

A Heartbeat Mechanism and its Application in Gigascope

 Theodore Johnson S. Muthukrishnan Vladislav Shkapenyuk Oliver Spatscheck

 AT&T Labs-Research Rutgers University Rutgers University AT&T Labs-Research
johnsont@research.att.com muthu@cs.rutgers.edu vshkap@cs.rutgers.edu spatsch@research.att.com

Abstract
Data stream management systems often rely on
ordering properties of tuple attributes in order to
implement non-blocking operators. However,
query operators that work with multiple streams,
such as stream merge or join, can often still
block if one of the input stream is very slow or
bursty. In principle, punctuation and heartbeat
mechanisms have been proposed to unblock
streaming operators. In practice, it is a challenge
to incorporate such mechanisms into a high-
performance stream management system that is
operational in an industrial application.

In this paper, we introduce a system for
punctuation-carrying heartbeat generation that
we developed for Gigascope, a high-performance
streaming database for network monitoring, that
is operationally used within AT&T's IP
backbone. We show how heartbeats can be
regularly generated by low-level nodes in query
execution plans and propagated upward
unblocking all streaming operators on its way.
Additionally, our heartbeat mechanism can be
used for other applications in distributed settings
such as detecting node failures, performance
monitoring, and query optimization. A
performance evaluation using live data feeds
shows that our system is capable of working at
multiple Gigabit line speeds in a live, industrial
deployment and can significantly decrease the
query memory utilization.

1 Introduction
A Data Stream Management System (DSMS) evaluates
queries over potentially infinite streams of tuples. In
order for a DSMS to produce useful output, it must be
able to unblock operators such as aggregation, join, and
union. In general, this unblocking is done by limiting the
scope of output tuples that an input tuple can affect. One
unblocking mechanism is to define queries over windows
of the input stream; this technique is particularly
applicable to continuous query systems for monitoring
applications [2,3,4,5]. Another technique for localizing
input tuple scope is to a timestamp mechanism; this
technique is particularly applicable to data reduction
applications [8,19].

Our DSMS, Gigascope, requires that some fields of
the input data streams be identified as behaving like
timestamps. The locality of input tuples is determined by
analyzing how the query references the timestamp fields.
For example, an aggregation query must have a timestamp
field as one of its group-by variables, and a join query
must relate timestamp fields of both inputs. Gigascope
also has a merge operator, which is a union operator that
preserves the timestamp property of one of the fields of
the input streams.

We have found the timestamp analysis mechanism to
be quite effective for unblocking operators as long as all
input streams make progress. However, if one of the
input streams stalls, operators such as join or merge which
combine two streams can stall, possibly leading to a
system failure.

Example. Let’s consider a concrete example. Gigascope
is designed for network monitoring applications. Many of
the sites that we monitor have multiple high-speed links
(e.g., Gigabit Ethernet) to the Internet. To ensure high
reliability, one or more of these links is a backup link. If
a primary link fails, traffic is automatically diverted to a
backup link.

In order to monitor traffic at these installations, we
need to monitor all links simultaneously. At a minimum,
we need to monitor the merged traffic of a link and its

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1079

backup. Since the primary link has gigabit traffic and the
backup link has almost no traffic, the merge operator will
quickly overflow (i.e., even after optimizations which
minimize traffic flow to the merge operator), either
running out of buffer space or dropping packets.

The problem we face is that while the presence of

tuples carries temporal information, their absence does
not. A technique that has been proposed in the literature
is to use heartbeats or punctuation [17,20] to unblock
operators. However, detailed implementation discussions
are lacking.

Our Contributions. We present our implementation of
punctuation-carrying heartbeats in the Gigascope DSMS.
We first implemented these heartbeats to collect load and
liveness information about the operators. Our heartbeats
originate at source query operators and propagate
throughout the query DAG. We show how timestamp
punctuations can be generated at the source query nodes
and inferred at every other operator in the query DAG.
Finally we show how the punctuated heartbeats can
unblock otherwise blocked operators.

In this paper, our focus is on unblocking multi-stream
operators such as joins and merges (previous heartbeat
work [17] focuses on providing guarantees that tuples
arriving to query processor are properly ordered). We
demonstrate the need and effectiveness of our
punctuation-carrying heartbeats by running experiments
with join and merge queries over very high-speed data
streams. We find that our punctuation-carrying heartbeat
significantly reduces the memory load for join and merge
operators with a CPU cost too small to be measured.

Map. The rest of the paper is organized as follows. We
discuss related work in Section 2. In Section 3, we
provide an overview of two-level (low- and high-)
Gigascope DSMS architecture and show how we integrate
heartbeats into it. In Section 4, we describe how heartbeat
generation is implemented in Gigascope’s low-level
queries. Section 5 discusses the heartbeat generation and
propagation in higher-level queries. We demonstrate how
heartbeat mechanism goes beyond its use for operator
unblocking by giving its other applications in Section 6.
In Section 7, we present our experimental study with
Gigascope on live traffic. Conclusions are in Section 8.

