
Catching the Best Views of Skyline: A Semantic
Approach Based on Decisive Subspaces ∗

Jian Pei1 Wen Jin1 Martin Ester1 Yufei Tao2

1 Simon Fraser University, Canada, {jpei, wjin, ester}@cs.sfu.ca
2 City University of Hong Kong, Hong Kong, taoyf@cs.cityu.edu.hk

Abstract

The skyline operator is important for multi-
criteria decision making applications. Al-
though many recent studies developed effi-
cient methods to compute skyline objects in
a specific space, the fundamental problem on
the semantics of skylines remains open: Why
and in which subspaces is (or is not) an ob-
ject in the skyline? Practically, users may
also be interested in the skylines in any sub-
spaces. Then, what is the relationship be-
tween the skylines in the subspaces and those
in the super-spaces? How can we effectively
analyze the subspace skylines? Can we effi-
ciently compute skylines in various subspaces?
In this paper, we investigate the semantics of
skylines, propose the subspace skyline analy-
sis, and extend the full-space skyline computa-
tion to subspace skyline computation. We in-
troduce a novel notion of skyline group which
essentially is a group of objects that are coin-
cidentally in the skylines of some subspaces.
We identify the decisive subspaces that qual-
ify skyline groups in the subspace skylines.
The new notions concisely capture the seman-
tics and the structures of skylines in various
subspaces. Multidimensional roll-up and drill-
down analysis is introduced. We also develop
an efficient algorithm, Skyey, to compute the
∗ The research of Jian Pei is supported in part by NSERC

Grant 312194-05 and NSF Grant IIS-0308001. The research of
Yufei Tao is supported in part by Grant CityU 1163/04E from
the RGC of HKSAR. All opinions, findings, conclusions and
recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

set of skyline groups and, for each subspace,
the set of objects that are in the subspace sky-
line. A performance study is reported to eval-
uate our approach.

1 Introduction

It has been well recognized that the skyline opera-
tor is important for multi-criteria decision making ap-
plications. A (classic) illustrative example of skyline
queries is to search for hotels in Nassau (Bahamas)
which are cheap and close to the beach [2]. Suppose
each hotel has two attributes: the price and the dis-
tance to the beach. Hotel A dominates hotel B (or, A
is a better choice than B in the context of this exam-
ple) if A.price ≤ B.price, A.distance ≤ B.distance
and at least one inequality holds. Those hotels not
dominated by others in terms of price and distance to
the beach form the skyline. In other words, the sky-
line hotels are all possible trade-offs between price and
distance to the beach that are superior to other hotels.

There are many recent studies on efficient methods
for skyline computation (see Section 5 for a brief re-
view). However, the fundamental questions about the
semantics of skyline remain open.

Example 1 (Intuition). Consider a set of 5 objects
in 2-d space (X, Y) as shown in Figure 1. It is easy
to verify that objects a, b and c are in the skyline in
space (X,Y) since each of them is not dominated by
any other objects.

Projection in space X

b (2)

{a, e} (3)

Y

X

d (1, 4)

a (1, 3) e (3, 3)

b (2, 2)

c (4, 1)

Space (X, Y)

c (4)

Y
c (1)

b (2) d (4)
Projection in space Y

X{a, d} (1) e (3)

Figure 1: An example showing the intuition.

In the same figure, we also plot the projections of
the objects on dimensions X and Y , respectively. In

253

subspace X, the projections of a and d collapse. Both
are in the subspace skyline of X. In subspace Y , the
projection of c is in the subspace skyline. Since all
objects collapse in the trivial subspace ∅, hereafter,
we use the term “subspace” to refer to only non-empty
ones except for specifically mentioned.

Although a, b and c all are skyline objects in the full
space (X, Y), there are some tricky differences among
them. Both a and c have some projections which are
in some subspace skylines (i.e., subspaces X and Y ,
respectively), but no projection of b is in subspace sky-
line of any proper subspace. A closer look finds that a
taking value 1 on dimension X is already sufficient to
qualify it as a skyline object. Similarly, the value 1 of c
on dimension Y is critical for the skyline membership
of c. On the other hand, b is a skyline object only if
both dimensions X and Y are considered – it needs
two dimensions to qualify.

Although both d and e are not in the skyline in
space (X, Y), they are still subtly different if we look
at the subspaces. The projection of d is in the skyline
in subspace X but e has no projection belonging to a
subspace skyline. d is dominated by a, nevertheless,
the dominance is “partial” – d takes the same value as
a in dimension X and thus has the chance to be in the
skyline in subspace X.

While the skyline in Example 1, which involves a
two dimensional space and only a few objects, is sim-
ple and easy to be perceived, the general situation may
be much more complicated when many dimensions are
involved. Nevertheless, the observations in Example 1
illustrate one important intuition. Whether an object
is in the skylines of the full space or of some subspaces
is determined by the values of the object in some deci-
sive subspaces. The decisive subspaces and the values
in those subspaces vary from object to object in the
skyline. For a particular object, the values in its deci-
sive subspaces justify why and in which subspaces the
object is in the skyline – the semantics of the object
with respect to skyline.

Why should we care about the semantics of skylines?
Semantics is important to understand the data. For
example, Section 6.1 analyzes a real data set which
contains 17, 226 records of Great NBA Players’ sea-
sonal performance from 1960 to 2001. Wilt Chamber-
lain’s performance in 1960 is in the skyline of the full
space, which can be identified by the conventional sky-
line computation methods. However, one may wonder
which merits really make Wilt that outstanding. The
semantics analysis in Section 6 shows that Wilt was
outstanding in total rebounds in the season of 1960
by achieving the record of 2149 in the NBA history.
The attribute of total rebounds is the decisive sub-
space that establishes his superior status. In fact, he
was not exceptional in any other factors such as to-
tal assists. As another example, Michael Jordan does
not hold any record in any single attribute. However,

his performance in 1988 is in the skyline of subspaces
(total points, total rebounds, total assists) and (games
played, total points, total assists), and also in the sky-
line of the full space. Those two subspaces are deci-
sive, and explain why Michael Jordan is an outstand-
ing player. Clearly, such information cannot be cap-
tured by the traditional skyline computation.

The concepts of skyline groups and decisive sub-
spaces can also be used immediately for efficiently an-
swering the skyline membership queries: given an ob-
ject or a group of objects, determine the subspaces
where the object(s) are in the subspace skylines.

The investigation of skylines in subspaces naturally
introduces the problem of subspace skyline analysis
and computation: for a set of subspaces, find the ob-
jects and their projections that are in the skylines of
the subspaces, and analyze their relationship. This
type of queries is interesting and useful in practice
since, more often than not, a user may want to inter-
actively examine the skylines with respect to different
combinations of attributes.

