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Abstract 
Data stream management systems often rely on 
ordering properties of tuple attributes in order to 
implement non-blocking operators. However, 
query operators that work with multiple streams, 
such as stream merge or join, can often still 
block if one of the input stream is very slow or 
bursty. In principle, punctuation and heartbeat 
mechanisms have been proposed to unblock 
streaming operators.  In practice, it is a challenge 
to incorporate such mechanisms into a high-
performance stream management system that is 
operational in an industrial application. 

In this paper, we introduce a system for 
punctuation-carrying heartbeat generation that 
we developed for Gigascope, a high-performance 
streaming database for network monitoring, that 
is operationally used within AT&T's IP 
backbone. We show how heartbeats can be 
regularly generated by low-level nodes in query 
execution plans and propagated upward 
unblocking all streaming operators on its way. 
Additionally, our heartbeat mechanism can be 
used for other applications in distributed settings 
such as detecting node failures, performance 
monitoring, and query optimization. A 
performance evaluation using live data feeds 
shows that our system is capable of working at 
multiple Gigabit line speeds in a live, industrial 
deployment and can significantly decrease the 
query memory utilization. 

 

1 Introduction 
A Data Stream Management System (DSMS) evaluates 
queries over potentially infinite streams of tuples.  In 
order for a DSMS to produce useful output, it must be 
able to unblock operators such as aggregation, join, and 
union.  In general, this unblocking is done by limiting the 
scope of output tuples that an input tuple can affect.  One 
unblocking mechanism is to define queries over windows 
of the input stream; this technique is particularly 
applicable to continuous query systems for monitoring 
applications [2,3,4,5]. Another technique for localizing 
input tuple scope is to a timestamp mechanism; this 
technique is particularly applicable to data reduction 
applications [8,19]. 

Our DSMS, Gigascope, requires that some fields of 
the input data streams be identified as behaving like 
timestamps.  The locality of input tuples is determined by 
analyzing how the query references the timestamp fields.  
For example, an aggregation query must have a timestamp 
field as one of its group-by variables, and a join query 
must relate timestamp fields of both inputs.  Gigascope 
also has a merge operator, which is a union operator that 
preserves the timestamp property of one of the fields of 
the input streams. 

We have found the timestamp analysis mechanism to 
be quite effective for unblocking operators as long as all 
input streams make progress.  However, if one of the 
input streams stalls, operators such as join or merge which 
combine two streams can stall, possibly leading to a 
system failure. 
 
Example. Let’s consider a concrete example.  Gigascope 
is designed for network monitoring applications.  Many of 
the sites that we monitor have multiple high-speed links 
(e.g., Gigabit Ethernet) to the Internet.  To ensure high 
reliability, one or more of these links is a backup link.  If 
a primary link fails, traffic is automatically diverted to a 
backup link. 

In order to monitor traffic at these installations, we 
need to monitor all links simultaneously.  At a minimum, 
we need to monitor the merged traffic of a link and its 
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backup.  Since the primary link has gigabit traffic and the 
backup link has almost no traffic, the merge operator will 
quickly overflow (i.e., even after optimizations which 
minimize traffic flow to the merge operator), either 
running out of buffer space or dropping packets.      

 
The problem we face is that while the presence of 

tuples carries temporal information, their absence does 
not.  A technique that has been proposed in the literature 
is to use heartbeats or punctuation [17,20] to unblock 
operators.  However, detailed implementation discussions 
are lacking. 
 
Our Contributions.  We present our implementation of 
punctuation-carrying heartbeats in the Gigascope DSMS.  
We first implemented these heartbeats to collect load and 
liveness information about the operators.  Our heartbeats 
originate at source query operators and propagate 
throughout the query DAG.  We show how timestamp 
punctuations can be generated at the source query nodes 
and inferred at every other operator in the query DAG.  
Finally we show how the punctuated heartbeats can 
unblock otherwise blocked operators. 

In this paper, our focus is on unblocking multi-stream 
operators such as joins and merges (previous heartbeat 
work [17] focuses on providing guarantees that tuples 
arriving to query processor are properly ordered).  We 
demonstrate the need and effectiveness of our 
punctuation-carrying heartbeats by running experiments 
with join and merge queries over very high-speed data 
streams.  We find that our punctuation-carrying heartbeat 
significantly reduces the memory load for join and merge 
operators with a CPU cost too small to be measured. 
 
Map. The rest of the paper is organized as follows. We 
discuss related work in Section 2. In Section 3, we 
provide an overview of two-level (low- and high-) 
Gigascope DSMS architecture and show how we integrate 
heartbeats into it. In Section 4, we describe how heartbeat 
generation is implemented in Gigascope’s low-level 
queries. Section 5 discusses the heartbeat generation and 
propagation in higher-level queries. We demonstrate how 
heartbeat mechanism goes beyond its use for operator 
unblocking by giving its other applications in Section 6. 
In Section 7, we present our experimental study with 
Gigascope on live traffic. Conclusions are in Section 8. 
 

