typical iterator model of query execution,
where it makes an open() call to the cpuwrapper, and
then calls fetch() repeatedly to fetch more tuples, and
finally invokes a close().

The implementation of these three calls is fairly
simple. At open() the cpuwrapper chooses the idle
co-processors, allocates the work-units and dispatches
the SPJAG requests to the co-processors. The close()
call is directly passed on to the co-processors.

During fetch(), the cpuwrapper asynchronously
fetches and unions results from each co-processor. Re-
sults from different co-processors can be interleaved
in any manner because the cpuwrapper promises only
an unordered, union semantics to I.I. We now elab-
orate on two aspects of this fetch() process: how the
cpuwrapper handles load bursts (Section 4.1), and how
the co-processor is implemented (Section 4.2).

4.1 Handling Load Bursts and Failures

The essential characteristic of a non-dedicated co-
processor is transiency. The co-processor can be re-
moved from the grid at any time, and its load can spike
without notice, when a higher priority job arrives.

In a system that uses Exchange, the nodes to which
an Exchange routes tuples are chosen once. If any of
the nodes slows down or becomes unavailable during
query execution, there is no adaptation, unless we re-
compute the entire subtree under the Exchange.

DITN tackles load bursts and failures as follows.
During the fetch() call, the cpuwrapper keeps track
of when each co-processor finishes its work-unit (by
tracking EOFs). If one co-processor, say A, has not
finished for a long time, the cpuwrapper waits a cer-
tain fraction of time f after all the co-processors have
finished. At this point the cpuwrapper times out, and
assumes that this co-processor A has either failed or
is too slow. So it chooses the fastest co-processor B
among the ones that have finished, and reassigns A’s
work-unit to B. The cpuwrapper picks up the result
from whichever of the two co-processors finishes first,
and cancels the processing being done by the other
co-processor by closing its cursor.

The worst case for this algorithm is where both A
and B finish the work simultaneously; the cpuwrap-
per has ended up re-using A unnecessarily. This is a

factor of (m + 1)/m penalty when the query uses m
co-processors. But this penalty is paid only when A
has a significant slowdown.

In contrast, a fault-tolerant Exchange such as
FLUX [17] pays a factor of 2 penalty, whether there is a
fault or not. This is not a perfect comparison, because
FLUX is designed for a general continuous query en-
vironment where the input data is a stream that may
not be replayable from an earlier point. Moreover,
we have delegated the fault-tolerance at the storage
system level to the storage software; there is a cost
for this (e.g., RAID mirroring cost). But we believe
the storage systems have perfected and commoditized
fault-tolerance, and can provide it much more cheaply
than an exchange based, “software” mirroring.

4.2 Lightweight Derby Join Processor

There are three key design goals in selecting a query
processor to use for joining the work units at each co-
processor.

First, it should be easy and automatic to install,
so that the switching cost to exploit a new compute
node is kept low. Many DBMSs have very complex
installation procedures that are very hard to automate.

Second, it should have low footprint when not in
use.

Third, it should be able to access remote data at
the full network bandwidth. Recall from Section 2.1
that ODBC has a huge overhead, and slows down the
data access bandwidth substantially.

We have experimented with two options to use as
our query processor at the co-processor nodes. The
simplest solution is to use I.I. itself, since it is a fed-
erated query processor and can access remote data
sources efficiently. But it is too heavyweight and hard
to install.

The alternate solution that we adopt is to use a
hugely trimmed-down version of the Apache Derby
open source DBMS. Observe that we only need the
join and aggregation feature from the DBMS, and it
need not store any data – so we need no updates, no
complex SQL, no data manager etc. This allows us to
reduce the co-processor software to under 15000 lines
of code, and a single jar file.

We wrote a file wrapper for this co-processor so that
it can access comma-separated-value files. The advan-
tage of accessing files rather than ODBC is that file
transfer is done by the file system, and it does not
slowdown the access throughput like ODBC does.

