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Abstract

With the proliferation of XML data and appli-
cations on the Internet, efficient XML query
processing techniques are in great demand.
Answering queries using XML indexes is a
natural approach. A number of XML in-
dexes have been proposed in the literature;
among them, F&B Index is one powerful in-
dex as it is the smallest index that answers all
twig queries. However, an F&B Index suffers
from the following two problems: (1) it was
originally proposed as a memory-based index
while its size is usually large in practice and
(2) answering queries using an F&B Index is
not fully optimized. These problems limit the
benefits and even applications of F&B Indexes
in practice.

In this paper, we propose a highly optimized
disk organization method for an F&B In-
dex; the result is a disk-based F&B Index
with good clustering properties. In addition,
novel query processing algorithms exploiting
the physical organization of the disk-based
F&B Indexes are proposed. Experimental re-
sults verify that our disk-based F&B Index
can scale up for large data size with good
query performance compared with state-of-
the-art XML query processing algorithms.
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1 Introduction

XML has become the de facto standard for informa-
tion representation and exchange over the Internet.
An XML document contains hierarchically nested el-
ements. Therefore, it can be naturally modeled as
a tree, where elements are modeled as nodes in the
tree and direct nesting relationships between elements
are modeled as edges between nodes [22]. Standard
XML query languages, e.g., XPath and XQuery, can
retrieve a subset of the XML data nodes satisfying cer-
tain path constraints. For example, the XPath query
//book[appendix]//figure will retrieve all figure nodes
that appear under books that have appendix sections.

With the proliferation of XML data and applica-
tions on the Internet, efficient XML query processing
techniques are in great demand. Processing path ex-
pression queries efficiently still remains a great chal-
lenge. Current approaches can be roughly classified
into two categories. One is to process the query on-the-
fly, using the newly proposed “join” operators, such as
structural join [25] and twig join [4]. These approaches
have received great attentions and have been imple-
mented in several systems [7]. The other is to index
the data and answer queries by probing the index only,
e.g., DataGuide [5], 1-index [18] and F&B Index [12].
Among them, F&B Index is one of the most powerful
structural indexes as it was shown to be the smallest
index that answers all twig queries [12]. However, an
F&B Index suffers from the following two problems:
(1) lack of scalability : F&B Index was proposed as
a memory-based index only; however, its size is usu-
ally large in practice. To the best of our knowledge,
there is no proposed solution for the case when an
F&B Index cannot be accommodated in memory, and
(2) lack of efficiency : answering queries using an F&B
Index is complicated and not fully optimized. Even
for the simple query that only contains /, searching in
an F&B Index is non-deterministic in nature, mean-
ing that multiple branches need to be searched. For
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harder queries that involve //, many subtrees need to
be thoroughly traversed. This can be costly even if the
whole index is in memory, let alone the case when the
index is on the disk.

These problems severely limit the benefits and even
applications of F&B Indexes in practice. As a conse-
quence, many recent proposals try to build approxi-
mate indexes [15, 20, 8], which usually have a smaller
size than their accurate counterparts; however, this
only partially alleviates the index size and query pro-
cessing efficiency problems mentioned above.

In this paper, we first address the size problem of
the F&B Index by proposing a disk-based F&B Index.
We identify that a crucial factor that affects the query
performance is the clustering scheme in the storage
layer. Therefore, we propose a clustering method that
has several salient properties which enable efficient and
novel query processing algorithms. In addition, we fur-
ther optimize our disk-based F&B Index by integrat-
ing the state-of-the-art coding schemes widely used in
the join-based XML query processing approaches. We
then address the efficiency problem by devising a set of
novel query processing algorithms. They are based on
tree traversals, disk scan and segment-based join, all of
which are efficiently supported by our disk-based F&B
Index. In particular, range-based query processing
and segment-based join algorithms are proposed which
greatly enhance the efficiency of processing queries
with // by avoiding unnecessary tree traversals.

Our contributions in the paper can be summarized
as follows:

• We solve the lack-of-scalability problem of the F&B
Index by proposing a highly optimized disk-based
F&B Index with good clustering properties.

• A set of novel query processing algorithms based
on the disk-based F&B Index are proposed. These
algorithms solve the lack-of-efficiency problem.

• Our extensive experimental results demonstrate
that our proposed disk-based F&B Index can scale
up to large data sizes with excellent query perfor-
mance.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some background knowledge. Sec-
tion 3 presents the basic version of our disk-based
F&B Index and Section 4 discusses tree traversal-based
and range-based algorithms to process various kinds
of path queries efficiently. An advanced version of
our disk-based F&B Index is introduced in Section 5,
together with a set of efficient query processing al-
gorithms. We present our experimental results and
analyses in Section 6. Related work is described in
Section 7 and Section 8 concludes the paper.

2 Preliminaries

XML data is usually modeled as labeled trees: ele-
ments and attributes are mapped to nodes in the trees

and direct nesting relationships are mapped to edges
in the trees. In this paper, we only focus on element
nodes; it is easy to generalize our methods to the other
types of nodes defined in [22].

All structural indexes for XML data take a path
query as input and report exactly all those match-
ing nodes as output, via searching within the indexes.
Equivalently, those indexes are said to cover those
queries. Existing XML indexes differ in terms of the
classes of queries they can cover. DataGuide [5] and
1-index [18] can cover all simple path queries, that is,
path queries without branches. [12] showed that F&B
Index is the minimum index that covers all branching
path queries. Note that if the XML data is modeled as
a tree, its 1-index and F&B Index will also be a tree.
Each index node n can be associated with its extent,
which is the set of data nodes in the data tree that
belong to the index node n.