Motivated by the above observations, in this paper,
we study the semantics of skyline objects and its ap-
plications on subspace skyline computation. We make
the following contributions.

• We develop a theoretical framework to answer the
question about semantics of skyline: Why and in
which subspaces is an object in the skyline? The
semantics of skyline objects is concisely captured
by the novel notions of skyline groups and the
corresponding decisive subspaces. The subspaces
where an object (or a set of objects) is in the sky-
line can be effectively determined by the skyline
groups that the object belongs to and their deci-
sive subspaces.

• We investigate the problem of subspace skyline
analysis. Skylines in subspaces can be concisely
summarized by skyline groups. Moreover, sky-
line objects in the full space can be selected as
the representatives in skyline groups. They catch
the “contour” (i.e., technically, the projections)
of the skylines. The multidimensional roll-up and
drill-down analysis is useful to support the online
analytic processing of skylines.

• We present efficient algorithms for subspace sky-
line computation. We develop an algorithm to
compute both the set of skyline groups and, for
each subspace, the set of objects that are in the
subspace skyline. The algorithm applies the find-
ings in the semantics research and recursively re-
duces the set of objects to be searched. More-
over, a local sorting technique is developed so
that computing skylines in subspaces can be sub-
stantially faster than a näıve method running a
skyline computation algorithm on every subspace
from scratch.

254

Objects A B C D

x 1 4 5 7
y 1 3 6 7
z 2 3 5 8

Table 1: A set of objects as our running example.

• A performance study using both synthetic and real
data sets is conducted to evaluate our approach.
We showcase some interesting findings in the sky-
line semantic analysis using the real data set
about technical statistics of NBA players, and jus-
tify why they are meaningful in practice. More-
over, we use benchmark synthetic data sets to test
the efficiency and the scalability of our algorithm.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the notion of skyline groups and
decisive subspaces, and justify how the new notions
capture the semantics of objects with respect to sky-
line. In Section 3, we tackle the problem of subspace
skyline analysis. In Section 4, we present an algorithm
for subspace skyline computation. We review related
work in Section 5. An extensive performance study
is reported in Section 6. The paper is concluded in
Section 7.

2 Semantics

In this section, we first illustrate the ideas. Then, we
introduce the new notions. Last, we elaborate on how
the new notions capture the semantics and answer sky-
line membership queries.

2.1 Ideas

If an object u is in the skylines of subspaces C1 and C2

such that C1 ⊂ C2, can we declare that u is also in the
skyline of any subspace C in between, i.e., C1 ⊆ C ⊆
C2? This property is appealing since it may extremely
simplify the determination of skyline membership in
subspaces. Unfortunately, the general situation is far
from being so simple.

Example 2 (Ideas). Consider the objects in Table 1
as our running example. We obtain the following two
observations.

First, object x is in the skylines of full space
(A, B,C, D) and of subspace A. However, it is not
in the skyline of subspace (A, B), since its projection,
(1, 4, ∗, ∗), is dominated by (1, 3, ∗, ∗), the projection of
y. This demonstrates that, in general, for subspaces
C1 and C2 such that C1 ⊂ C2, even though an object is
in the subspace skylines of C1 and C2, it may not be in
the subspace skyline of C in between.

Second, objects x and y collapse in subspace (A,D).
The projection (1, ∗, ∗, 7) is in the subspace skyline of
(A, D). Thus, any dimension values in subspaces A, D

or (A,D) qualifying x as a subspace skyline object in
those subspaces also establish the same qualification
for y, and vice versa. In other words, if a group of
objects collapse in a subspace B and the shared projec-
tion is in the subspace skyline of B, then the objects
in the same group share the skyline membership in all
subspaces of B.

The observations in Example 2 lead to the following
ideas.

• The skyline membership is not monotonic – being
in the skyline of subspace B does not automat-
ically qualify an object in the skyline of super-
spaces of B. The object may be dominated in the
super-spaces of B by some other objects which
have the same values in B.

• Objects coincide and form groups in subspaces.
The skyline memberships in subspaces are shared
by all objects in the same group. The conver-
gence and divergence of groups from subspace to
subspace play critical roles in forming skylines of
various subspaces. Therefore, it is critical to cap-
ture groups of objects that the shared projections
are in the skylines of the subspaces.

2.2 Concepts

Hereafter, by default we consider a set of objects S in
an n-dimensional space D = (D1, . . . , Dn), where di-
mensions D1, . . . , Dn are in the domain of numbers.
For the sake of brevity, we often do not explicitly men-
tion S and D when they are clear in the context.

For objects u, v ∈ S, u is said to dominate v if
u.Di ≤ v.Di for 1 ≤ i ≤ n and there exists at least
one dimension Di0 such that u.Di0 < v.Di0 . Object u
is a skyline object if u is not dominated by any other
objects in S.

The notion of skyline can be intuitively extended to
subspaces.

Definition 1 (Subspace skyline). A subset of di-
mensions B ⊆ D (B 6= ∅) forms a (non-trivial) |B|-
dimensional subspace of D. For an object u in space
D, the projection of u in subspace B, denoted by uB, is
a |B|-tuple (u.Di1 , . . . , u.Di|B|), where Di1 , . . . , Di|B| ∈
B and i1 < · · · < i|B|.

The projection of an object u (u ∈ S) in subspace
B ⊆ D is in the subspace skyline (of B) if uB is not
dominated by any wB in B for any other object w ∈ S.
u is also called a subspace skyline object (of B).

For example, in Figure 1, the projections of both
a and d are in the subspace skyline in subspace X,
and the projection of c is in the subspace skyline in
subspace Y .

Now, let us consider objects that collapse in sub-
spaces. They form groups that are critical in our sky-
line analysis.

255

Definition 2 (C-group). Let G ⊆ S be a subset of ob-
jects and B ⊆ D be a subspace. (G,B) is a coincident
group (or c-group for short) if all objects in G share
the same values on all dimensions in B. The projection
of the group in B, denoted by GB, is uB where u ∈ G.

A c-group (G,B) is maximal if no any other objects
v ∈ (S − G) share the same values as those in G on
dimensions in B, and objects in G do not share the
same value on any other dimension D ∈ (D − B).

Example 3 (C-group). Consider objects x and y in
Table 1. They share the same value on dimension A,
and no other objects have the same value on A. Thus,
x and y form a coincident group (or c-group for short)
on A.

Although we cannot add new objects into the group
({x, y}, A), it can be expanded by including more di-
mensions. x and y share the same values in A and D.
Thus, we can maximize the group to include dimension
D. The maximal c-group is ({x, y}, (A,D)).

Given a subset of objects G, we define I(G) as the
maximal set of dimensions that all objects in G share
the same values. That is,

I(G) = {D|D ∈ D,∀u, v ∈ G : u.D = v.D}.