5 Performance Results

The central tradeoff that DITN makes is to sacrifice
partitioning in return for two benefits: (a) load and
failure resiliency, and (b) graceful scaleout – the ability
to gradually add nodes as the workload grows. We now
present a preliminary experimental evaluation of this
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tradeoff. We quantify the loss in performance due to
imperfect partitioning, and the benefits of load and
failure resiliency. Quantifying the benefit of graceful
scaleout will involve a cost analysis of clusters versus
SANs. We defer this to future work.

Our experiments are based on a prototype imple-
mentation of DITN in Websphere Information Inte-
grator (I.I). We use a cluster of 10 Pentium 4 worksta-
tions with 1GB memory each, running Windows XP
and our trimmed down version of the Apache-Derby
query processor. Our SAN had 12 disks connected by
a 1 Gbps ethernet, and running the IBM TotalStorage
SAN File System.

We compare query performance using three tech-
niques: data in the network (DITN), DITN with
the optimization that partitions the largest two ta-
bles involved in an equijoin by the join column
(DITN2PART), and a partitioning-based parallel
query plan (PBP). To make an apples-to-apples com-
parison, all three techniques are implemented on the
same SAN itself, and all three techniques used the
Apache Derby query processor for co-processor.1

Our experiment used a TPC-H database (scale fac-
tor 1GB). We use a variety of SPJAG queries (Table 2)
in our experiments, ranging from a two table join of
Orders and Lineitem (Q1), to a 6-way join (Q3). We
use these rather than the actual TPC-H queries be-
cause we want to study the parallelization of their SP-
JAG portions in depth.

DITN and DITN2PART were implemented as de-
scribed previously. In DITN, all the tables are clus-
tered by their primary keys, whereas in DITN2PART
the largest two tables (usually Orders and Lineitem)
are correctly clustered on their join column. During
query execution, the cpuwrapper logically splits each
input table into segments (as discussed in Section 3),
and then invokes the join at the co-processors on each
work-unit.

Ideally we would implement PBP using a query plan
with Exchange. But Apache Derby does not imple-
ment an Exchange operator. We solve this problem
by “doing the exchange for free”, as follows. For each
query, we do a perfect partitioning of each of the in-
put tables, tailored to that particular query, before the
query execution begins.

In our response time numbers, we do not count
the cost of this pre-partitioning – neither the cost of
the partitioning the two largest tables in the join for
DITN2PART, nor the cost of partitioning all the ta-
bles in the join for PBP. Thus our results skew the
performance numbers of DITN2PART and PBP. This
is not perfect, but is necessary because Apache Derby
does not have an Exchange operator. However this im-

1In contrast, IBM’s shared disk [10] and shared nothing [2]
use specialized query processors, and a different interconnection
topology: the shared disk system uses a sysplex, and the shared
nothing system uses a cluster of servers with disks attached to
the servers.

perfection is ok, because we favor PBP more than we
favor DITN2PART. The point to note is that we are
only overestimating the loss in performance of DITN
and DITN2PART due to imperfect partitioning.

Our goal is to validate the following hypotheses:
• The imperfect partitioning and execution of off-

diagonal work-units does not slow down DITN and
DITN2PART by too much, even in a homogeneous
cluster with dedicated nodes (Section 5.1).

• When the nodes are not dedicated, DITN and
DITN2PART perform better. In Section 5.2 we
study the specific issue of load bursts and failure
at the non-dedicated nodes.

• When the nodes are of heterogeneous processing
power, DITN and DITN2PART perform better
than PBP (Section 5.3).

Query Joins and Group By involved
Q1 O ./ L group by o orderpriority

Q2 S ./ O ./ L group by s suppname

Q3 S ./ O ./ L ./ C ./ N ./ R group by n name

Table 2: Queries Used (O=Orders, L=Lineitem,
C=Customer, S=Supplier, N=Nation, R=Region)

5.1 Response-Time Speedup

We start by measuring the loss in performance of
DITN and DITN-OPT, when compared to PBP.

Figure 6 shows the speedup obtained for the two-
table join (Q1) as we increase the number of co-
processors. The graph shows that DITN performs sim-
ilarly to PBP even as we increase the number of co-
processors. DITN2PART performs identically to PBP
because both the exact same plan, on the same data
layout.

