
Early Hash Join: A Configurable Algorithm for the Efficient and
Early Production of Join Results

Ramon Lawrence

Department of Computer Science
University of Iowa

ramon-lawrence@uiowa.edu

Abstract

Minimizing both the response time to produce the
first few thousand results and the overall execution
time is important for interactive querying. Cur-
rent join algorithms either minimize the execution
time at the expense of response time or minimize
response time by producing results early without
optimizing the total time. We present a hash-
based join algorithm, called early hash join, which
can be dynamically configured at any point dur-
ing join processing to tradeoff faster production
of results for overall execution time. We demon-
strate that varying how inputs are read has a major
effect on these two factors and provide formulas
that allow an optimizer to calculate the expected
rate of join output and the number of I/O op-
erations performed using different input reading
strategies. Experimental results show that early
hash join performs significantly fewer I/O oper-
ations and executes faster than other early join
algorithms, especially for one-to-many joins. Its
overall execution time is comparable to standard
hybrid hash join, but its response time is an or-
der of magnitude faster. Thus, early hash join can
replace hybrid hash join in any situation where
a fast initial response time is beneficial without
the penalty in overall execution time exhibited by
other early join algorithms.

1 Introduction
An increasing number of database queries are executed by
interactive users and applications. Since the user is wait-
ing for the database to respond with an answer, the ini-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

tial response time of producing the first results is very
important. The user can process the first results while
the database system efficiently completes the entire query.
Current join algorithms are not ideal for this setting. Hy-
brid hash join [4] requires that the smaller relation be com-
pletely read and partitioned before any output can be gen-
erated. This can result in a long response time, especially
in a query with multiple joins. Recently, algorithms that
produce results “early” (before having read an entire in-
put) have been proposed based on sorting [7] and hashing
[8, 11, 14, 16, 20, 22]. However, most of these algorithms
were primarily designed for returning answers in data inte-
gration systems [11] where the join algorithm should han-
dle network latency, delays, and source blocking. The al-
gorithms are not optimized for the more predictable inputs
in centralized database join processing, and consequently,
some optimizations to reduce the total execution time are
not considered. We present a hash-based join algorithm
specifically designed for interactive query processing that
has a fast response time like other early join algorithms
with an overall execution time that is significantly shorter.

Our contribution is a general, customizable hash join al-
gorithm, called early hash join, that produces results early
without a major penalty in total execution time. Early hash
join reduces the total execution time and number of I/O op-
erations by biasing the reading strategy and flushing policy
to the smaller relation. The basic idea is that, like hybrid
hash join [4], it is advantageous to have complete partitions
in memory, so when a probe is performed that falls into that
partition, the probe tuple can be discarded once the probe
is complete. When producing results early, this requires
having read and buffered entirely in memory partitions of
the smaller relation. We define a biased flushing policy to
guarantee that complete partitions of the smaller relation
remain in memory to use this optimization to improve per-
formance. The itemized contributions are as follows:

• An early hash join algorithm that has both a rapid re-
sponse time and a fast overall execution time.

• Formulas for predicting how different input reading
strategies affect the expected output rate and number
of I/O operations for early hash-based joins.

841

• A biased flushing policy that favors keeping complete
partitions of the smaller relation in memory, which re-
duces the overall number of I/O operations performed.

• A duplicate detection policy that does not need any
timestamps for one-to-many joins and only needs one
timestamp for many-to-many joins.

• An experimental evaluation demonstrating early hash
join outperforms other early hash-join algorithms in
overall execution time.

The contents of this paper are as follows. In Section
2, we motivate why producing join results early is valu-
able and overview some of the existing algorithms. Section
3 covers the different configuration choices that must be
decided when constructing an early join algorithm based
on hashing. We analyze how various reading and flushing
policies affect algorithm performance. We show that al-
ternate reading from inputs is optimal in the first phase of
the algorithms. Our early hash join (EHJ) algorithm is pre-
sented in Section 4 with a detailed description of its imple-
mentation. We prove that the algorithm is correct, and pro-
vide formulas for the number of I/O operations performed
and the expected output rate. In Section 5, we present the
results of performance experiments comparing EHJ with
XJoin [20] and hash-merge join (HMJ) [16] in several dif-
ferent join situations. The results show that EHJ outper-
forms previous early hash-join algorithms in total execu-
tion time, especially for one-to-many joins. The paper then
closes with future work and conclusions.