2 Related Work

A heartbeat is a very widely used mechanism in
distributed systems to achieve fault tolerance. The most
common implementations have remote nodes send
periodic hearbeat messages to inform other nodes that
they are alive. If no hearbeat is received for certain
amount of time, the node is declared dead. Recent

research projects in distributed data stream management
systems (Aurora+, Medusa, and Borealis) [1,6] also use
hearbeats to detect remote node failures.

Stream punctuation [13,14,20] has been proposed as a
technique to unblock operators by embedding special
marks in the stream that indicate the end of a subset of the
data. This mechanism is very generic and allows
punctuation to carry arbitrary information that might be
helpful to operators (e.g. all future tuples will have the
values of the attribute in certain range). However, this
work on punctuated streams does not describe how data
sources are going to generate the punctuations. It is also
not clear how to integrate such a mechanism into high-
performance streaming database that needs to process data
at line speeds.

The heartbeat mechanism described in [17] is
designed to enforce a guarantee that all the tuples are
ordered by a timestamp before they are sent to the query
processor. This approach assumes that the DSMS includes
a special input manager that buffers tuples arriving from
multiple streams to provide such a guarantee. They focus
on eliminating out-of-orderness in input streams, which is
different from our problem of unblocking multi-stream
operators. Gigascope’s punctuation-carrying heartbeats
that we present here are not restricted to a single system
or application time, and are designed for large number of
protocol and application-level timestamps and sequence
numbers characteristic of network streams.

3 Integrating Hearbeats in Gigascope

Gigascope [7,8,9] is a high-performance streaming
database designed for monitoring of the networks with
high-rate data streams. In this section, we discuss some
relevant aspects of the Gigascope architecture and how
we integrate heartbeats into Gigascope runtime and code-
generation system.

3.1 Gigascope Architecture

Gigascope is designed for monitoring very high speed
data streams using inexpensive processors. To accomplish
this goal, Gigascope uses an architecture which is
optimized for its particular application. For one,
Gigascope is a stream-only database—it does not support
stored relations or continuous queries. This restriction
greatly simplifies and streamlines the implementation.
However, since there are no continuous queries (as
implemented in, e.g., [18]) there are no explicit query
evaluation windows, which are necessary to unblock
operators such as aggregation and join. Instead, attributes
in streams can be labeled with a “timestampness”, such as
monotone increasing. The query planner uses this
information to determine how (and whether) a blocking
operator can be unblocked.

1080

In an aggregation query, at least one of the group-by
attributes must have a timestampness, say monotone
increasing. When this attribute changes in value, all
existing groups and their aggregates are flushed to the
operator’ s output (similar to the tumble operator [4]). The
values of the group-by attributes with timestampness thus
define epochs in which aggregation occurs, with a flush at
the end of each epoch.

For an example, suppose that time is labeled as
monotone increasing in the TCP stream. Then in the
following query:

SELECT tb, srcIP, count(*) from TCP
GROUP BY time/60 as tb, srcIP

The tb group-by variable is inferred to be monotone
increasing also. This query counts the packets from each
source IP address during 60 second epochs.

A merge operator performs a union of two streams R
and S in a way that preserves timestamps. R and S must
have the same schema, and both must have a timestamp
field, say t, on which to merge. If tuples on one stream,
say R, have a larger value of t than those in S, then the
tuples from R are buffered until the S tuples catch up.

A join query on streams R and S must contain a join
predicate such as R.tr=S.ts or R.tr/2=S.ts+1:
that is, one which relates a timestamp field from R to one
in S. The input streams are buffered (in a manner similar
to that done for merge) to ensure that the streams match
up on the timestamp predicate.

• Use early data
reduction to handle
very high speed
data streams.

• Low-level queries
perform initial fast
selection and
aggregation on
high speed stream.

• Fixed-size buffers
at the low level

• Finalize
aggregation in post
processing.

NIC

Ring Buffer

Low Low Low

High High

App

Figure 1: Gigascope architecture.

Another aspect of Gigascope’ s specialization is its
two-level query architecture, where the low level is used
for data reduction and the high level performs more
complex processing. This approach is employed for
keeping up with high streaming rates in a controlled way.
High speed data streams from, e.g. a Network Interface
Card (NIC), are placed in a large ring buffer. These
streams are called source streams to distinguish them
from data streams created by queries. The data volumes of
these source streams are far too large to provide a copy to

each query on the stream. Instead, the queries are shipped
to the streams. If a query Q is to be executed over source
stream S, then Gigascope creates a subquery q which
directly accesses S, and transforms Q into Q0 which is
executed over the output from q. In general, one subquery
is created for every table variable which aliases a source
stream, for every query in the current query set. The
subqueries read directly from the ring buffer. Since their
output streams are much smaller than the source stream,
the two-level architecture greatly reduces the amount of
copying (simple queries can be evaluated directly on a
source stream).