At 10 co-processors, the response time of PBP is
8.06s and that of DITN is 14.60s. It is instructive
to compare this slowdown of DITN (about 81%) with
what is predicted by Equation (1) of Section 3.1.1.
With 10 co-processors, Lineitem is split into 5 parti-
tions and Orders into 2 partitions. So the cost ratio of
DITN to PBP is:

max(JoinCost(|O|/2, |L|/5), ξ(|O|/10 + |L|/10))
max(JoinCost(|O|/10, |L|/10), ξ(|O|/10 + |L|/10))

From experimentation, we have found JoinCost for
this simple query (it is a sort-merge join) to be lin-
ear in the combined size of the inputs. Considering
the CPU cost clauses alone, the ratio works out to
|O|/2+|L|/5
|O|/10+|L|/10 = 2.6.

The actual overhead, about 1.811 is lesser because
the I/O costs are identical in both methods and we are
not able to realize full I/O parallelism with respect to
CPU.

Figures 7 and 8 show similar speedup obtained for
queries Q2 and Q3. Again, we see that DITN is
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not that much worse than PBP, while DITN2PART
performs almost identically. For these two queries,
DITN2PART and PBP run different query plans. In
this case; PBP carefully partitions all the tables of the
join, whereas DITN2PART only partitions Orders and
Lineitem. Nevertheless, the remaining tables besides
Orders and Lineitem are small enough that the over-
head of DITN2PART is very small.

Figure 6: Response Time Speedup for Q1: join of OL

Figure 7: Speedup for query Q2: join of SOL)

Figure 8: Speedup for Q3: join of SOLCNR

5.2 Load and Failure Resiliency

This experiment demonstrates the effectiveness of
intra-fragment parallelism in adapting to load varia-
tions over time, as well as to node failures.

As discussed in Section 4.1, there are two kinds of
adaptation to load variations. The first kind is to
adapt dynamically, when one or more of the chosen
nodes has a significant slowdown, stall, or failure dur-
ing join execution. The second kind is to adapt by con-
tacting a load monitor just before the SPJAG starts
running, to find the best nodes to allocate work-units
to. We now present two experiments corresponding to
these two kinds of adaptation.

5.2.1 Resilience During Query Execution

First we run query Q1 over a cluster of 5 co-processors,
with the tables striped across 5 disks. Immediately
after the query begins execution (i.e., right after the
cpuwrapper has sent the SQL for the work-units to
the co-processors), we impose an artificial CPU load
on one co-processor2.

Figure 10 compares the query response time of
DITN and DITN2PART to that of PBP, for various
values of the imposed CPU load. The x-axis plots the
fraction of CPU utilization taken up by the artificially
imposed load — the larger this fraction, the longer
that co-processor will take to perform its work-unit.

The PBP curve shows a response time that contin-
ually rises with the degree of the load burst. In the
case that a node suddenly becomes unavailable (i.e.,
the imposed cpu load is 100%,) the PBP system must
wait until that node comes back up again. In the fig-
ure this is indicated by the response time growing out
of bounds when the imposed load nears 100%.

In comparison, the cpuwrapper chooses an alterna-
tive node for the failed/slowed co-processor, after wait-
ing 50% longer after all the other 4 co-processors have
finished. In this experiment, the time-out period for
DITN happens to be 28.6 seconds, and occurs when-
ever the imposed loads is at least 60%. So the entire
query always finishes within about 46 seconds. In fact,
the cpuwrapper overcomes the performance drawback
of doing the off-diagonal work units, and starts to beat
the perfectly partitioned system, whenever the load
burst is at least 70%. DITN2PART performs even
better. It closely follows PBP’s curve until the im-
posed load hits 60%, and then starts benefiting from
adapting to the alternative node. The upper-bound
response time for DITN2PART is within 34 seconds.

5.2.2 Across-Query Load Adaptation: Dan-
gers of Static Partitioning

To test load adaptation across queries, we re-run the
same query as in the above experiment, but run it

2We impose a definite CPU load using the CPU Load simu-
lator tool from Commlinx Solutions.
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Figure 10: Load Resiliency during Query Execution

several times in sequence, retaining the artificially im-
posed load once it has been imposed. i.e., during one
particular query iteration we impose a load of 75%,
and retain that imposed load throughout. The pre-
vious experiment shows how the cpuwrapper adapted
during that particular query iteration. This experi-
ment shows how the cpuwrapper learns of this load
from the load monitor, and completely avoids picking
that node for subsequent iterations.