2 Previous Work
Interactive user querying is receiving increased attention
[15, 18] as database systems are being queried by users
and applications in an online fashion. From a user per-
spective, it is ideal if the database can generate the first few
answers quickly (minimize response time), so that they can
begin processing the data immediately rather than waiting.
The system should then complete the answer generation
as quickly as possible. The same issues occur when the
database system is part of a larger information processing
pipeline where query results are fed to analysis programs
for further processing. The overall pipeline execution time
can be reduced if the application can begin working before
the database completely answers the query. This is increas-
ingly important with the deployment of grid systems [13].

Early join algorithms were primarily developed for use
in integration scenarios [11] where a mediator must join
inputs that come from distributed sources. Since the inputs
are distributed, the query execution time is affected by net-
work delays, bandwidth, and potential blocking. Instead
of dynamically changing the query execution tree (query
scrambling) [11, 21], the join operator can adapt its execu-
tion to the network conditions. Current algorithms switch
to different processing when both inputs are blocked. Our
primary focus in this paper is on using early join algorithms
for interactive user querying in a centralized DBMS. This

environment is pull-based, where the join operator has con-
trol of how the inputs are read, as compared with push-
based streams where input arrival rates are not under con-
trol of the algorithm.

There are several algorithms based on hashing [8, 11,
14, 16, 20, 22] and sorting [7] for the early production of
results. Our focus is on the hash-based algorithms. The
first hash-based algorithm was symmetric hash join (SHJ)
[9, 24]. SHJ works by keeping in memory a hash table
for each input. When a tuple arrives, it is used to probe
the hash table of the other input, which may generate join
results, and then is inserted in the hash table for its input.
This process allows join results to be produced before read-
ing either relation entirely. SHJ assumes both hash tables
fit entirely in memory. DPHJ [11], XJoin [20], and hash-
merge join (HMJ) [16] extend SHJ to support joins where
the memory could not hold both relations entirely. This
creates two new challenges. First, there must be a flushing
policy that determines which tuples to flush to disk when
memory is full. The second challenge is not to generate
duplicate results. Duplicate results are possible in the final
phase when all tuples from both inputs have been read and
the final cleanup join is performed.

The biased flushing policy we define is similar to the in-
cremental left flush of double pipelined hash join (DPHJ)
[11] in the Tukwila system. Incremental left flush degrades
into a hybrid hash join when overflow occurs, but restricts
how inputs are read and has a reduced output rate. Dupli-
cates are avoided by using a boolean flag on tuples.

XJoin [20] is a three stage join algorithm that flushes
the largest single partition to handle memory overflow. The
first stage runs when a tuple from at least one input is avail-
able. The second stage runs when both inputs are blocked.
The third stage executes after all inputs are received by
performing a cleanup join. Duplicates are avoided by as-
signing an arrival and departure timestamp to each tuple.
MJoin [6] is an extension of XJoin for streams that uses
metadata to purge tuples that are no longer needed. XJoin
has been generalized to a N-way join algorithm for stream-
ing sources [22] that uses coordinated flushing to flush the
matching partitions in all N tables.

Hash-merge join [16] uses an adaptive flushing policy
that attempts to keep the memory balanced between the two
inputs as this optimizes the number of results produced. By
flushing a pair of partitions, timestamps are not required to
prevent duplicates. A flushed partition is sorted before be-
ing written to disk as the blocking phase performs a mod-
ified progressive merge join [7] to produce results when
both sources are blocked.