The subqueries (which are called “LFTAs”, or low-
level queries, in Gigascope) are intended to be fast,
lightweight data reduction queries. By deferring
expensive processing (expensive functions and predicates,
joins, large scale aggregation), the high volume source
stream is quickly processed, minimizing buffer
requirements. The expensive processing is performed on
the output of the low level queries, but this data volume is
smaller and easily buffered. Depending on the capabilities
of the NIC, we can push some or all of the subquery
processing into the NIC itself. To ensure that aggregation
is fast, the low-level aggregation operator uses a fixed-
size hash table for maintaining the different groups of a
GROUP BY. If a hash table collision occurs, the existing
group and its aggregate are ejected (as a tuple), and the
new group uses the old group’ s slot. That is, Gigascope
computes a partial aggregate at the low level which is
completed at a higher level. The query decomposition of
an aggregate query Q is similar to that of subaggregates
and superaggregates in data cube computations [10].

A DSMS has many aspects of a real-time system: if
the system cannot keep up with the offered load, it will
drop tuples. We implemented traffic-shaping policies in
some of the Gigascope operators to spread out processing
load over time and thus improve ability to schedule. In
particular, the aggregation operator uses a slow flush to
emit tuples when the aggregation epoch changes. One
output tuple is emitted for every input tuple which arrives,
until all finished groups have been output (or the epoch
changes again, in which case all old groups are flushed
immediately).

3.2 Using hearbeats to unblock streaming operators

We initially designed a heartbeat mechanism to collect the
runtime statistics about operator load and to detect node
failures when system is used in distributed settings.
Gigascope heartbeats are special messages that are
regularly produced by low-level query operators and
propagated throughout the query DAG. Since heartbeat
messages are propagated using the regular tuple routing
mechanism, they incur the same queuing delays as regular
tuples and can give a good indication of the system
bottlenecks and overloaded nodes. Collecting traces of the
heartbeats propagating through query execution DAG

1081

gave us a valuable tool in system performance
monitoring. Another benefit of having regular flow of
heartbeat messages through active operators is the ease of
detecting failed nodes.

We approached the problem of unblocking streaming
operators that take multiple inputs by implementing a
stream punctuation mechanism which injects special
temporal update tuples into operator output streams. The
purpose of temporal update tuples is to inform the
receiving operators about the end of a subset of a data
(typically the end of the time window or epoch on which
streaming operators such as aggregations, stream merge
and joins operate). Our first implementation of stream
punctuations used on-demand generation of temporal
updates tuples. In this approach blocked operators
explicitly request the temporal update tuple from their
input nodes. We found that on-demand generation of
stream punctuations led to unnecessary complexity in
both Gigascope runtime and code generation system.
After taking a closer look at Gigascope heartbeat
mechanism we realized that heartbeats regularly
propagating through query execution DAG provide a
perfect vehicle for carrying the temporal update tuples.
The constant flow of punctuation-carrying heartbeats
ensures that stalled merge and join operators will be
unblocked in timely manner.

Temporal update tuples generated by streaming
operator have identical schema to regular tuple, but they
also have a few important distinctions. All the tuple
attributes that are marked as temporal in operator’ s output
schema are initialized with values that are guaranteed not
to violate the ordering properties. For example, if attribute
Timebucket is marked as temporal increasing, and
operator receives a temporal update tuple with value
Timebucket = t, all future tuple are guaranteed to have
Timebucket >= t. All the non-temporal attributes in
stream schema are left uninitialized and are ignored by
receiving operators. One simple and very conservative
scheme for generating such temporal tuples is to always
emit the previously produced tuple (cast as a temporal
update tuple). However, such mechanism would be
useless as heartbeats will not provide any new
information to streaming operators. Our goal is to build a
system that will be very aggressive in generating values of
temporal attributes and try to set them to highest possible
value it can safely guarantee (or lowest value in case of
temporal decreasing attributes). We will describe our
algorithms for generating the values of temporal attributes
in sections 4 and 5.

4 Heartbeat Generation at LFTA Level

Heartbeat generation in Gigascope is initiated by low-
level operators (LFTAs) regularly injecting the heartbeat
messages carrying temporal update tuples into their output

streams. In this section, we a give brief overview of low-
level streaming operators used in Gigascope and describe
the algorithms generation of temporal update tuples.

4.1 Low-level streaming operators in Gigascope

Gigascope’ s low-level streaming operators (LFTAs) read
data directly from source data streams (e.g., packets
sniffed from a network interface). Their main purpose is
to maximally reduce the amount of data in a stream using
filtering, projection and aggregation before it is passed to
higher-level execution nodes (requiring a memory copy).
Input tuples, typically in the form of networks packets, are
read directly from NIC’ s ring buffer. To avoid
overflowing this high input rate buffer, it is essential that
the processing of input tuples be as fast as possible. The
only two types of streaming operators used in LFTA
nodes are selection and aggregation. Gigascope uses a
large number of optimizations to cut down the LFTA
processing costs. Low-level operators are compiled into C
code that is linked directly to runtime library, to avoid
expensive runtime query interpretation. Gigascope also
performs a limited form of multi-query optimization
through a prefilter, discussed below.