2 Related Work 
 
A heartbeat is a very widely used mechanism in 
distributed systems to achieve fault tolerance. The most 
common implementations have remote nodes send 
periodic hearbeat messages to inform other nodes that 
they are alive. If no hearbeat is received for certain 
amount of time, the node is declared dead. Recent 

research projects in distributed data stream management 
systems (Aurora+, Medusa, and Borealis) [1,6] also use 
hearbeats to detect remote node failures.  

Stream punctuation [13,14,20] has been proposed as a 
technique to unblock operators by embedding special 
marks in the stream that indicate the end of a subset of the 
data. This mechanism is very generic and allows 
punctuation to carry arbitrary information that might be 
helpful to operators (e.g. all future tuples will have the 
values of the attribute in certain range). However, this 
work on punctuated streams does not describe how data 
sources are going to generate the punctuations. It is also 
not clear how to integrate such a mechanism into high-
performance streaming database that needs to process data 
at line speeds. 

The heartbeat mechanism described in [17] is 
designed to enforce a guarantee that all the tuples are 
ordered by a timestamp before they are sent to the query 
processor. This approach assumes that the DSMS includes 
a special input manager that buffers tuples arriving from 
multiple streams to provide such a guarantee. They focus 
on eliminating out-of-orderness in input streams, which is 
different from our problem of unblocking multi-stream 
operators. Gigascope’s punctuation-carrying heartbeats 
that we present here are not restricted to a single system 
or application time, and are designed for large number of 
protocol and application-level timestamps and sequence 
numbers characteristic of network streams. 
 

3 Integrating Hearbeats in Gigascope 
 
Gigascope [7,8,9] is a high-performance streaming 
database designed for monitoring of the networks with 
high-rate data streams. In this section, we discuss some 
relevant aspects of the Gigascope architecture and how 
we integrate heartbeats into Gigascope runtime and code-
generation system. 

3.1   Gigascope Architecture 

Gigascope is designed for monitoring very high speed 
data streams using inexpensive processors. To accomplish 
this goal, Gigascope uses an architecture which is 
optimized for its particular application. For one, 
Gigascope is a stream-only database—it does not support 
stored relations or continuous queries. This restriction 
greatly simplifies and streamlines the implementation. 
However, since there are no continuous queries (as 
implemented in, e.g., [18]) there are no explicit query 
evaluation windows, which are necessary to unblock 
operators such as aggregation and join. Instead, attributes 
in streams can be labeled with a “timestampness”, such as 
monotone increasing. The query planner uses this 
information to determine how (and whether) a blocking 
operator can be unblocked.  
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In an aggregation query, at least one of the group-by 
attributes must have a timestampness, say monotone 
increasing. When this attribute changes in value, all 
existing groups and their aggregates are flushed to the 
operator’ s output (similar to the tumble operator [4]). The 
values of the group-by attributes with timestampness thus 
define epochs in which aggregation occurs, with a flush at 
the end of each epoch. 

For an example, suppose that time is labeled as 
monotone increasing in the TCP stream.  Then in the 
following query: 

SELECT tb, srcIP, count(*) from TCP 
GROUP BY time/60 as tb, srcIP 

The tb group-by variable is inferred to be monotone 
increasing also.  This query counts the packets from each 
source IP address during 60 second epochs. 

A merge operator performs a union of two streams R 
and S in a way that preserves timestamps.  R and S must 
have the same schema, and both must have a timestamp 
field, say t, on which to merge.  If tuples on one stream, 
say R, have a larger value of t than those in S, then the 
tuples from R are buffered until the S tuples catch up. 

A join query on streams R and S must contain a join 
predicate such as R.tr=S.ts or R.tr/2=S.ts+1: 
that is, one which relates a timestamp field from R to one 
in S.  The input streams are buffered (in a manner similar 
to that done for merge) to ensure that the streams match 
up on the timestamp predicate. 

• Use early data 
reduction to handle 
very high speed 
data streams.

• Low-level queries
perform initial fast 
selection and 
aggregation on 
high speed stream.

• Fixed-size buffers 
at the low level

• Finalize 
aggregation in post 
processing. 

NIC

Ring Buffer

Low Low Low

High High

App

 

Figure 1: Gigascope architecture. 