Moreover, for a subspace B and a set of objects G, we
define O(G,B) as the maximal set of objects that have
the same values on dimensions in B as objects in G.
That is,

O(G,B) = {v|v ∈ S, ∀D ∈ B∀u ∈ G : v.D = u.D}.

The above two operators can be used to derive max-
imal c-groups for any given subset of objects, or a sub-
set of objects and a subspace. The following lemma
gives the derivation, and can be shown based on the
related definitions immediately.

Lemma 1 (C-group). For a given subset of objects
G, (O(G, I(G)), I(G)) is a maximal c-group. For a
given subset of objects H and a subspace B such that
all objects take the same values on all dimensions in
B, (O(H,B), I(O(H,B))) is a maximal c-group.

We are particularly interested in maximal c-groups
whose projections are in the skyline of some subspaces.
Intuitively, we want to capture the subsets of values
in their projections that are decisive to their skyline
memberships.

Definition 3 (Skyline group and decisive subspace).
Maximal c-group (G,B) is called a skyline group if GB
is in the subspace skyline of B.

For skyline group (G,B), a subspace C ⊆ B is called
decisive if (1) GC is in the subspace skyline of C; (2)
O(G, C) = G; and (3) there exists no proper subspace
C′ ⊂ C such that conditions (1) and (2) also hold for
C′.

The signature of skyline group (G,B) is written as
Sig(G,B) = 〈GB, C1, . . . Ck〉, where C1, . . . Ck are all
decisive subspaces of the skyline group.

Conditions (1) and (3) are straightforward. Condi-
tion (2) requires that the decisive subspace is exclusive
to the group G. This reflects our intension to catch the
decisive factors for a group of objects that are in the
(subspace) skylines. We will revisit this point soon
when we discuss the semantics.

Example 4 (Skyline group). Consider the objects in
Table 1 again. In the full space, x, y and z are unique
and each of them is a skyline object, therefore, each of
them forms a maximal c-group in space (A,B,C, D).
Each group contains only one object.

For group (x,ABCD), where x and ABCD are
shorthands for set {x} and subspace (A,B, C, D), re-
spectively, subspace CD is decisive. Please note that
AD is not a decisive subspace for the group, since x
collapses with y in AD and the maximal c-group in
AD contains two objects, i.e., O(x,AD) = xy. In
other words, condition (2) in the definition is violated.
Another decisive subspace for this group is AC. Thus,

Sig(x, ABCD) = 〈(1, 4, 5, 7), AC,CD〉.
As another example, for group (xy, AD), its projec-

tion is in the subspace skyline of AD. The group has
two decisive subspaces, namely A and D. Thus,

Sig(xy, AD) = 〈(1, ∗, ∗, 7), A,D〉.
Similarly, we have Sig(xz, C) = 〈(∗, ∗, 5, ∗), C〉.

2.3 Semantics of (Subspace) Skyline Objects

The question about the semantics asks: For a given
object or a group of objects, can we determine the sub-
spaces where the projections of the object(s) are in the
subspace skyline?

Theorem 1 (Decisive subspace). For skyline group
(G,B), if C is decisive, then for any subspace C′ such
that C ⊆ C′ ⊆ B, GC′ is in the subspace skyline.
Proof. We prove by contradiction. Suppose GC′
is not in the subspace skyline, and is dominated by
wC′ . Then, w 6∈ G. For each dimension D ∈ C′,
w.D ≤ GB.D and at least one inequality holds. On the
other hand, since C is decisive, GC is not dominated
by projections of any other objects. Thus, GC = wC .
That means, O(G, C) ⊃ G, which violates condition
(2) in Definition 3.

Theorem 1 indicates how decisive subspaces capture
the semantics of skyline objects: The skyline member-
ship of an object or a group of objects is established by
its decisive subspaces.

Example 5 (Semantics). As shown in Example 4,
Sig(x,ABCD) = 〈(1, 4, 5, 7), AC,CD〉. Thus, x is

256

ABC ACD BCD

AC CD

x, ABCD

(b) Subspaces where x is in
the subspace skyline

xz, C

x

xy, AD

A DABC ACD BCD

AC CD

x, ABCD

(a) Subspaces determined
by group (x, ABCD)

Figure 2: The subspaces where object x in Table 1 is
in the skyline.

in the skyline of subspaces inclusively bordered by
ABCD, AC and CD, as shown in Figure 2(a). This
also explains why we opt for the representation of sig-
nature.

The signature of skyline group (x,ABCD) explains
why and in which subspaces x is in the skyline without
any accompanying coincident objects. x coincides with
y and z in some subspaces and thus may jointly be
in some subspace skylines. This is captured by the
corresponding skyline groups.

Theorem 2 (Semantics). An object u is in the skyline
of subspace C if and only if there exists a skyline group
(G,B) and its decisive subspace C′ such that u ∈ G
and C′ ⊆ C ⊆ B.
Proof sketch. (Direction if). Following Theorem 1,
GC is in the subspace skyline. Since u ∈ G, uC is also
in the subspace skyline.

(Direction only-if). Consider the group of objects
O(u, C). All objects in the group are in the sub-
space skyline of C since they share the same val-
ues as u on dimensions in C. Following Lemma 1,
(O(u, C), I(O(u, C))) is a maximal c-group. Further-
more, it can be shown that the group must be in the
skyline of subspace I(O(u, C)). Thus, the group is a
skyline group. We note that subspace C satisfies condi-
tions (1) and (2) of Definition 3. Thus, if C is minimal,
then C itself is decisive, i.e., C′ = C. Otherwise, there
must exists a C′ ⊂ C that C′ is decisive.

2.4 Answering Skyline Membership Queries

Theorem 2 comes with a generic framework of answer-
ing skyline membership queries: given an object or a
group of objects, determine the subspaces where the
object(s) are in the subspace skylines.

The framework is simple. As preprocessing, we ma-
terialize the set of skyline groups and their signatures,
for which the algorithm will be given in Section 4.
Then, instead of searching all possible subspaces, we
only need to check the skyline groups in which the ob-
ject is a member. This is effective since only the signa-
tures of the skyline groups are needed. Moreover, the
skyline groups can be indexed by their signatures to
speed up the search. The optimization of the algorith-
mic framework is an interesting topic for future study,
but is beyond the scope of this paper.

Example 6 (Semantics – continued). Continued from
Example 5, x is a member of skyline group (xy, AD),
which has decisive subspaces A and D. Thus, x is also
in the subspace skylines of A, D and AD. Similarly,
as a member of group (xz, C), x is in the subspace
skyline of C. The complete set of subspaces where x
is in the skyline is shown in Figure 2(b).