There has been no previous work studying the impact of
different input reading strategies on overall join execution
time. A reading strategy is the rules an algorithm uses to
decide how to read from the two inputs when both inputs
have tuples available. However, different reading strategies
have been investigated to improve the convergence of con-
fidence intervals in online aggregation (ripple joins [8, 14])
and for evaluating top-k queries [10]. Maximizing the out-

842

put rate of streaming sources has also been studied [23],
and joins for data streams [2] aim to maximize the output
rate based on stream properties.

The motivation for designing a new hash-based algo-
rithm called early hash join (EHJ) is the desire to reduce the
total execution time and number of I/O operations by bias-
ing the reading strategy and flushing policy to the smaller
relation. The flushing policies in previous algorithms are
designed solely to optimize result production and do not
minimize the total execution time. Only the MJoin [6] al-
gorithm considered the effect of different reading strategies
and early purging to reduce I/Os, but provided no quantita-
tive analysis to estimate the benefit.

Early hash join will be compared with dynamic hash
join (DHJ) [5, 17]. Unlike hybrid hash join [4], where the
partition sizes are determined statically before the join is
executed, dynamic hash join [5] allows the partition sizes to
vary during execution. The basic idea is that the algorithm
attempts to keep as much of the inner relation in memory
as possible. Every time memory becomes full, a victim
bucket is selected, written to disk, and becomes “frozen”
(can no longer accept new input). One page buffer is allo-
cated to a frozen bucket and is written to disk as it becomes
full. As the algorithm progresses, more buckets are flushed
and frozen, until eventually all of the inner relation is parti-
tioned. There will be some fraction of buckets still in mem-
ory. When the outer relation is partitioned, I/O operations
are saved as outer relation tuples that fall into these buck-
ets can be joined immediately. The performance of DHJ is
used as a benchmark for the best overall execution time.

3 Reading and Flushing

In this section, we analyze how reading strategies and flush-
ing policies affect the early production of results. The two
relations being joined are R and S with |R| ≤ |S|. Let there
be N distinct join key values in R and S combined. The
number of tuples with join key j in R (S) is denoted by r j

(s j). Thus, |R| = ∑N
j=1 r j and |S| = ∑N

j=1 s j. The selectiv-
ity of the join, σ, is the number of join results divided by

the size of the cross-product, or equivalently, σ =
∑N

j=1 r j∗s j

|R|∗|S| .
Note that the analysis does not restrict R and S to be base
relations. Thus, the selectivity, σ, of the join is an estimate
produced by the optimizer and encompasses the possibility
that selection predicates may have been performed on one
or both relations before the join or may be the products of
previous join operators.

The goal is to determine E(T (k)), which is the expected
number of results generated after k tuples have been read.
r(k) and s(k) represent the number of tuples read from R
and S after k tuple reads. These values depend on the read-
ing strategy chosen. We analyze fixed A:B reading strate-
gies that read A tuples from R then B tuples from S, which
result in a fixed ratio q = A

A+B of reading R compared to S.

3.1 Reading Strategy

We use the term reading strategy to refer to how the join
operator reads from its inputs. The reading strategy of dy-
namic hash join (DHJ) is to read all of the smaller input
then all of the larger input. Another reading strategy is to
read alternately from inputs: read a tuple from R, then from
S, then R, etc. XJoin [20] and hash-merge join (HMJ) [16]
do not define a reading strategy because they implicitly as-
sume a push-based environment and process tuples as they
arrive. Reading strategies are not applicable to push-based
streams if the join processing rate is faster than the input
arrival rate (as you would always process a tuple as soon
as it arrives). However, joins in centralized databases are
pull-based, as the join algorithm can control how it reads
its inputs. The inputs are scanned as they are stored on
disk and are not randomly sampled. Every time the join re-
quests a tuple from an input, it gets the next tuple as would
be returned in a sequential scan. A reading strategy can be
used with regular table scans (or any other iterator opera-
tor), and incurs no random I/Os within a relation (but there
are random I/Os when switching the input relation being
read). Although the discussion presents reading strategies
at the tuple granularity, for performance reasons, the actual
I/O performed should be at the granularity of several pages
or even tracks to reduce the number of random I/Os.