We show an example XML data tree, its 1-index,
and its F&B Index in Figure 1(a). In the 1-index, all
the second level b elements in the data tree are classi-
fied as the same tag b index node; this is because all
those nodes cannot be distinguished by their incoming
path, which is a/b. However, those bs are classified
into three groups in the F&B Index; this is because
branching path expressions, e.g., a[c]/b and a[d]/b, can
distinguish them. Compared to the 1-index which has
only 6 nodes, the F&B Index has many more nodes
(10 in our example). It can be shown that in the worst
case, an F&B Index has the same number of nodes as
the data tree does.

Notations

We describe some notations used in the rest of the
paper. We distinguish the nodes in an original data
tree and the nodes in its 1-index (or F&B Index); the
former are termed d-nodes and the latter are termed
1-index nodes (or i-nodes, respectively). We assume
that there exists a total order among all tags. Then we
can label each 1-index node using its min-pre-order
traversal number, denoted as its 1-index node number.
A min-pre-order traversal is a pre-order traversal
that always chooses to descend into the subtree of the
unvisited child node that has the smallest tag. For
example, assuming a dictionary order for the tags, a
min-pre-order traversal on the example 1-index in
Figure 1(a) will first visit the b node (and its subtree)
under the root a node, before visiting the c node. Since
the F&B Index is a refinement of the 1-index, each
i-node n in the F&B Index corresponds to a unique
1-index node and thus is assigned the 1-index node
number (denoted as n.1indexID). We term the child
axis as PC axis and term descendant-or-self axis
as AD axis. Sometimes, we refer to a path without
branching predicates or AD axis as a simple path.
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(b) The disk-based F&B Index, consists of tapes,
chunks and segments.

Figure 1: Organization of the Disk-based F&B Index

3 The Basic Index Structure

In this section, we describe the basic structure of our
disk-based F&B Index, as well as its construction algo-
rithm based on a novel clustering scheme. Its advanced
version will be introduced in Section 5.

It is easy to store a tree näıvely onto the disk: one
can simply replace each in-memory pointers with disk
pointers. However, such a scheme is not likely to work
well because disk access is page-based and its cost is
much higher than the cost of random memory access.
Clustering is thus crucial to the performance of our
data structure. Our basic idea is to analyze index ac-
cess patterns and store data that is frequently accessed
together close on the disk too. To that end, we employ
the following three clustering criteria:

C1 We cluster all i-nodes with the same tag name
together on a logical unit called tape. The intuition
is that the answer to most path queries consists of
i-nodes with the same tag name.

C2 The child i-nodes of an i-node are clustered as
follows: we group the child i-nodes from the same
parent by their tag names. This is based on the ob-
servation that tree traversal-based query processing
on the F&B Index is based on the designated child
access operator, i.e., to access all the child i-nodes
having the designated tag name together. For ex-
ample, to evaluate query ./a/b, we need to access
all the i-nodes of tag a for each of the context node,
even if some tag a i-node might not have a tag b
i-node as its child.

C3 We further cluster nodes with the same tag ac-
cording to their 1indexID. This is because the
answers to simple path queries are exactly those i-
nodes having the same 1indexID. It also enables an
advanced query processing method to be discussed
in Section 4.2.

As a result, the F&B Index shown in Figure 1(a)
can be stored and clustered on the disk as shown in
Figure 1(b). We describe several important organiza-
tion concepts in the resulting disk-based F&B Index
as follows:

Tape A tape holds all i-nodes with the same tag
name, according to clustering criterion C1. For ex-
ample, as there are four different tags in the example
F&B Index, four tapes are created in its disk-based
version.

Segment and block Each i-node in the F&B Index cor-
responds to a unique segment. As a result of clus-
tering criterion C2, we are able to record in each
segment a compressed representation of its child
segment pointers: we keep a block for each group
of child segments with the same tag, and a field
numBlock as the total number of such blocks. A
block consists of a disk pointer to the first child seg-
ment in the group, followed by the size of the group.
For example, in Figure 1(b), i-node a1 in Figure 1(a)
corresponds to the segment a1 in Figure 1(b); i-node
a1 has four child i-nodes: b1, c1, b2, b3. They form
two blocks: the block for the three tag b child i-
nodes, represented as (&b1, 3) and the block for the
single tag c child i-node, represented as (&c2, 1).
a1.numBlock is therefore set to 2. As a special case,
since leaf i-nodes do not have any child i-nodes, their
numBlock fields are set to 0 (e.g., see segment c1).

Chunk All segments with the same 1indexID are
stored in a chunk, according to our clustering cri-
terion C3. Chunks on the same tape are sorted by
their chunkIDs in an ascending order. For example,
although segments c1 and c4 are from different par-
ent i-nodes, they are put in the same chunk (with
chunkID = 3 on the tape for tag c segments), be-
cause they have the same 1indexID.

It can be easily shown that our disk-based F&B
Index correctly preserves all the structural information
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of the F&B Index. Its space is linear to the number of
i-nodes in the F&B Index.