3 Subspace Skyline Analysis

The notion of skyline groups naturally leads us to ex-
plore skylines in subspaces. When skylines in all sub-
spaces are considered, it is imperative to ask: How are
the subspace skylines formed and what is the relation-
ship among them?

3.1 Intuition

We try to decipher some elegant structures embedded
in the subspace skylines.

Skylines in subspaces consist of projections of ob-
jects. For a projection that is in the skyline of a sub-
space, the set of objects that share the same projection
form a c-group. By the c-group containment relation-
ship, the projections in subspace skylines form a lat-
tice called the skyline projection lattice (Theorem 3 in
Section 3.2), which is a concise structure.

The projection lattice may contain redundant infor-
mation. The critical point here is that some projec-
tions in skylines of different subspaces may be made by
the same maximal group of objects. Conceptually, a
skyline group is a maximal group of objects that coin-
cide in some subspaces and whose projections are also
in the subspace skyline. Therefore, we can use skyline
groups to derive a concise representation. The lattice
of skyline groups is called the skyline group lattice and
is a quotient lattice of the skyline projection lattice
(Theorem 4 in Section 3.2).

Manipulating groups of objects all the time is still
inconvenient. Ideally, we would like to select some
representatives for the skyline groups. Fortunately,
this is achievable since each skyline group must contain
at least one object that is in the skyline of the full
space. This indicates that the full space skyline casts
the contours of skylines in subspaces.

3.2 Skyline Group Lattice

A projection uB where u ∈ S is called a skyline pro-
jection if it is in the skyline of B. We can define a
relation v on the set P of all skyline projections: for
p, q ∈ P that are in the subspace skylines of B1 and
B2, respectively, p v q if B1 ⊇ B2 and pB2 = q.

Theorem 3 (Skyline projection lattice). Let P be the
set of all skyline projections with respect to a set of
objects S. (P,v) is a complete lattice if (∗, ∗, . . . , ∗)
and ∅ are treated as the two trivial skyline projections
for the unit element and the zero element, respectively.

257

Proof sketch. Obviously, v is a partial order on P.
We also note that ∅ is the projection of any objects
in subspace ∅ (the trivial subspace), and (∗, ∗, . . . , ∗)
is the projection of an empty set of objects on all di-
mensions. They are trivial and just technically make
up the lattice. The completeness of the lattice follows
from the fact that the number of skyline projections is
limited.

To characterize that multiple skyline projections
may be made by one maximal group of objects, we
define an equivalence among skyline projections as fol-
lows. For any projection p in subspace B, define the
pre-image of p as the set of objects that have p as the
projection in B, denoted by pre(p) = {u|u ∈ S, uB =
p}. For two skyline projections p and q in subspaces
B1 and B2, respectively, they are equivalent (in terms
of being generated by the same group of objects), de-
noted by p ∼ q, provided pre(p) = pre(q).

Theorem 4 (Skyline group lattice). Let SG be the set
of all skyline groups. (SG,v) forms a complete lattice
where v is on the projections in the groups. Moreover,
(SG,v) = (P,⊆)/ ∼.
Proof sketch. The quotient lattice claim follows from
the fact that a skyline group also expands to include all
possible dimensions where the objects share the same
projections. Details are omitted due to limited space.

Theorem 4 shows that skyline groups capture sky-
line projections in subspace skylines effectively, and
the signatures of skyline groups serve as the summa-
rization. Immediately, we know that the number of
skyline groups is at most the number of skyline pro-
jections.

Practically, is the summarization using skyline
groups meaningful? In practice, data is more or less
correlated. Thus, objects may share values in some
dimensions and form groups. In addition to capturing
the semantics of skyline objects, skyline groups also
summarize data records collapsing in some subspaces
and appearing in some subspace skylines.

3.3 Skyline Groups and Skyline Objects

Although skyline groups provide a succinct summa-
rization of the skylines in various subspaces, it still can
be inconvenient and costly to manage all group mem-
bers if many objects exist in a data set. Can we select
some representative objects from the skyline groups?

Encouragingly, we observe that each skyline group
contains at least one skyline object in the full space.

Theorem 5 (Skyline object). For any skyline group
(G,B), there exists at least one object u ∈ G such that
u is in the skyline of full space D.
Proof. Let u be an object in G such that, in the full
space D, u is not dominated by any other objects in
G. Such an object exists provided G 6= ∅. We show

that u is a skyline object in D with respect to the set
of all objects S. Otherwise, if u is dominated by v,
two cases may arise. First, uB = vB, then v ∈ G and
it contradicts the assumption that u is not dominated
by any other objects in G. Second, if there exists a
dimension D ∈ B that u.D > v.D, then given u is
dominated by v in the full space, uB is dominated by
vB. That leads to a contradiction to the assumption
that uB is in the subspace skyline.

Theorem 5 indicates that the skyline objects in the
full space play critical roles in the construction of sub-
space skylines – their projections are sufficient to rep-
resent the “contour” of the skyline, i.e., the dimension
values of the projections in the subspace skyline. In
other words, an object that is not in the skyline of full
space can be in the skyline of some subspace only if it
collapses to some full space skyline object(s).

For a data set S, we can obtain the set SK of sky-
line objects in the full space. A projection is in the
skyline of subspace B in S if and only if it is also in
the skyline of the same subspace in SK. Moreover, we
can construct skyline group lattices SGS and SGSK on
data sets S and SK, respectively. We can show that
SGSK is a quotient lattice of SGS . Limited by space,
we omit the details here.

On the other hand, if we are only concerned with the
projections in the subspaces skyline, only the skyline
objects in the full space are necessary for the analysis.
In such a case, we do not need to manipulate all ob-
jects. This potentially leads to a significant reduction
in the computational cost.

Theorem 5 immediately has two practically useful
applications. First, it gives rise to efficient algorithms
for subspace skyline computation, which will be dis-
cussed in Section 4. Second, it can also lead to a novel
OLAP style analysis of subspace skylines, which will
be showcased in Section 3.4.

We would like to point out that the other direction
of Theorem 5 does not hold. Generally, a maximal
c-group that is not a skyline group still may have a
skyline object in the full space as a member. For ex-
ample, in Figure 1, the group (ae, Y) is a maximal c-
group and a is a skyline object in the full space (X, Y),
but the group itself is not a skyline group.

3.4 OLAP Analysis on Skylines

Since the skyline groups form a complete lattice, it is
natural to introduce the multidimensional roll-up and
drill-down analysis on skyline groups.

Example 7 (OLAP analysis). Figure 3 shows the sky-
line group lattice in our running example (Table 1).
For each node in the lattice, the projection, the skyline
objects as representatives, and the decisive subspaces
are shown.

By browsing Figure 3, the following structural infor-
mation about the subspace skylines can be presented.