Another aspect of Gigascope’ s specialization is its 
two-level query architecture, where the low level is used 
for data reduction and the high level performs more 
complex processing. This approach is employed for 
keeping up with high streaming rates in a controlled way.  
High speed data streams from, e.g. a Network Interface 
Card (NIC), are placed in a large ring buffer. These 
streams are called source streams to distinguish them 
from data streams created by queries. The data volumes of 
these source streams are far too large to provide a copy to 

each query on the stream. Instead, the queries are shipped 
to the streams. If a query Q is to be executed over source 
stream S, then Gigascope creates a subquery q which 
directly accesses S, and transforms Q into Q0 which is 
executed over the output from q. In general, one subquery 
is created for every table variable which aliases a source 
stream, for every query in the current query set. The 
subqueries read directly from the ring buffer. Since their 
output streams are much smaller than the source stream, 
the two-level architecture greatly reduces the amount of 
copying (simple queries can be evaluated directly on a 
source stream). 

The subqueries (which are called “LFTAs”, or low-
level queries, in Gigascope) are intended to be fast, 
lightweight data reduction queries. By deferring 
expensive processing (expensive functions and predicates, 
joins, large scale aggregation), the high volume source 
stream is quickly processed, minimizing buffer 
requirements. The expensive processing is performed on 
the output of the low level queries, but this data volume is 
smaller and easily buffered. Depending on the capabilities 
of the NIC, we can push some or all of the subquery 
processing into the NIC itself. To ensure that aggregation 
is fast, the low-level aggregation operator uses a fixed-
size hash table for maintaining the different groups of a 
GROUP BY. If a hash table collision occurs, the existing 
group and its aggregate are ejected (as a tuple), and the 
new group uses the old group’ s slot. That is, Gigascope 
computes a partial aggregate at the low level which is 
completed at a higher level. The query decomposition of 
an aggregate query Q is similar to that of subaggregates 
and superaggregates in data cube computations [10]. 

A DSMS has many aspects of a real-time system: if 
the system cannot keep up with the offered load, it will 
drop tuples.  We implemented traffic-shaping policies in 
some of the Gigascope operators to spread out processing 
load over time and thus improve ability to schedule.  In 
particular, the aggregation operator uses a slow flush to 
emit tuples when the aggregation epoch changes.  One 
output tuple is emitted for every input tuple which arrives, 
until all finished groups have been output (or the epoch 
changes again, in which case all old groups are flushed 
immediately). 

3.2   Using hearbeats to unblock streaming operators 

We initially designed a heartbeat mechanism to collect the 
runtime statistics about operator load and to detect node 
failures when system is used in distributed settings. 
Gigascope heartbeats are special messages that are 
regularly produced by low-level query operators and 
propagated throughout the query DAG. Since heartbeat 
messages are propagated using the regular tuple routing 
mechanism, they incur the same queuing delays as regular 
tuples and can give a good indication of the system 
bottlenecks and overloaded nodes. Collecting traces of the 
heartbeats propagating through query execution DAG 
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gave us a valuable tool in system performance 
monitoring. Another benefit of having regular flow of 
heartbeat messages through active operators is the ease of 
detecting failed nodes. 

We approached the problem of unblocking streaming 
operators that take multiple inputs by implementing a 
stream punctuation mechanism which injects special 
temporal update tuples into operator output streams. The 
purpose of temporal update tuples is to inform the 
receiving operators about the end of a subset of a data 
(typically the end of the time window or epoch on which 
streaming operators such as aggregations, stream merge 
and joins operate). Our first implementation of stream 
punctuations used on-demand generation of temporal 
updates tuples. In this approach blocked operators 
explicitly request the temporal update tuple from their 
input nodes. We found that on-demand generation of 
stream punctuations led to unnecessary complexity in 
both Gigascope runtime and code generation system. 
After taking a closer look at Gigascope heartbeat 
mechanism we realized that heartbeats regularly 
propagating through query execution DAG provide a 
perfect vehicle for carrying the temporal update tuples. 
The constant flow of punctuation-carrying heartbeats 
ensures that stalled merge and join operators will be 
unblocked in timely manner. 

Temporal update tuples generated by streaming 
operator have identical schema to regular tuple, but they 
also have a few important distinctions. All the tuple 
attributes that are marked as temporal in operator’ s output 
schema are initialized with values that are guaranteed not 
to violate the ordering properties. For example, if attribute 
Timebucket is marked as temporal increasing, and 
operator receives a temporal update tuple with value 
Timebucket = t, all future tuple are guaranteed to have 
Timebucket >= t. All the non-temporal attributes in 
stream schema are left uninitialized and are ignored by 
receiving operators. One simple and very conservative 
scheme for generating such temporal tuples is to always 
emit the previously produced tuple (cast as a temporal 
update tuple). However, such mechanism would be 
useless as heartbeats will not provide any new 
information to streaming operators. Our goal is to build a 
system that will be very aggressive in generating values of 
temporal attributes and try to set them to highest possible 
value it can safely guarantee (or lowest value in case of 
temporal decreasing attributes). We will describe our 
algorithms for generating the values of temporal attributes 
in sections 4 and 5. 
 