The three clustering criteria help create a disk-
based F&B Index with minimum page accesses for
many types of queries. For example, it is easy to verify
that the disk-based F&B Index in our example has the
minimum number of disk accesses for all simple path
queries. On the other hand, if, for example, we store
c segments in pre-order on the same tape, the access
cost for query a/b/c is likely to be higher because the
result, segments c1 and c4, is likely to be on different
disk pages.

Building the Index

Algorithm 1 BuildDiskF&BIndex(T )

1: Build 1-index of T ; assign min-pre-order traversal
number to each 1-index node.

2: Build the F&B Index according to [12]. {It is easy to
keep track of the 1indexID for each F&B Index node
as it was split from some 1-index node.}

3: Calculate the disk address of the correspond-
ing segment of each i-node by sorting on
(tag, 1indexID, parentID).

4: Write all the i-nodes as segments on the tapes accord-
ing to their appropriate disk address; also fix the disk
pointers in blocks.

The algorithm to build our disk-based F&B Index
for a given XML data tree T is given in Algorithm 1. It
can be shown that we can simply sort all segments ac-
cording to (tag, 1indexID, parentID) to obtain a clus-
tering scheme that satisfies all of our three clustering
criteria. Here, parentID is just a unique identifier as-
signed to each i-node in the F&B Index. The building
cost is the total cost of building the F&B Index, sorting
all index nodes and writing all the nodes to the disk.
Assuming the F&B Index can be constructed in mem-
ory, the building process will incur O(n log n+m log m)
CPU cost and O(m) I/O cost, where n is the number
of d-nodes in the XML document and m is the number
of i-nodes in the resulting F&B Index, assuming the
height of the XML data tree is a constant.

4 Query Processing Algorithms

In this section, we describe the query processing algo-
rithms on the basic version of the proposed disk-based
F&B Index. We discuss fundamental algorithms that
are based on tree traversals as well as a novel algorithm
based on disk scan. We note that both approaches are
well supported by the physical clustering scheme em-
ployed in the index.

4.1 Query Processing Using Tree Traversals

In this subsection, we consider processing all types of
path queries using only the designated child access, i.e.,
the physical tree traversal-based operator that accesses

all the child segments (of the current segment) with a
designated tag.

There are two different logical operators we can
use based on designated child accesses: we can ei-
ther (1) sequentially retrieve only one child seg-
ment within the block or (2) retrieve all the child
segments within the block. We term the for-
mer operator FetchNextChild(s, t) and the latter
FetchAllChildren(s, t), where s is the parent segment
and t is a tag name.

Using different logical operators results in differ-
ent traversal strategies in the query processing. To
illustrate, let us consider the simplest case where the
query is a path query with PC axes only. For exam-
ple, consider the query /x/y. In general, during the
traversal, there will be multiple xi segments satisfying
/x and multiple yj

i segments satisfying /x/y within
each xi’s subtree. It is well-known that we have two
classical traversal strategies: DFS (depth-first search)
and BFS (breadth-first search). DFS will access one
matching xi and immediately descend into its subtrees
and try to match yj

i s. BFS will access all matching
xis together first, then for each matching xi, continue
matching all their child yj

i s together. It is obvious that
DFS and BFS can be easily implemented using Fetch-
NextChild() and FetchAllChildren() operators, respec-
tively.

BFS (or DFS) is always applicable for other types
of queries as well. If a query has branching predicates
with PC axes only, e.g., /x[z]/y, we only need to re-
cursively evaluate all the branching predicates, e.g.,
./z, before descending into the subtrees. A subtle dif-
ference is that we only need to know if the result of
the branching path query is empty or not, instead of
requiring all the results. Therefore, we introduce an
additional parameter, mode, to the query processing
algorithm. When the incoming parameter mode is set
to EXISTING, the query processing algorithm will im-
mediately return upon finding the first result.

If the query contains AD axes, e.g., x//y, we have
to traverse the whole subtrees under each of the tag x
segment to retrieve all the segments with tag y, again
using either BFS or DFS traversal strategy. Similarly,
if the AD axis appears within a branching predicate,
as .//y does in x[.//y]/z, we can immediately return
as soon as the first answer is found. This is indicated
by the mode parameter too.

The complete pseudo-code for the BFS and DFS
traversal-based query processing algorithms are not
hard but long and complicated. In the interest of
space, we omit them and only give an illustrating ex-
ample. In the rest of the paper, we assume BFS and
DFS query processing has been encapsulated in the
QueryPath(n, p, method, mode) function, where n is
root segment to be queried, p is a query, method is
either BFS or DFS and mode is either ALL or EXISTING.

Example 1 (DFS, PC axis, Branching Predicate)
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Let us consider the example F&B Index in Figure 1(a)
and the query /a[b/d]//c. We extract the first axis
step /a[/b/d] from the query. If DFS is used, we will
invoke FetchNextChild to get one match first, i.e.,
segment a1; then we test all the branching predicates
against the current match. In this case, we need to
recursively evaluate another path query ./b/d for the
current segment a1. FetchNextChild will be repeatedly
invoked to find the first matching ./b segment, which
is b1, and then the first matching ./d segment from
b1, which is d1. Note that since the evaluation of this
query is for branching test only, we can immediately
return TRUE to the calling routine now that one
answer, i.e., d1, is found. Since a1 passes all the
branching predicate tests, we recursively evaluate the
rest of the query, i.e., .//c, immediately for a1 and
output its result. After all the matching /a nodes are
processed, the algorithm will stop.