258

zero element

unit element

((*,3,*,*), yz, B)((*,*,5,*), xz, C)((1,*,*,7), xy, A, D)

((2,3,5,8), z, BC)((1,3,6,7), y, AB, BC)((1,4,5,7), x, AC, CD)

Figure 3: Skyline group lattice for Table 1.

• Subspace skylines. The information is recorded in
the signatures.

• Relationships between skylines in subspaces. For
example, from the figure, we know that an object
is in the subspace skyline of C if it has value 5
on C. There are two ways to further qualify the
object as a skyline object in the full space: either
having value 3 on B (i.e., object z), or having
value 1 on A or 7 on D (i.e., object x). The lat-
ter two values (A = 1 and D = 7) always come
together.

• Closure information. From the figure, we can
learn that it is impossible to have an object in the
subspace skyline of BCD, but not in the subspace
skyline of ABCD. Although a näıve method to
derive this information has to check all objects in
the data set, we derive this information from only
the skyline groups.

In practice, why are such roll-up and drill-down op-
erations useful? Suppose all objects in our running
examples are stocks. When a user examines subspace
C, she finds that both x and z are subspace skyline
objects. This is interesting to her, but she would like
to find out further in what other subspaces x is also
good and is better than z. Then, she finds AC and
CD and their super-spaces through a roll-up.

Clearly, the online roll-up and drill-down analysis is
not available in the traditional skyline analysis.

4 Subspace Skyline Computation

Given a data set, the problem of subspace skyline com-
putation is to compute, for each non-empty subspace,
the set of objects that are in the skyline of the sub-
space. At the same time, we also want to compute the
complete set of skyline groups and their signatures as
the summarization of the skylines.

4.1 Finding Skyline by Sorting

A lexicographic order can be defined on the set of ob-
jects S. For any objects u, v ∈ S. u ≺ v if there
exists an i0 (1 ≤ i0 ≤ n) such that u.Di = v.Di for
(1 ≤ i < i0) and u.Di0 < v.Di0 . u ¹ v if u ≺ v or
u = v. Apparently, the lexicographic order ¹ is a total
order.

{D1,D2,D3} {D1,D2,D4} {D1,D3,D4} {D2,D3,D4}

{D1,D2}

{D1}

{D1,D3} {D2,D3} {D1,D4} {D2,D4} {D3,D4}

{D2} {D3} {D4}

{D1,D2,D3,D4}

Figure 4: A top-down subspace enumeration tree.

As shown in [3], skyline objects in the full space D
can be found in two steps, as illustrated in the follow-
ing example.

Example 8 (Skyline computation by sorting). Let us
compute skyline objects in space (X, Y) for the objects
in Figure 1. In the first step, we sort all objects in the
lexicographic order. The sorted list is a(1, 3), d(1, 4),
b(2, 2), e(3, 3), c(4, 1).

The second step is as follows. We initiate the set
of skyline objects as empty. Then, we scan the sorted
list once. For each object u in the list, we compare u
against the current set of skyline objects. If u is not
dominated, then u is a skyline object and is inserted
into the set.

For example, since a(1, 3) is the first one in the
sorted list, it is not dominated and is inserted into the
set. The next object, d(1, 4), is dominated by a(1, 3)
in the current set of skyline objects, and thus is dis-
carded. The third object, b(2, 2), is compared with
a(1, 3), and is not dominated. Thus, b is also inserted
into the set as a new skyline object. e(3, 3) is discarded
since it is dominated by a(1, 3). Last, c(4, 1) is inserted
in to the set since it is not dominated by either a or b.
The set of skyline objects {a, b, c} is returned.

4.2 Top-down Subspace Enumeration Tree

In order to search skylines of all subspaces thoroughly,
we search subspaces in a depth-first manner. The com-
plete set of subspaces can be enumerated systemati-
cally using a (top-down) subspace enumeration tree.
For example, Figure 4 shows a tree enumerating sub-
spaces of space (D1, D2, D3, D4).

A top-down subspace enumeration tree differs from
a conventional set enumeration tree [14] in the way of
enumeration. In a conventional set enumeration tree,
search starts from the empty set, and each child adds
a new element to the parent set. It is bottom-up. In
the top-down subspace enumeration tree here, we start
from the full space, and each child explores a proper
subspace with one dimension less. The reason for this
arrangement is that the search from super-spaces to
subspaces enables us to recursively use Theorem 5 to
prune the set of objects under consideration. This
point will become clear in Section 4.3.

4.3 Algorithm Skyey

Algorithm Skyey takes a set of objects S in space D
as input, and returns the set of skyline groups (in the

259

form of signatures) and, for each non-empty subspace,
a list of objects that are in the corresponding subspace
skyline. We first describe the algorithm. An example
(Example 10) will follow.

4.3.1 Finding Skyline Objects in Full Space

In the first step, Skyey sorts all objects in the lexico-
graphic order and finds the set of skyline objects in
the full space, as illustrated in Example 8. The list of
skyline objects in the full space can be output. Every
distinct skyline object forms a skyline group. In other
words, if two objects u and v have exactly the same
value in all dimensions of D, and both of them are in
the skyline, then they share the same skyline group.

After the set of skyline objects in the full space is
found, Skyey makes one scan of all objects that are not
in the skyline of full space. Each non-skyline object
is compared with the skyline objects. For each non-
skyline object u and skyline object v, if the maximal
set of dimensions on which u and v share common
values (i.e., the set of dimensions I(uv)) is non-empty,
then a tag of (u, I(uv)) is attached to v. The tag
means u and v coincide in subspace I(uv).

After this step, all non-skyline objects can be dis-
carded. We do not need to access them anymore in
the rest of the algorithm. The rest of Skyey searches
the subspaces by a depth-first traversal of the subspace
enumeration tree (Section 4.2).

4.3.2 Efficient Local Sorting

Suppose the current node corresponds to a subspace
B. To identify the objects in the subspace skyline of
B, a näıve method is to sort the skyline objects in
the parent node. However, repeatedly sorting objects
for different subspaces can be expensive if there are
many objects and many subspaces. Interestingly, we
can reuse the sorted list in the parent node, which can
reduce the sorting cost substantially.

Example 9 (Local sorting). Suppose the skyline ob-
jects in the full space (D1, D2, D3, D4) is evaluated
by sorting. In order to find the objects in the sub-
space skyline of (D1, D2, D3) (i.e., the first child of
the root node in Figure 4, we do not need to sort the
objects – they are already sorted since a sorted list by
(D1, D2, D3, D4) is also a sorted list by (D1, D2, D3).
In fact, we do not need to do any sorting when we
search the subspaces in the leftmost branch of the sub-
space enumeration tree.