The normal mode of operations of the LFTA node in
Gigascope is to block, waiting for new tuples to be posted
to a NIC’ s ring buffer. Once a tuple is posted in the
buffer, the runtime system invokes operator’ s
Accept_Tuple() function to process it. In order to make
sure that operators regularly produce the heartbeats even
in the absence of incoming packets, the runtime system
periodically interrupts the LFTA’ s wait and requests for
them to emit a punctuation-carrying heartbeat.

Every low-level operator maintains the necessary state
required to correctly generate temporal update tuples.
This state always includes the last seen values of all the
temporal attributes referenced in operator’ s select clause,
in addition to other operator-specific states. These values
are used by the operator to infer the values of the temporal
attributes for temporal update tuples. The example of such
an inference is given in the following aggregation query:

SELECT tb, srcIP, count(*) from TCP
GROUP BY time/60 as tb, srcIP

If according to LFTA’ s internal state the last seen value of
‘time’ attribute was X, it will use the inference rules to
generate a ‘tb’ value for temporal update tuple to be equal
to X/60.

4.2 Effects of prefilters

Preliminary filtering is a form of multiple query
optimization employed by Gigascope to avoid the cost of
invoking operators on tuples which are certain to fail
selection predicates. Even though this technique
frequently leads to significant performance gains, it
presents a problem for our heartbeat generation system.
Consider a scenario in which an arriving tuple has a value
of the temporal attributes that would advance the time

1082

window used by higher-level aggregation, merge or join
operator. If the tuple failed the prefilter test, it will never
be delivered to LFTA operators and they would not be
aware that the time window in fact advanced.

In order to avoid losing valuable temporal
information, we augment the prefilter to save the values
of all the temporary attributes used by the queries that
share the prefilter. These saved values are made available
to all LFTA nodes for use in heartbeat generation.

4.3 Heartbeats in selection LFTAs

Low-level selection operators in Gigascope perform
selection, projection, and transformation on packets
arriving from a source data stream. The normal tuple
processing flow for this operator is to unpack the values
of the fields referenced in the query predicate and check if
the predicate is satisfied. If so, the output tuple is
generated according to the projection list in query select
clause. There are a small number of changes that need to
be made to the normal tuple processing flow in order to
enable heartbeat generation:

1) Modify operator’ s Accept_Tuple() function to save

the values of all temporal attributes referenced in
query Select clause.

2) Whenever operator receives a regular request to
generate a temporal update tuple, use the maximum
of the saved value of temporal attributes and a value
saved by prefilter to infer the value of the temporal
update tuple.

It is important to note that the values of the temporal
attributes are saved in Accept_Tuple() regardless of
whether tuple satisfies the operator’ s predicate or not. The
generation of attribute values for temporal update tuples is
done using the value inference scheme outlined earlier in
Section 4.1.

4.4 Heartbeats in aggregation LFTAs

Gigascope's low-level aggregation queries implement
group by and aggregation functionality using small direct-
mapped hash table. Whenever a collision in a hash-table
occurs, the ejected tuple is sent to output stream; as a
result, the output stream can have multiple tuples for the
same group. To ensure that the aggregation query always
generates the correct output, a low-level query is paired
with high-level aggregation node that completes the
aggregation of partial results produced by LFTA.

Whenever the incoming tuple advances the epoch, the
aggregation operator closes all the aggregates maintained
in the hash table and flushes them to the output stream. If
the number of groups accumulated during an epoch is
very large, the flush puts a large load on a stream manager
and can potentially lead to overflow of system buffers. To
avoid this effect Gigascope uses a traffic-shaping
technique known as slow flush. Instead of putting tuples

directly into output stream, it gradually emits them as new
tuples arrive from the input. This property has a
significant effect on generating the values of temporal
attributes in heartbeat tuples. Using the largest observed
values of temporal attributes may violate the stream
ordering properties because some tuples with smaller
attribute values remain unflushed.

Similar to selection operator, aggregation nodes save
the last seen values of temporal attributes in the input
stream and use the value inference to generate temporal
update tuples. In addition to the state common to all
operators, it also maintains the value of temporal
attributes of the last tuple it flushed to the output stream.
Whenever a request to produce a heartbeat is received, the
following formula is used:

if we have unflushed tuples :
 use the value of last flushed tuple
else:
 use maximum of the saved value of temporal

attributes and the value saved by the prefilter

This method guarantees that heartbeat tuples injected into
operator’ s output stream do not violate temporal attribute
ordering properties.