4.2 Range-based Query Processing

Although the performance of the tree traversal-based
query processing has been greatly improved over previ-
ous systems, it still suffers from the problem of travers-
ing a lot of unnecessary intermediate segments when
processing queries involving AD axes. In this subsec-
tion, we introduce a novel range-based query process-
ing method that can directly return all results without
unnecessary traversals for certain types of queries.

Let us consider queries in the form of p//x, where p
is a simple path without AD axes and x is a tag. Our
basic idea is that: if all the descendant x segments
under p are clustered within a range and if we can
find the starting and ending positions of the range, we
can avoid a lot of tree traversals by just fetching all
segments within that range.

The following lemma not only assures us of the fea-
sibility of this range fetching idea, but also gives con-
structive ways to find such ranges.

Lemma 1 [Range Property] Given a query in the
form of p//x, x segments in the answer will be laid
out contiguously within a range on the tape for tag x
in the disk-based F&B Index. More specifically, let all
segments satisfying p belongs to chunk r. Let there be
k 1-index nodes with tag x in the subtree rooted at r in
the corresponding 1-index, denoted as xi (1 ≤ i ≤ k)
and having 1-index number ui. All the segments be-
longing to chunk i ∈ [min,max] on the tape for x is
exactly the answer to the query, where min = mini{ui}
and max = maxi{ui}.

Example 2 Consider the example F&B Index in Fig-
ure 1(a) and the query a//c. a matches with segment
a1, whose chunkID is 1. In the 1-index shown in Fig-
ure 1(a), there are 3 1-index nodes tagged c within the
subtree of 1-index node with number 1. They corre-
spond to chunks 3, 5 and 6, respectively. Therefore,

we know that min = 3 and max = 6. It is easy to ver-
ify that, say, any tagged c segment that is outside the
subtree rooted at a1 cannot reside in a chunk between
[3, 6] on the c tape.

According to Lemma 1, we need to find out the
range [min,max] for a given query. A näıve way to
do this is to (1) keep a copy of the 1-index and (2)
pinpoint the 1-index node r that satisfies path p and
traverse its subtree to find such min and max. We
can do better by observing that (1) the 1-index is ac-
tually embedded in our data structure (represented as
chunks) and (2) such min and max can be precom-
puted for every valid combination of (n, x), in order
to save traversals among chunks in the runtime. This
observation results in a lookup table H in the form of
(chunkID, tag,minChunkID,maxChunkID), where
chunkID corresponds to the 1-index node num-
ber, tag is a tag that appears in the subtree
rooted at the chunkID 1-index node, minChunkID
(maxChunkID) is equal to min (max), respectively.
The size of the lookup table H is O(n1index ·T ), where
n1index is the number of nodes in a 1-index and T
is the number of tags. Algorithm 2 describes the re-
sulting RangeFetch algorithm, which is based on tree
traversal, table lookup and disk scan.

Algorithm 2 RangeFetch(p//t)

1: ret = ∅
2: s = QueryPath(root, p, DFS, EXISTING)
3: if s 6= NULL then

4: if (s.chunkID, t) is in the lookup table H then

5: (min, max) = H[(s.chunkID, t)]
6: ret = fetchChunk(min, max)
7: return ret

Example 3 Consider running RangeFetch to process
the same query a//c against the example F&B Index.
Evaluating path a using DFS and EXISTING options will
quickly return the first matching segment a1. We then
lookup the table H for chunkID = 1 and tag = c,
which will return min = 3 and max = 6. After ob-
taining the min and max values, we can fetch all the
c segments within that range using efficient (sequen-
tial) disk scans.

We note that queries in the form of p/t are special
cases of p//t and can be easily handled by generalizing
the RangeFetch() algorithm. On the other hand, if p
is not a simple path, e.g., it contains branching pred-
icates, RangeFetch algorithm is not applicable. This
kind of complex queries (involving branching predi-
cates and/or AD axes) can still be efficiently processed
using an advanced query processing algorithm, SegSJ,
to be discussed in Section 5.
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5 Advanced Disk-based F&B Index

In this section, we discuss some further optimizations
on the data structure and algorithms. They enable
new query processing techniques for several types of
queries. More specifically, our basic idea is: given the
huge success of join-based query processing techniques
based on coding schemes [25, 6, 23, 4, 23, 10], how
can we integrate the similar coding idea into our data
structures and take advantage of it? Our answer is af-
firmative; our solutions can be summarized as (1) at-
tach codes to each d-node in the extent of each i-node
in the F&B Index and (2) devise efficient query pro-
cessing algorithms given the availability of the codes
and other new data structures.

5.1 Introducing New Data Structures

4
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Figure 2: Adding Region Codes, Source XML Docu-
ment and Values

Figure 2 shows the resulting data structure after
adding region codes, source XML document and values
into our basic data structures. They are stored on
three new tapes shown at the bottom of the figure.
The first new tape is the extents tape, for storing the
extents of all segments in the F&B Index; the rest
of the tapes will be introduced soon in Section 5.3.
Recall that an extent is a set of d-nodes that belong to
a segment. Each d-node can be uniquely identified by
its region code (we use the popular (start, end) codes
[25]). For example, in Figure 2, we can see segment
a1’s extent has the two d-nodes. Their region codes
are (7, 1000) and (17, 79), respectively.

We enforce the following important constraints on
the region codes:

1. The region code of an extent is exactly its physi-
cal offsets of the start and end positions. In other
words, given the region code of a d-node, we can re-
trieve its textual representation, which also includes

all its descendant nodes, if any. This property is
used in Section 5.3.