The left graph of Figure 9 compares the response
time of each query iteration, for DITN, and for a PBP
system where the two input tables are statically parti-
tioned per their join columns. During the first two iter-
ations, PBP does better than DITN because it avoids
the off-diagonal work units. In the 3rd and 4th iter-
ation, when the node is loaded, both PBP and DITN
response time almost quadruples. But DITN is able to
recover subsequently by adapting to another available
node on the grid. PBP continues to use the busy node,
causing the response time to remain high.

Notice that this problem will not go away sim-
ply by implementing a load-balancing Exchange (such
as [18]). Since the tables have been statically parti-
tioned on their join columns, the query plan will not
even contain an Exchange!

5.3 Heterogeneity

This experiment investigates how cpuwrapper per-
forms in a heterogeneous environment. We run a the
query over a cluster that initially has two fast nodes.
As the size of the cluster grows, we adds more slow
nodes into the cluster. For example, a cluster of 5
nodes includes 2 fast nodes and 3 slow ones.

Figure 11 shows how cpuwrapper with asymmetric
work allocation makes use of slow nodes to improve
query response time. It compares the total response

Figure 11: Handling Heterogeneity With Asymmetric
Work Allocation

Figure 12: Individual Response Times

time taken by DITN with asymmetric work allocation
to DITN with symmetric work allocation and PBP.
The x-axis is the number of co-processors (nodes) in
the cluster. For both DITN and PBP with symmetric
work allocation, we see inclusion of slow nodes might
introduce a sharp surge in total response time because
the slow nodes need to spend much more time in the
same amount of work load. They become destruc-
tors that cost longer response time than not includ-
ing them. On the other hand, asymmetric allocation
prevents slow nodes from being a bottleneck. The re-
sponse time for asymmetric allocation decreases grad-
ually as the cluster sizes increases. DITN with asym-
metric allocation performs better than DITN with
symmetric allocation at any cluster size. It can even
beat PBP with symmetric allocation when the cluster
size is 3 and 4.

Figure 12 demonstrates cpuwrapper can balance
loads well across grid nodes. The y-axis is the re-
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Figure 9: Load Resiliency across queries

sponse times taken at each individual node and the x-
axis shows clusters in each query execution. For sym-
metric allocation, we see a big discrepancy between
fast nodes and slow nodes. That means we have not
given fast nodes enough work while slow nodes become
the bottleneck for accepting too much work load. On
the other hand, asymmetric allocation reduces the dis-
crepancy. Interestingly, we have observed that the re-
sponse times at fast nodes are longer than at slower
nodes in asymmetric allocation, indicating we might
have given too much work to the fast nodes. This
behavior attributes to our assumption that JoinCosts
are linear symmetric functions of the input table sizes
in Section 3.1.2. That assumption favors fast nodes
since it omits the polynomial components in JoinCost.
However, favoring fast nodes makes sure adding a slow
node can always improve the total response time.

6 Related Work

There have been numerous projects on parallel query
processing in the last two decades. [4] is a good intro-
duction to this field. Most of them (Gamma, Bubba,
Tandem, Teradata, Informix XPS, DB2) [5, 3, 20, 22,
2]) use the shared-nothing [19] approach. [13] is an ex-
tensive critique that discusses many of the points that
we raised in the introduction, in more detail.

There was quite a bit of interest in shared disk sys-
tems in the mid 80s and early 90s DITN is similar in
spirit to the Shared Disk approach of the IBM Sys-
plex and the Digital VaxCluster [10]. These systems
focus on transaction processing and distributed lock-
ing, rather than with parallelization of query process-
ing. Indeed, [4] cite concurrency control as one of the
two problems with the shared disk architecture (the
other is network scalability). The IBM S/390 Paral-
lel Query Processing system [10] does perform parallel
query processing over a sysplex. But it parallelizes
sort and scan operations, and relies on tuple shipping
between co-processors to perform joins. Therefore it
has the same limitations with respect to heterogeneity
and non-dedicated processors.