4 Heartbeat Generation at LFTA Level 
 
Heartbeat generation in Gigascope is initiated by low-
level operators (LFTAs) regularly injecting the heartbeat 
messages carrying temporal update tuples into their output 

streams. In this section, we a give brief overview of low-
level streaming operators used in Gigascope and describe 
the algorithms generation of temporal update tuples. 

4.1 Low-level streaming operators in Gigascope 

Gigascope’ s low-level streaming operators (LFTAs) read 
data directly from source data streams (e.g., packets 
sniffed from a network interface). Their main purpose is 
to maximally reduce the amount of data in a stream using 
filtering, projection and aggregation before it is passed to 
higher-level execution nodes (requiring a memory copy). 
Input tuples, typically in the form of networks packets, are 
read directly from NIC’ s ring buffer.  To avoid 
overflowing this high input rate buffer, it is essential that 
the processing of input tuples be as fast as possible. The 
only two types of streaming operators used in LFTA 
nodes are selection and aggregation. Gigascope uses a 
large number of optimizations to cut down the LFTA 
processing costs. Low-level operators are compiled into C 
code that is linked directly to runtime library, to avoid 
expensive runtime query interpretation. Gigascope also 
performs a limited form of multi-query optimization 
through a prefilter, discussed below. 

The normal mode of operations of the LFTA node in 
Gigascope is to block, waiting for new tuples to be posted 
to a NIC’ s ring buffer. Once a tuple is posted in the 
buffer, the runtime system invokes operator’ s 
Accept_Tuple() function to process it. In order to make 
sure that operators regularly produce the heartbeats even 
in the absence of incoming packets, the runtime system 
periodically interrupts the LFTA’ s wait and requests for 
them to emit a punctuation-carrying heartbeat.  

Every low-level operator maintains the necessary state 
required to correctly generate temporal update tuples. 
This state always includes the last seen values of all the 
temporal attributes referenced in operator’ s select clause, 
in addition to other operator-specific states. These values 
are used by the operator to infer the values of the temporal 
attributes for temporal update tuples. The example of such 
an inference is given in the following aggregation query: 

SELECT tb, srcIP, count(*) from TCP 
GROUP BY time/60 as tb, srcIP 

If according to LFTA’ s internal state the last seen value of 
‘time’  attribute was X, it will use the inference rules to 
generate a ‘tb’  value for temporal update tuple to be equal 
to X/60. 

4.2 Effects of prefilters 

Preliminary filtering is a form of multiple query 
optimization employed by Gigascope to avoid the cost of 
invoking operators on tuples which are certain to fail 
selection predicates. Even though this technique 
frequently leads to significant performance gains, it 
presents a problem for our heartbeat generation system. 
Consider a scenario in which an arriving tuple has a value 
of the temporal attributes that would advance the time 
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window used by higher-level aggregation, merge or join 
operator. If the tuple failed the prefilter test, it will never 
be delivered to LFTA operators and they would not be 
aware that the time window in fact advanced. 

In order to avoid losing valuable temporal 
information, we augment the prefilter to save the values 
of all the temporary attributes used by the queries that 
share the prefilter. These saved values are made available 
to all LFTA nodes for use in heartbeat generation. 

4.3 Heartbeats in selection LFTAs 

Low-level selection operators in Gigascope perform 
selection, projection, and transformation on packets 
arriving from a source data stream. The normal tuple 
processing flow for this operator is to unpack the values 
of the fields referenced in the query predicate and check if 
the predicate is satisfied.  If so, the output tuple is 
generated according to the projection list in query select 
clause. There are a small number of changes that need to 
be made to the normal tuple processing flow in order to 
enable heartbeat generation: 

 
1) Modify operator’ s Accept_Tuple() function to save 

the values of all temporal attributes referenced in 
query Select clause.  

2) Whenever operator receives a regular request to 
generate a temporal update tuple, use the maximum 
of the saved value of temporal attributes and a value 
saved by prefilter to infer the value of the temporal 
update tuple. 

 
It is important to note that the values of the temporal 
attributes are saved in Accept_Tuple() regardless of 
whether tuple satisfies the operator’ s predicate or not. The 
generation of attribute values for temporal update tuples is 
done using the value inference scheme outlined earlier in 
Section 4.1. 