2. The d-nodes in the extent of a segment are sorted
according to their (start, end) values. This gives
us a nice property to efficiently check the ancestor-
descendant relationship for any two segments, due
to Lemma 2.

Lemma 2 [Structural Relationships Between Seg-
ments] Given any two segments R and S with their
extents sorted (in the same order), let the first d-nodes
in their extents be p and q, respectively. Then segments
R and S are of ancestor-descendant relationship in the
F&B Index if and only if p and q have the ancestor-
descendant relationship in the XML data tree, which
can be checked by testing if (p.start < q.start < p.end)
holds.

In terms of implementation, two changes are made
to the original data structures1:

• A pointer is created in each segment that points to
its extent on the extents tape.

• We embed the region code of the first d-node in
each segment’s extent into the segment itself. This
is an optimization for the SegSJ algorithm (to be
discussed shortly), which only needs to access such
nodes. For the example F&B Index shown in Fig-
ure 2, the first region code, (7, 1000), will be physi-
cally stored together with segment a1.

5.2 Processing Queries Using Joins

One of the most important benefits of having extents
encoded in region coding scheme is that all queries
with //-axis can be processed in a very efficient way,
similar to that of structural join. Let us look at
an example. In our basic data structures, the query
/a/b[d]//c can only be processed using tree traversal-
based method (RangeFetch algorithm is not applica-
ble, because of the branching predicate [d]), which
might be inefficient. With our advanced data struc-
tures, we can process the query as follows:

1. Choose a two-phase plan as follows: (1) Compute
R = /a/b[d] and (2) The original query can be com-
puted as R//c.

2. Use tree traversal-based method to evaluate the
first phase: /a/b[d]. Our disk-based F&B Index
can evaluate such twig queries efficiently.

3. Use Algorithm SegSJ(R, //c) to compute the final
result. The algorithm is shown in Algorithm 3. The
algorithm constructs the region code lists from an-
cestor segments and descendant segments on-the-
fly. After that, a state-of-the-art structural join
algorithm is applied. The correctness of the algo-
rithm follows from Lemma 2.

1They are not shown in Figure 2, in order not to clutter the
figure.
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Algorithm 3 SegSJ(A, D)

1: Construct R(start, end) by iterating through the ex-
tents of all segments in A, choose the first d-node and
append its (start, end) value pair to R.

2: Construct S(start) by iterating through the extents of
all segments in D, choose the first d-node and append
its start value to S.

3: Apply a state-of-the-art structural join algorithm over
R and S.

Astute reader might want to find out the difference
between using this SegSJ algorithm and using a struc-
tural algorithm on the original data. We note that:

• The original structural join algorithm cannot take
advantage of the structural index and hence require
multiple joins. Even the most recent improvement
in [14] can only take advantage of 1-index; for our
example twig query, it requires another join (and
union) to resolve the branching predicate [d], be-
cause 1-index cannot cover branching queries.

• For each segment, only one d-node in the original
document needs to participate in the join. This
greatly reduces the number of elements that need
to be joined in both sets.

• We note that R and S are not necessarily sorted
according to (start, end). There are two categories
of structural join algorithms to use: the partition-
based algorithms [23] and the sort-merge-based al-
gorithms [3]. This is an optimization problem and
the algorithm with the lowest estimated cost should
be chosen.

5.3 Processing Subtree or Value Retrieval
Queries

In this subsection, we explain the rationale and usage
of the latter two tapes in Figure 2.

The second of the new three tapes is the document
tape. It is used to store the original XML document.
Because we enforce the region code of any d-node d to
be the physical offsets of its start and end positions
in the original XML document, we can retrieve the
whole (data) subtree rooted at the extent (inclusive)
by scanning the document tape from d.start to d.end.
This is a much more efficient way of reconstructing the
whole subtree for non-leaf d-nodes in the data tree,
because otherwise, the näıve approach of traversing
all the descendant nodes, retrieving their contents and
combining the results is extremely costly!

The last tape is the values tape. We store values
for all extents of all leaf segments in the F&B Index
on the values tape. This also entails adding pointers
to the leaf segments to their values on the values tape.
Our query processing algorithm will take advantage of
the values tape by always fetching values directly from
it. This strategy results in fewer I/Os when a query
needs to access the contents of the leaf segments, as
otherwise, we need to access extents and then the doc-

ument tape. Results from our experiments show that
the space overhead due to the values tape is accept-
able: less than 30% of the size of the XMark document.

6 Experimental Evaluation

In this section, we present results and analyses of part
of our extensive experiments on the disk-based F&B
Index.

6.1 Experimental Setup

All of our experiments were performed on a PC with
Pentium3 1 GHz CPU, 256 MB memory and 30 GB
IDE hard disk. The OS is Windows 2000. We imple-
mented our system using Microsoft Visual C++ 6.0.
We implemented our DFS, BFS, RangeFetch and
SegSJ algorithms. All algorithms return the complete
query results instead of d-node identifiers unless oth-
erwise stated. We used the LRU buffer replacement
policy. In order to compare with other systems fairly,
all the experiments were run in the warm buffer. We
set the page size to 4096 bytes.