Now, let us consider the second leftmost leaf node
in Figure 4, D2. The objects are sorted by (D1, D2) in
the parent node. Instead of a complete sorting, merge
sort can serve the same purpose and save. The idea is
as follows.

The sorted list by (D1, D2) can be regarded as di-
vided into groups according to D1. Within each group,

objects are sorted by D2. We only need to merge the
groups according to D2.

4.3.3 Finding Objects in Subspace Skylines

Once the objects are sorted in the subspace, then
the objects in the subspace skyline can be identified.
Please note that we only sort the list of skyline ob-
jects in the parent node. To make the list of objects in
the subspace skyline of the current node complete and
the decisive subspace accurate, we need to find the ob-
jects that are not in the skyline of the parent node, but
are in the skyline of the current subspace. This can
be achieved by examining the information recorded in
the tags using the following two rules.

• Identifying objects that are not in the skyline of
the parent node, but are in the skyline of the cur-
rent subspace. For an object v that is in the sky-
line of the current subspace B, we check the tags
attached to v. For any tag (u, C) such that B ⊆ C,
u should also be output as an object in the sky-
line of the current subspace, and is put in the same
skyline group where v is in. The reason is that u
share the same values as v on all dimensions in B.

• Identifying decisive subspaces. For each skyline
group G, we check whether the number of ob-
jects in the skyline of the current subspace is
the same as the number of objects in the parent
node subspace. If the number of objects changes,
that means the group changes, i.e., O(G,B) ⊃
O(G,B′). Then, we add the parent subspace as
a temporary decisive subspace to group G, and
create a new group for G′ = O(G,B), and GB is
recorded in the signature of the new group. If the
group already has a temporary decisive subspace
that is a super-space of the newly inserted one,
then the super-space should be removed.

The depth-first search proceeds recursively. Ac-
cording to Theorem 5, only objects that are in the
skyline of the current subspace should be passed to
the children. Tags should be created for those objects
that are in the skyline of the parent subspace but not
in the skyline of the current subspace.

Example 10 (Algorithm Skyey). We demonstrate the
algorithm Skyey using our running example (Table 1).

As the first step, we sort all three objects in the
lexicographic order and identify all three objects in
the skyline of the full space (A,B,C, D). We create a
skyline group for each object.

Then, we go to subspace (A,B,C). We do not need
to sort the objects since the sorted list in the root node
can be reused. Again, in this subspace, all objects are
in the subspace skyline, and the groups do not change.

We further go to subspace (A,B). Again, we reuse
the sorted list. In this subspace, x and z are dom-
inated by y. Thus, ABC should be added to the

260

Input: A set of objects S in space D;
Output: (1) the set of skyline groups, and (2) for each

subspace, the set of objects in the subspace skyline;
Method:

Call Skyey(S, D);

Function Skyey(S′, D′)
1: Sort S′ in lexicographic order, try to reuse the

existing sorted list as shown in Section 4.3.2;
2: identify objects in the subspace skyline of D′;
3: for each skyline group in the parent node, check

whether a temporary decisive subspace should be
added; if necessary, create new groups and tags,
remove minimal temporary decisive subspaces
(Section 4.3.3);

4: let S′′ be the set of subspace skyline objects in the
current subspace;

5: for each (|D′| − 1)-d subspace D′′ call Skyey(S′′, D′′)
6: return;

Figure 5: The Skyey algorithm.

groups of x and z, respectively, as temporary decisive
subspace. Two tags, (x,AD) and (z, B), should be
created and attached to y. Later, temporary decisive
subspace ABC for group x will be removed when an-
other decisive subspace AC is inserted into the group.

We turn to subspace A, where y is still in the sub-
space skyline. However, the group needs to be ex-
panded, since the tag (x,A) indicates x is also in
the subspace skyline. Thus, the parent subspace, AB
should be added to group y as a temporary decisive
subspace. A new group, xy is created. Since x and
y share values on dimensions A and D, the signature
of group xy should include dimension D as well, i.e.,
(xy, (1, ∗, ∗, 7)).

The other subspaces are searched recursively. Lim-
ited by space, we omit the details here.

The algorithm is summarized in Figure 5. The
correctness and completeness of the algorithm follows
from the above discussion. Limited by space, we omit
the formal results here.

Comparing to a brute-force search, algorithm Skyey
has two major advantages. First, by Theorem 5, Skyey
recursively reduces the set of skyline objects that need
to be searched – only those objects in the skyline of
the current node will be passed to the children. Of-
ten, only a small subset of objects in a set is in the
skyline. The recursive reduction is effective in prac-
tice. Second, the adaptive local sorting can reuse the
sorted list of the parent node to avoid sorting at all in
some nodes, and also use merge sort which is practi-
cally more efficient than sorting from scratch.

Since Skyey needs to output the skyline of each non-
empty subspace, it has to search every subspace once.
In fact, if a user is interested in only the skyline groups
but not the detailed lists of objects in the skyline of
every subspace, the search can be further sped up.

Limited by space, we omit the details here.

5 Related Work

To the best of our knowledge, this is the first study on
the semantics and structure of subspace skylines. In
the following, we review some related work on skyline
query processing, and formal concept analysis and its
applications in multidimensional data analysis.

Numerous algorithms have been proposed for sky-
line retrieval and other related problems (e.g., multi-
objective optimization [15], maximum vectors [8, 16,
11], etc.). In the database context, Borzsonyi et al. [2]
develop the solutions based on divide-and-conquer
(DC) and block nested loops (BNL). Specifically, DC
divides the dataset into several partitions that can fit
in memory. The skylines in all partitions are computed
separately using a main-memory algorithm, and then
merged to produce the final skyline. BNL essentially
compares each tuple in the database with all the other
records, and outputs the tuple only if it is not dom-
inated in any case. The sort-first-skyline (SFS) [3]
sorts the input data according to a (monotone) prefer-
ence function, after which the skyline can be found in
another pass over the sorted list. Tan et al. [17] pro-
pose a solution that deploys the highly CPU-efficient
bit-operations (e.g., calculating the AND/OR of two
binary vectors) by computing the skyline from some
bitmaps capturing the original dataset. The authors
also provide another method based on some clever ob-
servations on the relationships between the skyline and
the minimum coordinates of individual points. Koss-
mann et al. [7] present an algorithm that finds the
skyline with numerous nearest neighbor searches. An
improved approach following this idea appears in [12].
Balke et al. [1] study skyline computation in web infor-
mation systems, applying the ”threshold” algorithm
of [4]. Recently, Lin et al. [10] consider the skyline
maintenance over data streams.