4.5 Infering values of temporal attributes based on
system time

The heartbeat generation scheme that Gigascope uses in
LFTAs works well when each of the monitored links has
some amount of traffic. However, the situation becomes
more complicated when one of the monitored network
cards does not observe any tuple in a long time. In the
absence of incoming tuples, the streaming operators will
not be able to advance the values of temporal attributes
and will conservatively produce heartbeats based on
previously observed input. Since most of the temporal
attributes in typical network queries are time-based and
can be easily correlated with system clock, naturally,
Gigascope has the ability to advance the values of
temporal attributes based on a system clock.

When advancing temporal attributes using this
method, one must however be careful about the skew
between the system clock and the timestamps assigned by
network interfaces. One source of the skew is the
buffering in packet capture library (pcap) library that can
keep already timestamped tuples from being delivered to
LFTA nodes. In the presence of low-rate stream,
buffering can lead to scenarios where the timestamps of
the tuples received by LFTA fall significantly behind a
system clock. As part of setting up Gigascope, the
administrator needs to specify the maximum skew
between host system clock and each of the monitored
network interfaces. The heartbeat generation system uses
the skew information to automatically advance the time-

1083

based temporal attributes. Future tuples that violate the
skew specification are discarded by receiving LFTAs.

5 Heartbeat Propagation at HFTA Level

A streaming operator in high-level query nodes (HFTA)
emits temporal update tuples whenever it receives a
heartbeat from one of its source stream. In this section, we
give an overview of high-level query nodes and the
streaming operators they use as well as algorithms for
heartbeat generation and propagation by different
streaming operators.

5.1 High-level query nodes in Gigascope

An important characteristic of the Gigascope architecture
is a two-level approach to query execution. Low-level
subqueries (LFTAs) executing directly within Gigascope
runtime are responsible for early data reduction, while
more complicated processing involving expensive
predicates or complex operators is performed in high-
level query nodes (HFTAs). Even though from
application perspective LFTAs and HFTAs are
indistinguishable, there are significant differences in their
capabilities. High-level nodes are not restricted to running
single streaming operator (the way LFTAs are) and can
implement arbitrarily complex query execution plans.
Currently Gigascope supports selection, multiple types of
aggregation, stream merge, and inner and outer join
operators. HFTAs can receive data from multiple different
streams produced by LFTAs and other running HFTAs.

The normal mode of execution of an HFTA node in
Gigascope is to block, waiting for new tuples to arrive
from one of its input streams. After determining which
operators in the query execution tree are subscribed to that
input stream, the runtime system invokes operator’ s
Accept_Tuple() function to process the incoming tuples. If
the processing of the tuple forces the operator to produce
some output tuples, they are routed to the appropriate
parent operator in query execution plan. In addition to the
regular tuples arriving from one of its input stream, an
HFTA regularly receives temporal update tuples produced
by LFTAs or other HFTAs. We augmented the
implementation of all streaming operators to correctly
interpret temporal update tuples and use them to unblock
themselves. We will describe the changes that we made in
subsequent sections dedicated to different types of
operators.

Similar to low-level operators described earlier, high-
level operators residing in an HFTA maintain the
necessary state required to generate temporal update
tuples. Normally the state includes the last seen values of
all relevant temporal attributes for each of the operator’ s
input streams. High-level operators use these values in
addition to operator-specific state to infer the values of the
attributes of temporal update tuples.

5.2 Heartbeats in selection operator

Heartbeat generation in selection operator is largely
identical to the scheme used selection LFTAs discussed
earlier. The difference lies in the fact that operator can
receive temporal update tuples in addition to regular data
tuples. Whenever a temporal update tuples is received,
operator updates the saved values of all temporal
attributes referenced in query Select clause and generates
a new temporal update tuple based on a saved state. The
rest of the normal tuple processing is bypassed. The
generation of attribute values for temporal update tuples is
done using the value inference scheme outlined earlier in
Section 4.1.

5.3 Heartbeats in aggregation and sampling

The high-level aggregation operator in Gigascope is a
non-blocking operator that aggregates the data within a
time window (epoch) defined by values of temporal
groupby attributes. In contrast with low-level aggregation
queries that use direct-mapped hash-table and can emit
multiple partial aggregates for the same group, high-level
aggregates are required to keep all the groups and
corresponding aggregates till the end of epoch before
flushing them to output stream. To deal with the increased
danger of overflowing system buffers by flushing huge
amounts of data at the end of the epoch, aggregation
operators rely on the slow flush mechanism that we
described earlier.

We made a small number of modifications to
Gigascope aggregation operator to enable the generation
of the punctuation-carrying heartbeats. These
modifications mostly mimic the changes required to
implement heartbeats in low-level aggregation queries.
The operator maintains the last seen values of all relevant
temporal attributes, updating them whenever a new tuple
(regular or temporal) arrives. In addition to this state, the
operator also maintains the values of temporal attributes
of the last flushed tuple (for correctness in the presence of
slow flush). These values are combined to infer the
attributes of temporal update tuple using the formula from
Section 4.4.