We selected NoK, TwigStack and Kaushik et

al.’s query processing algorithms for comparison. We
obtained the source code of NoK system [26] and
TwigStack [4] from the original authors. NoK is one
of the latest native XML storage and query processing
systems while TwigStack is the best twig join algo-
rithm to process all twig queries without index. We
also implemented Kaushik et al.’s algorithm, which
utilizes structural index to accelerate structural join
processing; our SegSJ algorithm can be viewed as us-
ing structural join to accelerate index probing and thus
makes the comparison with Kaushik et al.’s algorithm
interesting.

The datasets we tested include XMark [21], DBLP
[1], and TreeBank [2]. In the interest of space, we re-
port results on the standard 113M XMark benchmark
dataset in most of the following experiments. XMark
features a moderately complicated and fairly irregu-
lar schema, with several deeply recursive tags. DBLP
(highly regular) and Treebank (highly irregular) are
included to test the two extremes of the spectrum in
terms of the structural complexity. Some statistics of
the datasets, their 1-index and their F&B Index are
shown in Table 1. We used a relatively small buffer
size (less than 1% of the data size) to better simulate
the case when the XML data size grows up to Giga-
bytes. We used the following metrics: elapsed time
(time), number of physical I/Os (PIO) and number of
logical I/Os (LIO).

Table 1: Size of the Disk-based F&B Index
Dataset Doc. Nodes Tags 1-index Nodes F&B Index Nodes

XMark 2048193 77 550 528076
DBLP 4620206 42 157 4112

TreeBank 131072 103 37906 122402
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In order to better test and understand the charac-
teristics of our disk-based F&B Index under different
workloads, we designed a set of queries that has dif-
ferent characteristics. There are three major dimen-
sions: query type, axis type and result size. Query
type includes either simple path query (i.e., without
branches) or twig query. Axis type includes without
AD axis (i.e., PC axis only) or with AD axis. Result
size includes small number of results or large number
of results. The combination of these three dimensions
generates eight categories. For example, twig query
with AD axis and have a small result size is abbrevi-
ated as AD-twig/small. We select one representative
query for each category for each dataset; we number
those queries from 1 to 8, together with QX, QD, and
QT prefixes (for XMark, DBLP, and TreeBank, re-
spectively). We show queries for the XMark dataset
in Table 2. Applicable algorithms on different cate-
gories of queries are listed in Table 3.

Table 3: Applicable Algorithms on Queries

Queries Type Applicable Algorithms

Q?1, Q?2 PC-path DFS, BFS, RangeFetch
Q?3, Q?4 PC-twig DFS, BFS
Q?5, Q?6 AD-path DFS, BFS, RangeFetch, SegSJ
Q?7, Q?8 AD-twig DFS, BFS, SegSJ

6.2 Index Size

The total size of our disk-based F&B Index (including
the optional values tape) is 177.15 MB, with 17.2 MB
for all the tag tapes, 15.6 MB for the extents tape,
113 MB for the document tape, and 31.3 MB for the
values tape. The space overhead of the pure index part
(i.e., tag tapes, the extents tape and the value tapes) is
about 57% of the document size (with about 28% due
to values tape). The indexing overhead for DBLP and
TreeBank are 86% and 158%, respectively. We note
that such overhead is acceptable when compared to
the results reported in some recent studies [14, 26, 19].

6.3 Varying System Parameters

In this subsection, we study the performance of our
own system by varying various system parameters.

6.3.1 Varying Page Size

We tested the performance of our algorithms by vary-
ing the page size. The result is shown in Figures 4(a)
to 4(d) (on Page 12). Note that both axes are in
logarithmic scale. We can observe that the number
of physical I/Os decreases exponentially with the in-
crease of page size (with a reasonably large buffer
pool). This is because (1) more data can be read in
by one I/O and (2) a large page size increases the ef-
fectiveness of our “clustered” index. For example, it
is more likely that all child segments with a same tag
name will be able to be stored within a single page.

6.3.2 Varying Buffer Size

In this experiment, we varied the number of buffer
pages and measure the performances of the algorithms.
The results are shown in Figures 4(e) to 4(l). We var-
ied the number of buffer pages from 4 to 356, thus it
corresponds to buffer size from 16K to 1424K. Note
that the Y-axis is in logarithmic scale.

We can make several observations from the figures:

• We can observe that for all the queries, increasing
the number of buffer pages reduces the number of
physical I/Os; on the other hand, the number of
logical I/Os remains the same. This is because the
increase in the amount of buffer pages can effectively
lower the page faults in the buffer.

• Let us consider the effect of the amount of buffer
pages to each algorithm. It can be observed that
DFS and BFS are very sensitive to buffer sizes,
esp. the DFS algorithm. This is because they are
traversal-based algorithms and possibly many in-
termediate i-nodes in the F&B Index need to be
accessed. A large buffer size can effectively buffer
the segments of those i-nodes and thus reduce the
page faults. DFS is most “hungry” for buffers be-
cause our clustering method clusters sibling child
segments in the same page; but DFS does not take
advantage of this property but keeps descending
into the subtrees of one child segment, which es-
sentially brings new pages into the buffer. This
also explains why BFS usually performs better than
DFS in almost all query categories. On the other
hand, RangeFetch and SegSJ are less sensitive to
the buffer size, esp. the RangeFetch algorithm. This
is because scanning segments, which only needs one
buffer page, is the major cause of disk I/Os in both
algorithms.

• Let us consider the effect of buffer sizes to each query
category.