We analyze the effect of reading strategy on two com-
mon join situations: many-to-many (*:*) joins when the
inputs are not sorted on the join key, and one-to-many (1:*)
joins where only the one-side input is sorted on the join
key. The general many-to-many case is relatively rare, in
comparison to the one-to-many case that occurs when join-
ing from primary key to foreign key. In the many-to-many
case, each tuple read is a random sample in the statisti-
cal sense because we do not know what value of the join
key will be read. In practice, there may be some cluster-
ing which makes each sample not completely independent.
We strongly emphasize that this is different than relation
or stream sampling [3, 12] where true random samples are
taken. Inputs are not randomly sampled (they are read se-
quentially), but if unsorted, reading the first tuple approxi-
mates an independent random sample. This is acceptable as
randomness is only used to estimate the expected join out-
put rate and not to make statistical guarantees as required
for online aggregation [8, 14]. Thus, the presence of clus-
tering would only affect the accuracy of the prediction, not
the actual performance of the algorithm.

3.1.1 Infinite Memory Case

The infinite memory case applies when both relations can
fit entirely in memory or in the first phase of the algo-
rithms where the number of tuples read so far fit entirely
in memory. The expected number of join results, E(T (k)),
for many-to-many joins and one-to-many joins are given in
Formulas 1 and 2 respectively.

E(T (k)) = σ∗ r(k)∗ s(k) (1)

843

E(T (k)) =
s(k)
|S|

∗
r(k)

∑
j=1

s j (2)

These equations are derived from the observation that
all tuples of R and S read will be matched at time k as all
are in memory at the same time. In the many-to-many case,
the actual tuples selected from R and S are not known, but
the expected value can be calculated. For the one-to-many
case, the formula relies on knowing the distribution of S
(the s j values). If this is not known, a uniform distribu-
tion can be assumed in which case the formula reduces to
E(T (k)) = r(k) ∗ s(k)/|R|. Note that the one-to-many for-
mulas implicitly assume a non-nullable foreign key. That
is, every tuple of S is assumed to join with a tuple of R. If
that is not the case, then a multiplicative factor F can be
added to both formulas where F is in the range 0..1 and is
the fraction of tuples that have non-null join keys in S.

For a fixed reading strategy, r(k) and s(k) can be spec-
ified using exact formulas. For example, in an alternate
(1:1) strategy, r(k) = k−s(k) and s(k) = f loor(k/2). Thus,
it is possible at any time to know exactly how many join re-
sults are expected after k tuple reads. For an A:B read-
ing strategy (read A tuples from R and B tuples from
S), r(k) = k − s(k) and s(k) = B ∗ k/(A + B). Note that
r(k) ≤ |R| and s(k) ≤ |S|, so the formulas for r(k) and s(k)
are slightly more complex than shown.

Using the formulas for E(T (k)), it is possible to exactly
calculate the difference in expected output rate for various
fixed reading strategies. The difference of A:B reading ver-
sus 1:1 reading is given by the formula: (A−B)2/(A+B)2.
For instance, 2:1 reading results in 11% fewer results than
1:1 reading, 3:1 reading=25% fewer results, and 3:2 read-
ing=4% fewer results after k tuple reads. Alternate (1:1)
reading optimizes the number of tuples matched at any
stage. Let x be the number of reads generated by a reading
strategy for s(k) after k reads. Then, the expected number
of tuples matched is r(k)∗s(k) = (k−x)∗x. Differentiating
this formula and solving gives x = k/2. This is why HMJ
[16] attempts to keep memory balanced. Keeping mem-
ory balanced maximizes the output rate as at any point in
time the best input to read from is the input with the fewest
tuples in memory. If the memory is not yet full and the
sources always have input available, this results in an alter-
nating reading strategy. Although alternate reading is the
optimal fixed strategy, strategies that use the distributions
of R and S and knowledge of past reads may improve the
join output rate. We only examine fixed reading strategies
in this work.