The maximal c-group lattice is levered by the for-
mal concept analysis [5]. However, very different from
previous studies on database and data mining stud-
ies using formal concept analysis, such as [13, 9], we
are interested in a small part of the lattice – only the
skyline groups. Moreover, the challenge is how to com-
pute the skyline groups and the objects in the subspace
skylines. These issues are far beyond the traditional
studies on formal concept analysis.

There have been some recent studies on finding the
determinant factors in multidimensional subspaces for
some critical data. Two typical examples are [6, 9].
In [6], Knorr and Ng propose an approach to find the
minimal sets of factors that explain the distance-based
outliers. In [9], the quotient cube lattice is developed
to identify groups of aggregates that share the same set
of base tuples in a data warehouse and thus the seman-
tics of the aggregates can be explained and summa-
rized concisely. While the philosophy in this research

261

Player GP PTS REB AST Decisive subspaces

Wilt Chamberlain (1960) 79 3033 2149 148 (REB)
Wilt Chamberlain (1961) 80 4029 2052 192 (PTS), (GP, REB), (REB, AST)
Chuck Williams (1973) 90 1113 250 557 (GP)
John Stockton (1990) 82 1413 237 1164 (AST)
Michael Jordan (1988) 81 2633 652 650 (PTS, REB, AST), (GP, PTS, AST)
Gary Payton (2001) 82 1815 396 737 (GP, PTS, REB, AST)

Table 2: Some skyline players and the corresponding decisive subspaces.

share some similarity to those studies, the technical
problems and the approaches are essentially different.

Simultaneous to our study, Yuan et al. [18] study
the problem of computing the skylines in all subspaces
and develop efficient algorithms. Both [18] and this
study investigate the skylines in various subspaces.
However, there are two critical differences. First, the
methods in [18] search the skyline in every subspace
and do not explore the structure of the skylines. In
this paper, we study the structure of skylines in sub-
spaces, and use the concepts of skyline groups and de-
cisive subspaces to capture the semantics of subspace
skylines. Second, the algorithms in [18] and algorithm
Skyey in this paper compute skylines for every sub-
space. In addition, algorithm Skyey computes skyline
groups and their signatures. Interestingly, both stud-
ies suggest that a top-down depth-first search frame-
work may favor efficient computation. [18] further de-
velops a novel data structure, skylist, to store skyline
objects in different subspaces compactly.

6 Experimental Results

We conducted an empirical study of our method us-
ing both a real data set and the benchmark synthetic
data sets. We evaluated the meaningfulness of skyline
groups and their decisive subspaces, as well as the effi-
ciency and the scalability of our approach to subspace
skyline computation.

All algorithms were implemented using Microsoft
Visual C++ V6.0. Experiments were conducted on a
PC with an Intel Pentium 4 1.6 GHz CPU, 512 M main
memory and a 40 G hard disk, running the Microsoft
Windows XP Professional Edition operating system.

6.1 Results on Real Data Set Great NBA
Players’ Statistics

We downloaded from the NBA official website
(www.nba.com) the Great NBA Players’ technical sta-
tistics from 1960 to 2001. Totally there are 17, 266
records. Each record is the statistics of a player in
a season. We selected four attributes: the number of
games played (GP), total points (PTS), total rebounds
(REB) and total assists (AST). In this data set, the
larger the attribute values, the better. That is, player
A dominates player B if A’s attribute values are not
less than B’s, and A has at least one attribute better
than B.

Finding the skyline in this players’ statistics data
set makes excellent sense in practice. People are often
interested in finding the skyline players – players who
have some outstanding merits that are not dominated
by some other players. Moreover, finding the seman-
tics of skyline in this application is of great interest –
we not only want to know who are the great players,
but also want to know exactly on which combinations
of factors a player is dominating the other players.

The knowledge of subspace skylines has immedi-
ate applications. For example, if a coach wants to
find a player good at total points and total rebounds,
he should look at the skyline players in the subspace
(PTS, REB), instead of all skyline players.

In this data set, we found 67 skyline records in the
full 4-d space. The total number of corresponding de-
cisive subspaces is 146, and the average dimensionality
of the decisive subspaces is 2.21. We list some skyline
players and their decisive subspaces in Table 2.

The first four records are in the skyline since each of
them takes the maximum value in one dimension. In-
terestingly, Wilt Chamberlain’s performance in 1961
was also outstanding in some combinations of at-
tributes. Michael Jordan’s performance in 1988 was
not exceptional in terms of any single attribute. How-
ever, it is in the skyline once attribute combinations
(PTS, REB, AST) or (GP, PTS, AST) are considered.
Gary Payton’s performance in 2001 is in the skyline
only if all the attributes are considered.

Clearly the decisive subspaces provide more insight-
ful information than just the list of skyline players in
the full space.

We found skyline records in all non-empty sub-
spaces. Some of them may not be skyline records in the
full space. The numbers of subspace skyline groups are
listed in Table 3. These numbers can be explained by
the different number of subspaces associated with the
given dimensionality and by the fact that the number
of skyline records increases with increasing dimension-
ality.

We also counted the total number of subspaces
where a record is in the skyline. This is an interesting
measure. Intuitively, if a player is in the skylines of
more subspaces, he has a better overall capability in
terms of combinations of attributes. We found that,
in addition to dominating all others in total points
(PTS), Wilt Chamberlain’s performance in 1961 has
the highest number, 13, of subspaces where it is in the

262

 0

 50

 100

 150

 200

 250

 300

 0 200000 400000 600000 800000 1e+06

T
im

e(
se

c.
)

of objects

Skyey method
Bottom-up method

Figure 6: Runtime on Independent
Data sets

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200000 400000 600000 800000 1e+06

T
im

e(
se

c.
)

of objects

Skyey method
Bottom-up method

Figure 7: Runtime on Correlated
Data sets

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200000 400000 600000 800000 1e+06

T
im

e
(s

ec
.)

of objects

Skyey method
Bottom-up method

Figure 8: Runtime on Anti-
Correlated Data sets

Dimensionality # of players

1 4
2 41
3 102
4 67

Table 3: Number of skyline players in subspaces with
different dimensionality.

skyline. On the other hand, although John Stockton’s
performance in 1990 dominates all others in total as-
sists (AST), which is decisive, it is only in the skyline
of 5 subspaces.

From the preliminary analysis on the real data set,
we obtained the interesting and meaningful observa-
tions that cannot be derived from the traditional sky-
line computation. This demonstrates the meaningful-
ness of the proposed subspace skyline analysis.

6.2 Results on Synthetic Data Sets

Using the data generator provided by the authors
of [2], we generated three types of data sets as de-
scribed in [2]:

• Independent data sets where the attribute values
of the generated records are uniformly distrib-
uted;

• Correlated data sets where if a record is good in
one dimension, likely it is also good in other di-
mensions; and

• Anti-correlated data sets where if a record is good
in one dimension, it is unlikely to be good in other
dimensions.