– For the PC-path category (QX1, QX2), Range-
Fetch performs the best followed by BFS and
then DFS. This is because RangeFetch can
quickly locate the chunk which contains exactly
all the query answers and output the whole
chunk. Nevertheless, as the query only requires
descending into the index, with a few buffer
pages, the other traversal-based algorithm also
performs well.

– For the PC-twig category (QX3, QX4), DFS per-
forms no worse than BFS. This is because, esp. in
Q3 where the twig predicates are nested deeply,
DFS can quickly determine if the twig predicate
is satisfied or not. Similar to the last category,
with a few more buffer pages, both algorithms
achieve stable performance.

– For the AD-path category (QX5, QX6), the
best algorithm is RangeFetch, followed by SegSJ,
BFS and DFS. RangeFetch is the fastest as it di-
rectly fetches the result without further compu-
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Table 2: Statistics of Queries for XMark
QID Type Result Query

QX1 PC-path/small 245 /site/regions/africa/item/description/parlist/listitem/text/keyword
QX2 PC-path/large 59486 /site/open auctions/open auction/bidder/date
QX3 PC-twig/small 267 /site/closed auctions/closed auction[annotation/description[parlist/listitem/text[keyword[bold]]]]/price
QX4 PC-twig/large 12679 /site/people[person[profile[education]/age]]/person/phone
QX5 AD-path/small 12206 /site/closed auctions//emph
QX6 AD-path/large 138236 /site//person
QX7 AD-twig/small 3274 /site/people/person[//age]//education
QX8 AD-twig/large 29250 /site/closed auctions/closed auction[//description]//person
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Figure 3: Comparing With Other Systems on XMark, DBLP, and TreeBank Datasets

tation or segment access. It is interesting to see
that traversal-based approaches, BFS and DFS,
can have a comparable performance with SegSJ,
given enough buffers.

– For the AD-twig category (QX7, QX8), SegSJ
works the best, followed by two traversal-based
algorithms. The two traversal algorithms have
only minor differences when the buffer is really
small. Compared to the last category, BFS re-
quires more buffers to arrive at a stable per-
formance. This is because at the branching
point, more than one tag needs to be searched
in the subtree; this in general requires more
segments (and hence pages) to be accessed.
The most interesting finding might be in Fig-
ure 4(l): traversal-based approaches even out-
perform SegSJ when buffer is large. This is be-
cause the number of //person is very large but
only a fraction of them appear in the QX8’s re-
sult. Therefore, SegSJ accessed many unneces-
sary pages. On the other hand, with a large
buffer size, traversal-based approach can buffer
a larger part of the subtrees and gain some per-
formance advantages.

It seems that the difference among different algo-
rithms is more obvious when the result size of the
query is small. This is because when the result size
is large, many disk I/Os have to be made by any
algorithm and this reduces the percentage of I/O
differences made in the index probing phase.

6.3.3 Buffer Hit Ratio

We also collected buffer hit ratios for accessing the
index under different buffer sizes, to partially verify
the effectiveness of our clustering method. We only
show the results for the 113M XMark dataset for QX6
(which is the most expensive query in our query set) in

Figure 4(m). It can be observed that the hit ratio in-
creases gradually for both traversal-based algorithms
with the increase of buffer size, but BFS is much more
buffer-friendly than DFS. RangeFetch almost always
results in disk scans and thus its hit ratio is almost
0.0%. SegSJ only needs to access the index to con-
struct its join inputs and do the join in the memory;
therefore, its hit-ratio quickly reaches a high point be-
yond a small number of buffer pages.

6.3.4 Scalability

We performed experiments on different sized XMark
datasets, with a fixed relative percentage of buffer size,
in order to simulate and test the scalability of our disk-
based F&B Index and its algorithms. We show the
result for QX7 in Figure 4(n). From the figure, we
can observe that all algorithms scale linearly with the
increase of the size of the dataset. Since we are using
a relatively very small buffer size, we expect that our
system can scale well for even Gigabytes of XML data.

6.4 Comparing with Other Systems

In this subsection, we compare the performance of our
system with the other three systems: NoK, TwigStack
and Kaushik et al.’s algorithm. The first two systems
do not return values, so we modified our algorithm
not to fetch values either. Because NoK implicitly
uses several megabytes of memory for buffering and
TwigStack does not need buffering, we set buffer size
to 1 MB for our system and Kaushik et al.’s algorithm.
We included the final sorting time in our algorithms
such that the results are in the document order. We
measured the elapsed time of all the applicable algo-
rithms and plotted them in Figure 3.

We will first focus on the representative XMark
dataset (i.e., results shown in Figure 3(a)), and then
discuss the impact of datasets with different structural
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complexity to the relative performance of the algo-
rithms.

NoK on XMark Dataset

Currently, the NoK implementation we received from
the original authors can only support PC queries. So
we only list its results for QX1 to QX4 in Figure 3(a).
We can see that our system outperforms NoK by a
large extent for all queries (10 to 100 times faster).
We conjecture that clustering in our system plays an
important role in outperforming NoK. For example,
we found that NoK spends a large number of physical
I/Os and thus time for QX2, whose result size is large.