4.4 Heartbeats in aggregation LFTAs 

Gigascope's low-level aggregation queries implement 
group by and aggregation functionality using small direct-
mapped hash table. Whenever a collision in a hash-table 
occurs, the ejected tuple is sent to output stream; as a  
result, the output stream can have multiple tuples for the 
same group. To ensure that the aggregation query always 
generates the correct output, a low-level query is paired 
with high-level aggregation node that completes the 
aggregation of partial results produced by LFTA. 

Whenever the incoming tuple advances the epoch, the 
aggregation operator closes all the aggregates maintained 
in the hash table and flushes them to the output stream. If 
the number of groups accumulated during an epoch is 
very large, the flush puts a large load on a stream manager 
and can potentially lead to overflow of system buffers. To 
avoid this effect Gigascope uses a traffic-shaping 
technique known as slow flush. Instead of putting tuples 

directly into output stream, it gradually emits them as new 
tuples arrive from the input. This property has a 
significant effect on generating the values of temporal 
attributes in heartbeat tuples. Using the largest observed 
values of temporal attributes may violate the stream 
ordering properties because some tuples with smaller 
attribute values remain unflushed. 

Similar to selection operator, aggregation nodes save 
the last seen values of temporal attributes in the input 
stream and use the value inference to generate temporal 
update tuples. In addition to the state common to all 
operators, it also maintains the value of temporal 
attributes of the last tuple it flushed to the output stream. 
Whenever a request to produce a heartbeat is received, the 
following formula is used: 

 
if we have unflushed tuples : 
 use the value of last flushed tuple 
else: 
 use maximum of the saved value of temporal 

attributes and the value saved by the prefilter 
 

This method guarantees that heartbeat tuples injected into 
operator’ s output stream do not violate temporal attribute 
ordering properties. 

4.5 Infering values of temporal attributes based on 
system time 

The heartbeat generation scheme that Gigascope uses in 
LFTAs works well when each of the monitored links has 
some amount of traffic. However, the situation becomes 
more complicated when one of the monitored network 
cards does not observe any tuple in a long time. In the 
absence of incoming tuples, the streaming operators will 
not be able to advance the values of temporal attributes 
and will conservatively produce heartbeats based on 
previously observed input. Since most of the temporal 
attributes in typical network queries are time-based and 
can be easily correlated with system clock, naturally, 
Gigascope has the ability to advance the values of 
temporal attributes based on a system clock. 

When advancing temporal attributes using this 
method, one must however be careful about the skew 
between the system clock and the timestamps assigned by 
network interfaces. One source of the skew is the 
buffering in packet capture library (pcap) library that can 
keep already timestamped tuples from being delivered to 
LFTA nodes. In the presence of low-rate stream, 
buffering can lead to scenarios where the timestamps of 
the tuples received by LFTA fall significantly behind a 
system clock. As part of setting up Gigascope, the 
administrator needs to specify the maximum skew 
between host system clock and each of the monitored 
network interfaces. The heartbeat generation system uses 
the skew information to automatically advance the time-
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based temporal attributes. Future tuples that violate the 
skew specification are discarded by receiving LFTAs. 

 

5 Heartbeat Propagation at HFTA Level 
 
A streaming operator in high-level query nodes (HFTA) 
emits temporal update tuples whenever it receives a 
heartbeat from one of its source stream. In this section, we 
give an overview of high-level query nodes and the 
streaming operators they use as well as algorithms for 
heartbeat generation and propagation by different 
streaming operators. 

5.1 High-level query nodes in Gigascope 

An important characteristic of the Gigascope architecture 
is a two-level approach to query execution. Low-level 
subqueries (LFTAs) executing directly within Gigascope 
runtime are responsible for early data reduction, while 
more complicated processing involving expensive 
predicates or complex operators is performed in high-
level query nodes (HFTAs). Even though from 
application perspective LFTAs and HFTAs are 
indistinguishable, there are significant differences in their 
capabilities. High-level nodes are not restricted to running 
single streaming operator (the way LFTAs are) and can 
implement arbitrarily complex query execution plans. 
Currently Gigascope supports selection, multiple types of 
aggregation, stream merge, and inner and outer join 
operators. HFTAs can receive data from multiple different 
streams produced by LFTAs and other running HFTAs.  

The normal mode of execution of an HFTA node in 
Gigascope is to block, waiting for new tuples to arrive 
from one of its input streams. After determining which 
operators in the query execution tree are subscribed to that 
input stream, the runtime system invokes operator’ s 
Accept_Tuple() function to process the incoming tuples. If 
the processing of the tuple forces the operator to produce 
some output tuples, they are routed to the appropriate 
parent operator in query execution plan. In addition to the 
regular tuples arriving from one of its input stream, an 
HFTA regularly receives temporal update tuples produced 
by LFTAs or other HFTAs. We augmented the 
implementation of all streaming operators to correctly 
interpret temporal update tuples and use them to unblock 
themselves. We will describe the changes that we made in 
subsequent sections dedicated to different types of 
operators. 