In addition to traditional stream aggregation
operators, Gigascope also supports more complex
aggregation operators – such as the stream sampling
operator [21]. However, in all respects related to
processing of temporal tuples and heartbeat generation,
these operators behave identically to plain aggregation
operator and share all the heartbeat-related code.

5.4 Heartbeats in stream merge oprator

A merge operator in Gigascope performs a union of two
streams R and S in a way that preserves the ordering
properties of the temporal attributes. R and S must have
the same schema, and both must have a temporal field,
say t, on which to merge. Note that t is the only attribute
that preserves the temporal properties in the merge output

1084

schema. The operator maintains the smallest values RMIN
and SMIN of the timestamp observed on each of the input
streams. If tuples on one stream, say R, have a values of t
larger then SMIN, then the tuples from R are buffered until
the S tuples catch up. Note that the values of RMIN and
SMIN are updated whenever a new tuple (regular or
temporal) arrives from a stream that has no buffered
tuples. Whenever the operator is asked to generate the
temporal update tuple, it can trivially generate it by
setting the value of t to MIN(RMIN, SMIN).

5.5 Hearbeats in join oprator

GSQL queries that join two data streams R and S must
contain a predicate that relates a timestamp from R to one
in S (e.g. R.tr = 2 * S.ts). This requirement is critical for
implementing the join using bounded amount of memory
without relying on sliding windows. Gigascope
implementation of join operator supports inner as well as
left, right and full outer equi-joins. Similar to merge
operator, join maintains a minimum timestamps RMIN and
SMIN and buffers input streams to ensure they match up on
the timestamp predicate. Note that timestamp in GSQL
may include a number of temporal attributes, so RMIN and
SMIN could be a composite structure storing minimum
values of all attributes that constitute a timestamp. Again
the value of the attributes in temporal updates tuples are
generated using the MIN(RMIN, SMIN) formula.

6 Other heartbeat applications

Our initial goal in implementing heartbeat mechanism for
Gigascope was to collect the statistics about the load on
query nodes when system is used in distributed settings.
Once the mechanism was implemented we discovered that
heartbeat infrastructure can be used for variety of other
tasks. In addition to carrying stream punctuations (which
is the main focus of this paper) and statistics collection,
we are currently applying heartbeats to fault tolerance,
query performance analysis, distributed query
optimization. In this section we give brief overview of
different applications that rely on Gigascope’ s heartbeats.

6.1 Fault tolerance

A heartbeat is a widely used mechanism in distributed
systems to detect node failures. Traditional
implementations require every remote node to
periodically send heartbeat messages to a resource
manager to indicate that the node is still alive. In our
Gigascope implementation, we use a slightly different
scheme in which heartbeats are periodically generated by
low-level queries and propagated upward through the
query execution DAG. A constant flow of heartbeat tuples
through the system provides an easy way for a running
query to identify that a node running one of its subqueries

no longer responding. If a subquery does not produce a
heartbeat for some specified amount of time, it is declared
to be failed and a recovery procedure is initiated. Usually
the recovery involves moving an instance of the failed
query to another machine.

6.2 System performance analysis

Gigascope relies on the regular tuple routing mechanism
to propagate the heartbeat messages from the low-level
queries up to top-level nodes that applications subscribe
to. As a result, heartbeats are subject to the same queuing
delays that regular tuples incur and can be used to identify
backlogged nodes and system bottlenecks. Every
heartbeat message emitted by an LFTA is timestamped
and contains an identifier of the producing query. In
addition to this information, every heartbeat is assigned a
special trace identifier (trace_id). As the messages
propagate upwards to higher level nodes, they attach their
own identifiers along with a timestamps corresponding to
the time they received a heartbeat. When a heartbeat
message finally reaches a top-level query node, it has a
full trace of all the operators it visited on its way along
with the delays it incurred in each of the operator’ s
queues. Gigascope administrators can use these heartbeat
traces to identify system performance problems that are
otherwise very difficult to detect.

6.3 Distributed query optimization

The Gigascope team is currently working on automated
tools that will be able to utilize the statistics collected
using the heartbeat mechanism and dynamically re-
optimize the query execution plans to eliminate identified
bottlenecks. In addition to detailed traces described in
previous section, we plan to make heartbeats carry other
operator statistics such as predicate selectivities, data
arrival rates and tuple processing costs.

7 Performance evaluation

In this section we present our experiments with the
Gigascope heartbeat mechanism. These experiments were
conducted on a live network feed from a data center tap.
All our queries monitor the set of 3 network interfaces,
two high-speed DAG4.3GE Gigabit Ethernet interfaces
(main1 and main2) which see the main bulk of the traffic
and one control 100Mbit interface (control). Both Gigabit
interfaces receive approximately 100,000 packets per
second (about 400 Mbits/sec). Our primary focus is to be
able to unblock streaming operators that combine the
streams from both high-rate main links and low-rate
backup links. Since the control interface has very small
amount of traffic, its behaviour is a representative of the
behaviour of backup interfaces. All experiments were

1085

conducted on dual processor 2.8 GHz P4 server with 4
GB of RAM running FreeBSD 4.10.