TwigStack on XMark Dataset

We ran TwigStack for QX5 to QX8 and plotted the
result in Figure 3(a). We find that even our traversal-
based methods work better than TwigStack in all
queries but QX6. As discussed above, for AD-twig
queries (QX7, QX8), which are more complicated than
other categories, traversal-based methods worked es-
pecially well. QX6 (site//person) is the best case
for TwigStack and it worked very well; nonetheless,
our SegSJ and RangeFetch still outperform TwigStack
substantially. We note again that SegSJ is very effi-
cient (up to 40 times faster than TwigStack) mainly
because it only needs to join less data: only one d-
node (or element) among all d-nodes belonging to the
same segment needs to be accessed and joined.

Kaushik et al.’s Algorithm on XMark Dataset

We ran Kaushik et al.’s algorithm [14] for QX1 to
QX8 and showed the results in Figure 3(a). We find
that it works pretty well in general, and outperforms
TwigStack in all cases, which agrees with the experi-
mental results in [14]. However, we found that it is still
slower than the tree traversal-based algorithms (i.e.,
BFS and DFS) for all PC-path queries and all twig
queries, while it works better than the tree traversal-
based algorithms for AD-path queries. This is mainly
due to the fact that when [14] processes a twig query,
it decomposes a twig query into a set of “relaxed” com-
ponents (by adding // before each component) before
probing the structural index and doing the join. As a
result, [14] has the worst performance for QX3, which
has a deeply nested twig query structure. We note that
our other two algorithms, RangeFetch and SegSJ, out-
perform [14] for almost all the queries.

Results on Other Datasets

The performances of all the algorithms on DBLP and
TreeBank datasets are shown in Figures 3(b) and 3(c).
It is obvious that all of our algorithms have signif-
icant performance advantages over other systems on
the DBLP dataset. This is because the structure of

the DBLP data is fairly simple and regular and our in-
dexing and clustering technique works best under such
situations. For the extremely complicated and irregu-
lar TreeBank data, the performance of our algorithms
degrades. However, except for QT6 and QT7, some of
our algorithms are still the fastest. The degradation
in performance is due to the fact that the F&B Index
for TreeBank data is almost useless: each data node is
likely to be a distinct F&B Index node (See Table 1).

7 Related Work

There has been much previous work on indexing the
values [17], structure and codes of XML data [9], and
fragments of XML in a relational DBMS [19]. We fo-
cus on structural indexes in this paper. Most of the
structural indexes are based on the idea of considering
XML document as a graph and partitioning the nodes
into equivalent classes based on certain equivalence re-
lationship, such as DataGuide [5] and 1-index [18], and
F&B Index [12]. Some work has also been devoted to
find the approximate but smaller counterparts of the
above indexes, including A(k)-index [15], D(k)-index
[20], M(k)-index and M∗(k)-index [8]. Several work
focused on updating structural indexes [13, 20, 24].

XML queries can also be evaluated on-the-fly using
the join-based approaches. Structural join and twig
join are such operators and their efficient evaluation
algorithms have been extensively studied [25, 6, 4, 23,
10]. Their basic tool is the coding schemes that enable
efficient checking of structural relationship of any two
nodes. TwigStack [4] is the best twig join algorithm
to answer all twig queries without indexes; hence it is
chosen for comparison in our experiment.

To the best our knowledge, there has not been much
work reported in storing tree-shaped XML data on the
disk in its native form. Lore’s storage manager stores
objects into variable length slots in a page using the
first-fit algorithm; objects are clustered according to
the depth-first traversal order [16]. [11] is a native
XML storage manager that stores the XML data tree
onto disk pages. Their basic clustering method is to
cluster appropriate sized subtrees into one disk page.
They also allow fine-tuning the clustering via a cluster-
ing matrix. NoK [26] is the latest native XML storage
and query processing system. It features a succinct
XML storage scheme that essentially stores a string
representation of the XML data tree obtained from
pre-order traversal. These schemes cannot be directly
applied to our case, as the access pattern on the index
is different from that on the XML data tree.

Most recently, the idea of integrating both tree
traversal-based and join-based query processing has
been proposed [7, 14]. The major difference of their
systems with our proposal is that they either do not
use a structural index [7] or they only use the index
as a filter to accelerate structural joins [14]. On the
contrary, our focus is more on using the structural in-
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dex to its full power and integrating join-based query
processing method into the system to accelerate index
lookup. We feel the two approaches are both orthogo-
nal and complementary to each other.

8 Conclusions

XML data is rich in structure; this calls for advanced
indexing techniques in order to facilitate efficient query
processing. In this paper, we address the lack-of-
scalability and lack-of-efficiency issues associated with
the in-memory F&B Index. We propose a disk-based
F&B Index that features several good clustering prop-
erties. Those properties not only enable efficient tree
traversal, but also give rise to several novel query
processing methods based on disk scan and segment-
based join. We also integrate coding schemes into
our index to better support processing several types
of queries. Extensive experiments have demonstrated
that our proposed disk-based F&B Index has several
salient features, including cache-friendliness behavior
and good scalability. It also significantly outperforms
alternative tree-based or join-based query processing
systems.

We note that our experimental results showed that
tree traversal-based approaches can sometimes even
outperform optimized join-based approaches (includ-
ing our SegSJ algorithm) for certain sophisticated
queries. This result further extends a recent similar re-
sult on the effectiveness of tree traversal-based query
processing [7] and suggests that tree traversal might
be a complementary query processing technique to the
join-based ones.
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(j) PIO vs Buffer Size: QX6
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(k) PIO vs Buffer Size: QX7
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(l) PIO vs Buffer Size: QX8
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(m) Buffer Hit Ratio: QX6
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Figure 4: Experimental Results
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