Similar to low-level operators described earlier, high-
level operators residing in an HFTA maintain the 
necessary state required to generate temporal update 
tuples. Normally the state includes the last seen values of 
all relevant temporal attributes for each of the operator’ s 
input streams. High-level operators use these values in 
addition to operator-specific state to infer the values of the 
attributes of temporal update tuples. 

5.2 Heartbeats in selection operator 

Heartbeat generation in selection operator is largely 
identical to the scheme used selection LFTAs discussed 
earlier. The difference lies in the fact that operator can 
receive temporal update tuples in addition to regular data 
tuples. Whenever a temporal update tuples is received, 
operator updates the saved values of all temporal 
attributes referenced in query Select clause and generates 
a new temporal update tuple based on a saved state. The 
rest of the normal tuple processing is bypassed. The 
generation of attribute values for temporal update tuples is 
done using the value inference scheme outlined earlier in 
Section 4.1. 

5.3 Heartbeats in aggregation and sampling 

The high-level aggregation operator in Gigascope is a 
non-blocking operator that aggregates the data within a 
time window (epoch) defined by values of temporal 
groupby attributes. In contrast with low-level aggregation 
queries that use direct-mapped hash-table and can emit 
multiple partial aggregates for the same group, high-level 
aggregates are required to keep all the groups and 
corresponding aggregates till the end of epoch before 
flushing them to output stream. To deal with the increased 
danger of overflowing system buffers by flushing huge 
amounts of data at the end of the epoch, aggregation 
operators rely on the slow flush mechanism that we 
described earlier. 

We made a small number of modifications to 
Gigascope aggregation operator to enable the generation 
of the punctuation-carrying heartbeats. These 
modifications mostly mimic the changes required to 
implement heartbeats in low-level aggregation queries. 
The operator maintains the last seen values of all relevant 
temporal attributes, updating them whenever a new tuple 
(regular or temporal) arrives. In addition to this state, the 
operator also maintains the values of temporal attributes 
of the last flushed tuple (for correctness in the presence of 
slow flush). These values are combined to infer the 
attributes of temporal update tuple using the formula from 
Section 4.4. 

In addition to traditional stream aggregation 
operators, Gigascope also supports more complex 
aggregation operators – such as the stream sampling 
operator [21]. However, in all respects related to 
processing of temporal tuples and heartbeat generation, 
these operators behave identically to plain aggregation 
operator and share all the heartbeat-related code. 

5.4 Heartbeats in stream merge oprator 

A merge operator in Gigascope performs a union of two 
streams R and S in a way that preserves the ordering 
properties of the temporal attributes. R and S must have 
the same schema, and both must have a temporal field, 
say t, on which to merge. Note that t is the only attribute 
that preserves the temporal properties in the merge output 

1084



schema. The operator maintains the smallest values RMIN 
and SMIN of the timestamp observed on each of the input 
streams. If tuples on one stream, say R, have a values of t 
larger then SMIN, then the tuples from R are buffered until 
the S tuples catch up. Note that the values of RMIN and 
SMIN are updated whenever a new tuple (regular or 
temporal) arrives from a stream that has no buffered 
tuples. Whenever the operator is asked to generate the 
temporal update tuple, it can trivially generate it by 
setting the value of t to MIN(RMIN, SMIN). 

5.5 Hearbeats in join oprator 

GSQL queries that join two data streams R and S must 
contain a predicate that relates a timestamp from R to one 
in S (e.g. R.tr = 2 * S.ts). This requirement is critical for 
implementing the join using bounded amount of memory 
without relying on sliding windows. Gigascope 
implementation of join operator supports inner as well as 
left, right and full outer equi-joins. Similar to merge 
operator, join maintains a minimum timestamps RMIN and 
SMIN and buffers input streams to ensure they match up on 
the timestamp predicate. Note that timestamp in GSQL 
may include a number of temporal attributes, so RMIN and 
SMIN could be a composite structure storing minimum 
values of all attributes that constitute a timestamp. Again 
the value of the attributes in temporal updates tuples are 
generated using the MIN(RMIN, SMIN) formula.  
 

6 Other heartbeat applications 
 
Our initial goal in implementing heartbeat mechanism for 
Gigascope was to collect the statistics about the load on 
query nodes when system is used in distributed settings. 
Once the mechanism was implemented we discovered that 
heartbeat infrastructure can be used for variety of other 
tasks. In addition to carrying stream punctuations (which 
is the main focus of this paper) and statistics collection, 
we are currently applying heartbeats to fault tolerance, 
query performance analysis, distributed query 
optimization. In this section we give brief overview of 
different applications that rely on Gigascope’ s heartbeats. 