These formulas are valuable because with an estimate
of join selectivity (σ), an optimizer can estimate how much
memory should be allocated to a join to produce a certain
number of results without having to perform any I/O oper-
ations. Further, the ability to determine the impact of read-
ing strategy on the expected number of results produced is
important as we will see in later sections there is a strong
motivation for performing different reading strategies be-
sides alternate reading to reduce the total execution time.

3.1.2 Finite (Full) Memory Case

Determining E(T (k)) for the finite memory case depends
on the flushing policy used and is quite difficult in general.
However, a useful approximation for E(T (k)) for many-to-
many joins with memory size M is given in Formula 3.

E(T (k)) = σ(r(M)∗s(M)+2q∗(k−M)∗(1−q)∗M) (3)

This formula holds when k >= M and as long as both in-
puts still have tuples available. q is the fixed ratio of reading
from R compared to S (for an A:B strategy, q = A

A+B). The
origin of the formula is a calculation of how many tuples
of R are read after k steps ((k −M) ∗ q) times how many
tuples of S are in memory to be joined with ((1− q) ∗M).
The same reasoning holds for S and results in the factor
of two in the formula. This approximation requires that
the memory be allocated at approximately the same ratio
as the inputs are read. This is a fairly good approxima-
tion of hash-merge join that reads alternately and keeps
memory balanced, in which case the formula simplifies to:
E(T (k)) = σ∗ (r(M)∗ s(M)+0.5∗M ∗ (k−M)).

Using Formula 3, we can estimate several important
metrics of early join algorithms. First, we can estimate
the expected output rate per tuple read after memory is full,
which is 2∗σ∗M∗q∗(1−q). Second, we can estimate how
many of the results are generated after all inputs are read
but before the cleanup join phase is performed: E(T (M))+
σ∗M ∗ ((1−q)∗ (|R|− r(M))+q∗ (|S|− s(M)))

For example, let |R|= |S|= 500,000, M = 300,000, q =
0.5, and σ = 0.00001. Then, the expected number of results
generated before memory is full is 225,000. After memory
is full, 1.5 output tuples are generated per tuple read, and
an algorithm that maintains memory ratio q throughout its
execution is expected to generate 1,275,000 tuples before
the cleanup pass (51% of the total 2,500,000 result size).

3.2 Flushing Policy

The flushing policy determines which tuples in memory are
flushed to disk when memory must be released to accept
new input. There are several choices to be made. The first
choice is whether to flush a partition from a single source
or matching partitions in both sources (coordinated flush-
ing [16, 22]). A decision also must be made on how to se-
lect the partition to be flushed. Possibilities include: flush
all partitions, flush the smallest, flush the largest [20], or
flush the partition pair that keeps memory balanced (adap-
tive [16]). Another choice is if a partition can accept new
tuples after it is flushed (replacement [16, 20, 22]) or does
the partition becomes frozen [5] and new tuples that hash to
the partition are directly flushed to disk (non-replacement).

An adaptive flushing policy [16] that keeps memory bal-
anced between the two inputs optimizes the expected num-
ber of results, but has reduced performance when R is sig-
nificantly smaller than S. The reason is that the memory
will not remain balanced once all of R is read, as only S will
remain in memory after many partition pairs are flushed,
and eventually this results in flushing empty R partitions.

844

Hybrid hash join [4] has shown that there is a benefit
to favoring the smaller relation R in memory as this al-
lows I/Os to be prevented. Any tuple of S that probes an
in-memory partition of R is discarded (avoids I/Os). A
flushing policy that flushes partition pairs (does not favor
smaller relation R) cannot take full advantage of reducing
I/Os as there is no guarantee that entire partitions of R are
in memory after all of R has been read.