Oracle Parallel Server is a system with a mix of
shared nothing and shared disk characteristics. Hash
joins are done as in shared nothing systems, by parti-
tioning the data beforehand and joining each partition
on a separate processor. Index nested loop joins and
scans rely on parallelism from the storage system; the
scans rely on parallelism via storage system striping,
and the index lookups rely on the multiple disk-heads
to achieve speedup in random access.

Another aspect of intra-fragment parallelism is the
way the cpuwrapper adapts to load differences across
the co-processors, and to load bursts and unavailabil-
ity within each individual co-processor. This is related
to the literature on load-balancing and skew-balancing
either at the beginning of Exchange [15, 23, 11, 12] or
even during Exchange [18]. The main advantage of our
method over these is that by avoiding Exchange com-
pletely, we are not vulnerable to static partitioning, as
the experiment of Section 5.2.2 showed.

The only related work on fault tolerant exchange
that we are aware of is FLUX [17], where the Exchange
routes each tuple to two nodes. This is a heavy-weight
solution that needs dual redundancy even in the com-
mon case of no failures. Instead we timeout upon a
failure or significant slowdown, and upon a timeout,
we run the affected work-unit at another co-processor.
We are able to avoid the dual redundancy of FLUX be-
cause we assume that the base tables are always avail-
able – their availability is handled by the storage sys-
tem (FLUX in contrast is designed for fault-tolerance
over general data streams, and cannot rely on a storage
system to have a copy of the data available).

Some of the recent papers on adaptive query pro-
cessing do look at distributed queries. For example,
Eddies [1] and distributed Eddies [21] continually mon-
itor the speed of query operators and use this infor-
mation to adjust the query plan by changing the ways
tuples are routed. In theory distributed eddies can al-
low heterogeneous plans at the co-processor. It will be
interesting to combine our work with this.

The Polar-Star [6] system allocates query processing
work to grid compute nodes using intra-operator par-
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allelism. It takes in a plan with Exchange operators,
and chooses the degree of parallelism of each Exchange
operator in a cost-based fashion. The disadvantage of
this approach is the heterogeneity and load/failure re-
siliency problems of intra-operator parallelism.

7 Conclusions and Future Work

We have presented DITN, a new style of parallel query
processing that uses non-dedicated, possibly hetero-
geneous or even flaky compute nodes. We do not
partition data across the compute nodes but instead
leave it in a shared storage system, from which all
co-processors access data as needed. We avoid ship-
ping tuples between query operators by not using
intra-operator parallelism. Instead we use an intra-
fragment parallelism where entire join and aggregation
blocks are outsourced to co-processors, using a feder-
ated DBMS.

Because the data is not perfectly partitioned, DITN
does more work than a traditional partitioning-based
parallel query system. Experiments over small scales
(upto 10 nodes) suggest that this disadvantage is
small, especially with an optimization to dynamically
re-partition the two largest tables of the join.

But in return for this performance loss, DITN
gets several advantages in situations where the co-
processors have variable loads, can fail abruptly, or are
heterogeneous. Moreover, DITN allows gradual scale-
out of the parallel query processor using non-dedicated
nodes.

One obvious area for future work is to see how far
DITN will scale. Parallel DBMSs (especially of the
shared-nothing variety) scale upto 100s and even 1000s
of nodes. We need further investigation to determine
up to what scale is the “sweet spot” of DITN.

Longer term, we want to explore push down of
additional database operations into storage systems.
For example, DITN-2PART dynamically partitions
the largest two tables of a join. Instead, each co-
processor can specify a predicate on the file open call
to the base table. The storage software can accept this
predicate from each co-processor, combine them into a
de-multiplex operation, and push it into the network
switch of the SAN (assuming a programmable switch).

An assumption in this paper is that a number m
of co-processors to use is given by the user, and that
DITN can pick the fastest m co-processors on the grid.
But in practice a user does not care about m – he cares
about the QoS (e.g., response time) that his workload
gets. It would be useful if DITN can take a QoS goal,
and automatically determine a suitable subset of the
co-processors that can meet it best.
Acknowledgments: We thank Garret Swart for
many interesting discussions on this project.
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