6.1 Fault tolerance 

A heartbeat is a widely used mechanism in distributed 
systems to detect node failures. Traditional 
implementations require every remote node to 
periodically send heartbeat messages to a resource 
manager to indicate that the node is still alive. In our 
Gigascope implementation, we use a slightly different 
scheme in which heartbeats are periodically generated by 
low-level queries and propagated upward through the 
query execution DAG. A constant flow of heartbeat tuples 
through the system provides an easy way for a running 
query to identify that a node running one of its subqueries 

no longer responding. If a subquery does not produce a 
heartbeat for some specified amount of time, it is declared 
to be failed and a recovery procedure is initiated. Usually 
the recovery involves moving an instance of the failed 
query to another machine. 

6.2 System performance analysis 

Gigascope relies on the regular tuple routing mechanism 
to propagate the heartbeat messages from the low-level 
queries up to top-level nodes that applications subscribe 
to. As a result, heartbeats are subject to the same queuing 
delays that regular tuples incur and can be used to identify 
backlogged nodes and system bottlenecks. Every 
heartbeat message emitted by an LFTA is timestamped 
and contains an identifier of the producing query. In 
addition to this information, every heartbeat is assigned a 
special trace identifier (trace_id). As the messages 
propagate upwards to higher level nodes, they attach their 
own identifiers along with a timestamps corresponding to 
the time they received a heartbeat. When a heartbeat 
message finally reaches a top-level query node, it has a 
full trace of all the operators it visited on its way along 
with the delays it incurred in each of the operator’ s 
queues. Gigascope administrators can use these heartbeat 
traces to identify system performance problems that are 
otherwise very difficult to detect. 

6.3 Distributed query optimization 

The Gigascope team is currently working on automated 
tools that will be able to utilize the statistics collected 
using the heartbeat mechanism and dynamically re-
optimize the query execution plans to eliminate identified 
bottlenecks. In addition to detailed traces described in 
previous section, we plan to make heartbeats carry other 
operator statistics such as predicate selectivities, data 
arrival rates and tuple processing costs. 
 

7 Performance evaluation 
 
In this section we present our experiments with the 
Gigascope heartbeat mechanism. These experiments were 
conducted on a live network feed from a data center tap. 
All our queries monitor the set of 3 network interfaces, 
two high-speed DAG4.3GE Gigabit Ethernet interfaces 
(main1 and main2) which see the main bulk of the traffic 
and one control 100Mbit interface (control). Both Gigabit 
interfaces receive approximately 100,000 packets per 
second (about 400 Mbits/sec). Our primary focus is to be 
able to unblock streaming operators that combine the 
streams from both high-rate main links and low-rate 
backup links. Since the control interface has very small 
amount of traffic, its behaviour is a representative of the 
behaviour of backup interfaces. All experiments were 
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conducted on dual processor 2.8 GHz P4 server with 4 
GB of RAM running FreeBSD 4.10. 

7.1 Unblocking stream merge using hearbeats 

We evaluated the effect that punctuation-carrying 
heartbeats have on memory usage of running queries that 
use the stream merge operator. For this experiment we 
used the following GSQL query: 
 
SELECT tb,protocol,srcIP,destIP,  

srcPort, destPort, count(*)  
FFROM DataProtocol  
GROUP BY time/10 as tb, protocol,  

srcIP, destIP, srcPort, destPort 
 

The query computes the number of packets observed 
in different flows in 10 second time buckets. Since the 
query is executed on a machine with 3 network interfaces, 
the Gigascope query planner automatically inserts stream 
merge operators into query plans to combine the stream 
from different interfaces. The resulting query plan is 
shown in Figure 3. 
 

 

Figure 2: Merge query execution plan 

Data is partially aggregated using low-level aggregation 
queries and then combined using stream merge operators 
before finally being aggregated by high-level aggregation 
query. When the control link has no traffic, both stream 
merge operators must buffer a large number of tuples 
received from high-rate main links. In this experiment, we 
varied the interval with which heartbeats are generated 
and recorded maximum memory that a running query 
consumes. We varied a heartbeat interval from 1 sec (the 
default value used in Gigascope) to 30 seconds in 5 
second increments. The results of the experiments are 
presented in Figure 4.  
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Figure 3: Memory usage of stream merge query 

The result of the experiment illustrate that heartbeats 
successfully unblock the stream merge operators. As the 
heartbeat interval increases, the amount of state that the 
merge operators need to maintain before they can advance 
the epoch is growing linearly. Eventually memory 
footprint of the query would exceed the available RAM 
and will cause a system crash. 