For the details of the data generator, please refer
to [2]. For each type of data distribution, we gen-
erated data sets with different sizes (from 100, 000
to 1, 000, 000 tuples) and with dimensionality varying
from 2 to 6.

For the purpose of comparison, we implemented a
näıve bottom-up algorithm as a baseline method to
compute the complete set of skyline groups and the

Dimen- # of skyline groups
sionality Independent Correlated Anti-correlated

1 5 5 12
2 50 42 300
3 60 16 1562
4 150 10 2831
5 378 9 10652
6 1320 36 22320

Table 4: Number of skyline objects in subspaces on
synthetic data sets.

skylines in every subspace. The basic idea is to com-
pute skylines from the 1-d subspaces to the full space.
A depth-first search using the traditional set enumer-
ation tree [14] is used. For example, given a dataset
of attributes (D1, D2, D3, D4), we first compute the
skyline in a single dimension subspace D1 by sorting
all objects by dimension D1. After the sorting, by one
scan we can immediate determine the skyline objects
in the subspace D1. To compute the skyline objects
in subspace (D1, D2), we need to sort the objects by
dimensions (D1, D2). We apply the local sorting tech-
nique to reduce the cost of sorting. We also capture
the skyline groups by monitoring objects splitting into
different groups as new dimensions are added in. Since
the search is bottom-up, once a new group is formed,
the decisive subspace is caught.

We evaluated the scalability of algorithm Skyey and
the bottom-up method with respect to the number of
tuples in the data sets. The dimensionality was fixed
to 4. The results on the three types of data sets are
shown in Figures 6, 7 and 8, respectively. Clearly, both
methods are scalable with respect to the size of data
sets, but Skyey is far more efficient than the bottom-up
method. Among the three data sets, the computation
on the correlated data sets is the fastest, and the com-
putation on the anti-correlated data sets is the slowest.

To further understand the effect of different distrib-
utions on the number of skyline groups, in Table 4, we
list the number of skyline objects in subspaces found
on synthetic data sets with 6 dimensions and 100, 000
tuples.

As can be seen, on the correlated data sets, the
number of skyline objects in subspaces is always the

263

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6

R
un

tim
e(

se
c.

)

of dimensions

Skyey method
Bottom-up method

Figure 9: Runtime vs. Dimensions

smallest among the three types of data sets, while the
number of skyline objects on the anti-correlated data
sets is always substantially larger than the other two
types. This clearly explains the difference in runtime.

We also tested the scalability of Skyey and the
bottom-up method with respect to the dimensional-
ity. Limited by space, we only show in Figure 9 the
results on the data sets with independent data distri-
bution. The size of the data sets was fixed to 100, 000
records.

We observed that Skyey is much more scalable than
the bottom-up method. In our experiments, Skyey is
5 times faster than the bottom-up method when the
dimensionality is 6. The speed-up factor is increasing
with increasing dimensionality.

While Skyey is quite efficient when the dimension-
ality is not very high, we note that neither method is
linearly scalable with respect to dimensionality. This
observation is consistent with the results in previous
studies (e.g., [12]), which showed that the dimension-
ality curse is still a grand challenge for skyline compu-
tation. The same applies to subspace skyline compu-
tation. How to conduct efficient subspace skyline com-
putation and analysis on high dimensional data (e.g.,
with dimensionality over 100) is still an open problem.

7 Conclusions

In this paper, we answered the questions about seman-
tics of skyline objects by introducing the novel notions
of skyline groups and decisive subspaces. We proposed
the problem of subspace skyline analysis and compu-
tation. On the subspace skyline analysis side, a novel
roll-up and drill-down analysis of skylines in various
subspaces was introduced. On the subspace skyline
computation side, an efficient algorithm Skyey was de-
veloped. A performance study using both real and
synthetic data sets was conducted to verify the mean-
ingfulness and the efficiency of our approach. The ex-
perimental results strongly suggest that the semantics
of skyline objects and subspace skyline analysis are
highly meaningful in practice, and algorithm Skyey is
efficient and scalable.

To the best of our knowledge, this is the first study
on the semantics of skylines and the subspace skyline
analysis. As the future work, it would be interesting

to explore how to integrate the algorithmic contribu-
tions in [18] and this paper to develop more efficient
methods for skyline group computation.

Acknowledgement. We are grateful to Dr. Jiawei
Han for his valuable comments on an early version of
this paper, and to Dr. Donald Kossmann for providing
us the synthetic data generator. We thank Dr. Xuemin
Lin for sending us the submission version of [18].

References
[1] W-T. Balke, U. Güntzer, and J X. Zheng. Efficient

distributed skylining for web information systems. In
EDBT, 2004.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker. The sky-
line operator. In ICDE, 2001.

[3] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Sky-
line with pre-sorting. In ICDE, 2003.

[4] Ronald Fagin, Amnon Lotem, and Moni Naor. Opti-
mal aggregation algorithms for middleware. In PODS,
2001.

[5] B. Ganter and R. Wille. Formal Concept Analysis –
Mathematical Foundations. Springer, 1996.

[6] Edwin M. Knorr and Raymond T. Ng. Finding inten-
sional knowledge of distance-based outliers. In VLDB,
1999.

[7] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: an online algorithm for skyline queries. In
VLDB, 2002.

[8] H. T. Kung, F. Luccio, and F. P. Preparata. On find-
ing the maxima of a set of vectors. J. ACM, 22(4):469–
476, 1975.

[9] L. Lakshmanan, J. Pei, and J. Han. Quotient cube:
How to summarize the semantics of a data cube. In
VLDB, 2002.

[10] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the
sky: Efficient skyline computation over sliding win-
dows. In ICDE, 2005.

[11] J. Matousek. Computing dominances in en (short
communication). Inf. Process. Lett., 38(5):277–278,
1991.

[12] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An opti-
mal and progressive algorithm for skyline queries. In
SIGMOD, 2003.

[13] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In ICDT, 1999.

[14] R. Rymon. Search through systematic set enumera-
tion. In Proc. 1992 Int. Conf. Principle of Knowledge
Representation and Reasoning (KR’92), pages 539–
550, Cambridge, MA, 1992.

[15] R. Steuer. Multiple Criteria Optimization. John Wi-
ley, New York, 1986.

[16] Ivan Stojmenovic and Masahiro Miyakawa. An op-
timal parallel algorithm for solving the maximal el-
ements problem in the plane. Parallel Computing,
7(2):249–251, 1988.

[17] K. Tan, P. Eng, and B. Ooi. Efficient progressive sky-
line computation. In VLDB’01, 2001.

[18] Y. Yuan, X. LIN, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient Computation of the Skyline Cube.
In VLDB’05.

264