7.1 Unblocking stream merge using hearbeats

We evaluated the effect that punctuation-carrying
heartbeats have on memory usage of running queries that
use the stream merge operator. For this experiment we
used the following GSQL query:

SELECT tb,protocol,srcIP,destIP,

srcPort, destPort, count(*)
FFROM DataProtocol
GROUP BY time/10 as tb, protocol,

srcIP, destIP, srcPort, destPort

The query computes the number of packets observed
in different flows in 10 second time buckets. Since the
query is executed on a machine with 3 network interfaces,
the Gigascope query planner automatically inserts stream
merge operators into query plans to combine the stream
from different interfaces. The resulting query plan is
shown in Figure 3.

Figure 2: Merge query execution plan

Data is partially aggregated using low-level aggregation
queries and then combined using stream merge operators
before finally being aggregated by high-level aggregation
query. When the control link has no traffic, both stream
merge operators must buffer a large number of tuples
received from high-rate main links. In this experiment, we
varied the interval with which heartbeats are generated
and recorded maximum memory that a running query
consumes. We varied a heartbeat interval from 1 sec (the
default value used in Gigascope) to 30 seconds in 5
second increments. The results of the experiments are
presented in Figure 4.

Query memory usage

0
50

100
150
200
250
300
350
400
450

0 5 10 15 20 25 30 35

Hearbeat interval (sec)

M
em

o
ry

 u
sa

g
e

(M
B

)
 .

Figure 3: Memory usage of stream merge query

The result of the experiment illustrate that heartbeats
successfully unblock the stream merge operators. As the
heartbeat interval increases, the amount of state that the
merge operators need to maintain before they can advance
the epoch is growing linearly. Eventually memory
footprint of the query would exceed the available RAM
and will cause a system crash.

It is important to notice that increasing the heartbeat
intervals not only leads to increased memory footprint,
but also significantly increases the amount of data that
needs to be flushed by the operator once the epoch
advances. Since our stream merge implementation does
not currently use traffic-shaping techniques (such as slow
flush), the system can cause a query failure even before
the memory consumption exceeds the available RAM. In
the experiment in which we used 30 second heartbeat
intervals, merge operators were instantly flushing 420MB
worth of tuples which exceeded the capabilities of tuple
transfer mechanism and led to query failure.

7.2 Unblocking join operators using hearbeats

In this experiment we observed how effectively heartbeats
unblock join queries and reduce overall query memory
requirements. We used the following GSQL query:

Query flow1:
SELECT tb,protocol,srcIP,destIP,

srcPort,destPort,count(*) as cnt
FROM [main0_and_control].DataProtocol
GROUP BY time/10 as tb,protocol,srcIP,

destIP, srcPort, destPort;

Query flow2:
SELECT tb,protocol,srcIP,destIP,

srcPort,destPort,count(*) as cnt
FROM main1.DataProtocol
GROUP BY time/10 as tb,protocol,srcIP,

destIP, srcPort, destPort;

Low-level
Aggregation

control

Low-level
Aggregation

main1

Low-level
Aggregation

main2

Stream Merge

Stream Merge

High-level
Aggregation

1086

Query full_flow:
SELECT flow1.tb,flow1.protocol,
flow1.srcIP, flow1.destIP,

flow1.srcPort,flow1.destPort,
flow1.cnt, flow2.cnt

OUTER_JOIN FROM flow1, flow2
WHERE flow1.srcIP=flow2.srcIP and

flow1.destIP=flow2.destIP and
flow1.srcPort=flow2.srcPort and
flow1.destPort=flow2.destPort and
flow1.protocol=flow2.protocol and
flow1.tb = flow2.tb

Two subqueries (flow1 and flow2) compute the flows

aggregated in 10 second timebuckets and observed on
interfaces main1+control and main2 respectively. The
query results are combined using full outer join to
generate a final output. The resulting query plan is shown
in Figure 5.

Figure 5: Merge query execution plan

In this experiment we varied an interval with which
heartbeats are generated from 1 sec to 60 seconds in 10
second increments. The results of the experiments are
presented in Figure 6.

Query memory usage

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

Hearbeat interval (sec)

M
em

o
ry

 u
sa

g
e

(M
B

)
 .

Figure 6: Memory usage of join query

The results of the experiments show a similar pattern to
the query that just uses stream merge operators. Again
punctuation-carrying heartbeats are able to unblock both
merge and join operators. The state maintained by query
merge, aggregation and join operators linearly grows with
the heartbeat interval and reaches 520MB for 60 second
interval. At this point our outer join implementation,
which does not use traffic-shaping, instantaneously dumps
520MB of data to receiving application and causes the
overflow of system buffers. When we set a heartbeat
interval to default value of 1 sec, we not only avoid
accumulating large state of blocking operators, but also
decreasing the burstyness of their output.