It is only possible to discard tuples of S after all of R has
been read, and entire partitions of R are in memory when
probing. We can estimate the expected number of I/O oper-
ations saved if a flushing policy preserves entire partitions
of R. In the best case of hybrid hash join a fraction f of
R’s partitions remain in memory after R is partitioned. The
expected number of tuples of S that fall into these parti-
tions is f ∗ |S|, and each tuple discarded saves two tuple
I/Os. When producing results early, the savings only ap-
ply for any tuple of S read after all of R is read. We will
consider an algorithm that reads from R and S at a ratio q1
before memory is filled and q2 after memory is full. For
example, if the algorithm initially performed 1:1 reading
and then switched to 3:1 reading, q1 = 0.5 and q2 = 0.75.
Let M be the size of memory in tuples. The number of tu-
ples of S remaining, le f tS, after all of R has been read is
le f tS = |S| −M ∗ (1− q1)− (1− q2) ∗ (|R| −M ∗ q1)/q2.
Each of the tuples have a probability f of falling into an in-
memory partition of R. Thus, the expected number of I/O
operations avoided is 2∗ f ∗ (|R|+ le f tS).

Consider alternate reading. The number of tuples dis-
carded is |S| − |R|. In practice, S is often multiple times
larger than R, especially for one-to-many joins. For ex-
ample, in TPC-H1 the Orders relation is 10 times larger
than the Customer relation. Consider a 1 GB TPC-H
database size which has 150,000 tuples in Customer and
1,500,000 in Orders. With alternate reading, 10% of
Orders is read before Customer is completely read.
Thus, le f tS = 1,350,000. If f = 0.5 (50% of Customer
can fit in memory), then 675,000 tuples of Orders can be
joined immediately with in-memory Customer partitions
and discarded. This compares with the maximum possible
of 750,000 achievable using hybrid hash join (or equiva-
lently, the strategy of reading all of R before any of S).

An even larger benefit occurs by biased reading of R
over S. The formula indicates that there is a benefit of read-
ing all of R as quickly as possible which conflicts with the
goal of producing results as early as possible. The bottom
line is the total number of I/Os and the total execution time
can be reduced by flushing and reading policies that get
complete partitions of R in memory as soon as possible.

3.3 One-to-Many Join Optimization

One-to-many joins deserve special attention since they are
the most common type of join and occur when joining with
foreign keys. An optimization designed for stream joins
(MJoin [6]) can be applied to all of the previous early, hash-
based join algorithms. Simply, if a tuple from S (the many-

1http://www.tpc.org

side) produces a join result, that tuple can be discarded as
it not possible for it to produce any more results.

This idea also applies in the many-to-many join case as
has been noted before [6, 11]. A tuple TS from S can be dis-
carded if we have matched TS with all tuples that it could
potentially match with. This is a little harder when con-
sidering early production of results because it requires two
things: 1) the entire relation R must have been read and 2)
the partition of R that TS would probe must be completely in
memory. This optimization favors reading R as quickly as
possible and encourages the flushing policy to be biased so
that we do not flush portions of R partitions from memory.

4 Early Hash Join (EHJ) Algorithm

The early hash join (EHJ) algorithm allows the optimizer
to dynamically customize its performance to tradeoff be-
tween early production of results and minimal total execu-
tion time. It is our belief that the first phase of the algorithm
where memory is available should be optimized to produce
results as quickly as possible. Once memory is full, the
algorithm should switch to optimizing the total execution
time but still continue to produce results. The premise is
that interactive users are initially interested in only the first
few hundred or thousand results which can often be pro-
duced before memory is full. Then, the rest of the results
should be produced as quickly as possible, but there is less
motivation to continue to produce results as early as possi-
ble at the expense of total performance.

Early hash join is based on symmetric hash join. It uses
one hash table for each input. A hash table consists of P
partitions. Each partition consists of B buckets. A bucket
can store a linked list of pages, where each page can store
a fixed number of tuples. When a tuple from an input ar-
rives, it is first used to probe the hash table for the other
input to generate matches. Then, it is placed in the hash
table for its input. In this first in-memory phase, alternate
reading is used by default as it was shown to be the best
fixed reading strategy in Section 3.1.1. However, it is pos-
sible to select different reading strategies (that favor R) if
the bias is to minimize total execution time. At any time,
the user/optimizer can change the reading policy and know
the expected output rate (Section 3.1.1).