It is important to notice that increasing the heartbeat 
intervals not only leads to increased memory footprint, 
but also significantly increases the amount of data that 
needs to be flushed by the operator once the epoch 
advances. Since our stream merge implementation does 
not currently use traffic-shaping techniques (such as slow 
flush), the system can cause a query failure even before 
the memory consumption exceeds the available RAM. In 
the experiment in which we used 30 second heartbeat 
intervals, merge operators were instantly flushing 420MB 
worth of tuples which exceeded the capabilities of tuple 
transfer mechanism and led to query failure. 

7.2 Unblocking join operators using hearbeats 

In this experiment we observed how effectively heartbeats 
unblock join queries and reduce overall query memory 
requirements. We used the following GSQL query: 
 
Query flow1: 
SELECT tb,protocol,srcIP,destIP,  

srcPort,destPort,count(*) as cnt 
FROM [main0_and_control].DataProtocol  
GROUP BY time/10 as tb,protocol,srcIP, 

destIP, srcPort, destPort; 
 
Query flow2: 
SELECT tb,protocol,srcIP,destIP,  

srcPort,destPort,count(*) as cnt  
FROM main1.DataProtocol 
GROUP BY time/10 as tb,protocol,srcIP,  

destIP, srcPort, destPort; 
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Query full_flow: 
SELECT flow1.tb,flow1.protocol, 
flow1.srcIP, flow1.destIP,  

flow1.srcPort,flow1.destPort, 
flow1.cnt, flow2.cnt 

OUTER_JOIN FROM flow1, flow2  
WHERE flow1.srcIP=flow2.srcIP and  

flow1.destIP=flow2.destIP and 
flow1.srcPort=flow2.srcPort and  
flow1.destPort=flow2.destPort and  
flow1.protocol=flow2.protocol and  
flow1.tb = flow2.tb 

 
Two subqueries (flow1 and flow2) compute the flows 

aggregated in 10 second timebuckets and observed on 
interfaces main1+control and main2 respectively. The 
query results are combined using full outer join to 
generate a final output. The resulting query plan is shown 
in Figure 5. 

 

Figure 5: Merge query execution plan 

In this experiment we varied an interval with which 
heartbeats are generated from 1 sec to 60 seconds in 10 
second increments. The results of the experiments are 
presented in Figure 6. 
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Figure 6: Memory usage of join query 

The results of the experiments show a similar pattern to 
the query that just uses stream merge operators. Again 
punctuation-carrying heartbeats are able to unblock both 
merge and join operators. The state maintained by query 
merge, aggregation and join operators linearly grows with 
the heartbeat interval and reaches 520MB for 60 second 
interval. At this point our outer join implementation, 
which does not use traffic-shaping, instantaneously dumps 
520MB of data to receiving application and causes the 
overflow of system buffers. When we set a heartbeat 
interval to default value of 1 sec, we not only avoid 
accumulating large state of blocking operators, but also 
decreasing the burstyness of their output. 

7.3 CPU overhead of heartbeat generaiton 

We measured the CPU overhead that Gigascope’ s 
implementation of heartbeats incurs on running streaming 
queries. We measured the average CPU load of a merge 
query used in Section 7.1 running on two high-rate 
interfaces (main1 and main2). We compared the CPU 
load of a system with 1 second heartbeat interval to an 
identical system which has heartbeats completely 
disabled. Since both of the monitored links have 
moderately high load, the merge operators are naturally 
unblocked even with heartbeat disabled. Therefore both 
systems behave identically and allow us to measure 
overhead of heartbeat generation without significantly 
changing runtime behavior of the operators. We observed 
that a version of Gigascope with heartbeats disabled has 
average CPU load of 37.3%, while enabling heartbeat 
generation every second raises the load to 37.5%. This 
difference is so small that it can be explained by 
variations in traffic load.  Hence we conclude that the 
overhead of the heartbeat mechanism is immeasurably 
small. 
 
8 Conclusion 
 
We introduced a simple mechanism for punctuation-
carrying heartbeat generation that we developed for 
Gigascope, a high-performance streaming database 
for network monitoring, that is operationally used 
within AT&T's IP backbone. We show how 
heartbeats can be regularly generated by low-level 
nodes in query execution plans and propagated 
upwards. By attaching temporal update tuples as 
punctuation, the heartbeats unblock any blocked 
operators. Our heartbeat mechanism can be also be 
used for other applications in distributed settings, 
such as detecting node failures, performance 
monitoring, and query optimization. A performance 
evaluation using live data feeds show that our system 
is capable of working at multiple Gigabit line speeds 
in industrial deployment and can significantly 
decrease the query memory utilization.  
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