7.3 CPU overhead of heartbeat generaiton

We measured the CPU overhead that Gigascope’ s
implementation of heartbeats incurs on running streaming
queries. We measured the average CPU load of a merge
query used in Section 7.1 running on two high-rate
interfaces (main1 and main2). We compared the CPU
load of a system with 1 second heartbeat interval to an
identical system which has heartbeats completely
disabled. Since both of the monitored links have
moderately high load, the merge operators are naturally
unblocked even with heartbeat disabled. Therefore both
systems behave identically and allow us to measure
overhead of heartbeat generation without significantly
changing runtime behavior of the operators. We observed
that a version of Gigascope with heartbeats disabled has
average CPU load of 37.3%, while enabling heartbeat
generation every second raises the load to 37.5%. This
difference is so small that it can be explained by
variations in traffic load. Hence we conclude that the
overhead of the heartbeat mechanism is immeasurably
small.

8 Conclusion

We introduced a simple mechanism for punctuation-
carrying heartbeat generation that we developed for
Gigascope, a high-performance streaming database
for network monitoring, that is operationally used
within AT&T's IP backbone. We show how
heartbeats can be regularly generated by low-level
nodes in query execution plans and propagated
upwards. By attaching temporal update tuples as
punctuation, the heartbeats unblock any blocked
operators. Our heartbeat mechanism can be also be
used for other applications in distributed settings,
such as detecting node failures, performance
monitoring, and query optimization. A performance
evaluation using live data feeds show that our system
is capable of working at multiple Gigabit line speeds
in industrial deployment and can significantly
decrease the query memory utilization.

Low-level
Aggregation

control

Low-level
Aggregation

main1

Low-level
Aggregation

main2

Stream Merge

Outer Join

High-level
Aggregation

High-level
Aggregation

1087

9 REFERENCES

[1] Daniel J. Abadi et al. The Design of the Borealis Stream
Processing Engine, CIDR 2005.
[2] A. Arasu et al. STREAM: The Stanford stream data
manager. IEEE Data Engineering Bulletin, 26(1):19–26,
2003.
[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. ACM
PODS, pages 1–16, 2002.
[4] D. Carney et al. Monitoring streams - a new class of data
management applications. In Proc VLDB, pages 215–226,
2002.
[5] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. CIDR 2003.
[6] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska,
Don Carney, Ugur Cetintemel, Ying Xing, and Stan Zdonik.
Scalable Distributed Stream Processing. CIDR 2003.
[7] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: high performance network monitoring with an
SQL interface. In Proc. ACM SIGMOD, page 262, 2002.
[8] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In
Proc. ACM SIGMOD, pages 647–651, 2003.
[9] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
The Gigascope stream database. IEEE Data Engineering
Bulletin, 26(1): pages 27–32, 2003.
[10] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: a relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. In Proc. of the 12th
Intl.Conf. on Data Engineering, pages 152–159, 1996.
[11] N. Koudas and D. Srivastava. Data stream query
processing: A tutorial. In Proc. VLDB, page 1149, 2003.
[12] A. Lerner and D. Shasha. The virtues and challenges of ad
hoc + streams querying in finance. Data Engineering
Bulletin, 26(1):49–56, 2003.
[13] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos,
Peter A. Tucker. Semantics and Evaluation Techniques for
Window Aggregates in Data Streams. SIGMOD Conference
2005.
[14] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos,
Peter A. Tucker. No Pane, No Gain: Efficient Evaluation of
Sliding-Window Aggregates over Data Streams. SIGMOD
Record, March 2005.
[15] S. Madden and M. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In
Proc.IEEE ICDE Conf., 2002.
[16] S. Muthukrishnan. Data streams: Algorithms and
applications. In ACM-SIAM Symp. Discrete Algorithms,
http://athos.rutgers.edu/muthu/stream-1-
1.ps, 2003.
[17] Utkarsh Srivastava, Jennifer Widom. Flexible Time
Management in Data Stream Systems, PODS 2004: 263-274
[18] Stanford stream data manager.
http://www-db.stanford.edu/stream/sqr, 2003. J.
Widom and et al.
[19] M. Sullivan and A. Heybey. Tribeca: A system for
managing large databases of network traffic. In Proc. USENIX
Technical Conf., 1998.
[20] Peter A. Tucker, David Maier, Tim Sheard , Leonidas
Fegaras. Exploiting Punctuation Semantics in Continuous Data
Streams, IEEE Transactions on Knowledge and Data
Engineering, v.15 n.3, p.555-568, March 2003.

[21] T. Johnson, S. Muthukrishnan, I. Rozenbaum. Sampling
Algorithms in a Stream Operator, SIGMOD 2005.

1088