Once memory is full, the algorithm enters its second
phase (called the flushing phase). In the flushing phase,
the algorithm uses biased flushing to favor buffering as
much of R in memory as possible. By default, it in-
creases the reading rate to favor reading more of R. This
reduces the expected output rate, but decreases the total
execution time. In both phases, the optimizations to dis-
card tuples when performing one-to-many joins and many-
to-many joins once all of R has been read are performed.
Note that for one-to-many joins if a tuple from R matches
tuple(s) in S in the hash table, then those tuples must be
deleted from the hash table. For mediator joins, a concur-
rent background process can be activated if the inputs are
slow. After all of R and S have been read, the algorithm
performs a cleanup join to generate all possible join results

845

No

Yes

No

Yes

Yes

No

Yes

No

No

Yes

No

YesNoClose S file.
Delete on−disk

partition.

Output Results
Timestamp Probe R

Read S Tuple

policy if 1st flush)
(Change reading

Bias Flush

Memory full?

Read tuple

Start Join

Input left?

Yes

Tuple from R?

Probe S table
Output results
Insert in R table Insert in S table

Output results
Probe R table

On−disk S no R?

In Phase 1? On−disk R + S?

Join Complete

Load R partition
into memory

cleanup phase
Initialize 2nd

Initialize 1st
cleanup phase

file for S partition
Initialize probe

Input left in
S file?

Figure 1: EHJ Algorithm Flow Chart

missed in the first two phases. This cleanup join occurs in
two passes. In pass one, for each partition Ri in memory, it
is probed with its matching on-disk partition Si. The hash
table is then cleared before the second pass begins. In pass
two, an on-disk partition Ri is loaded into memory and a
hash table is constructed for it, then its matching partition
Si is used to probe the hash table of Ri. An output involv-
ing tuple TS from Si with TR from Ri is generated if the
join tuple has not been generated before (Section 4.3). A
flow chart of the algorithm is in Figure 1. In the following
sections, we provide more details on the reading strategy,
flushing policy, duplicate prevention, and the background
process.

4.1 Biased Flushing Policy

Our biased flushing policy favors flushing partitions of S
before partitions of R, and transitions the algorithm into a
form of dynamic hash join [5]. This is similar to the incre-
mental left flush proposed with DPHJ [11] except that we
are not forced to switch to reading all of one of the rela-
tions and can continue to use whatever reading strategy is
desired. This is achieved because our method for detecting
duplicates using timestamps (Section 4.3) is more power-
ful than using boolean flags on each tuple as in DPHJ. The
biased flushing policy uses these rules to select a victim
partition whenever memory must be freed:

• Select the largest, non-frozen partition of S.

• If no such partition of S exists, then select the smallest,
non-frozen partition of R.

Once a partition is flushed, all buckets of its hash table
are removed and are replaced by a single page buffer. This
partition is considered frozen (non-replacement) and can-
not buffer any tuples in memory (except for the single page

buffer) and cannot be probed. If a tuple hashes to this par-
tition, it is placed in the page buffer which is flushed when
filled. If a tuple in the other input hashes to this partition
index, then no probe is performed.

4.2 Reading Strategy

By default, the algorithm performs alternate reading in the
in-memory phase and 5:1 reading in the flushing phase.
These reading policies are configurable by the optimizer,
and can also be changed interactively as the join is pro-
gressing or after a certain number of output results have
been generated. During the flushing phase, a 5:1 reading
strategy is used to continue to produce results while lower-
ing overall execution time. It is also possible to minimize
total execution time by reading all of R once memory is full.
These settings are chosen because in interactive querying
the priority of the first few results is much higher than later
query results. Further, early hash join can behave exactly
as dynamic hash join by using a reading policy that reads
all of R before any of S.

4.3 Analysis

Using the formulas in Section 3, we can estimate the ex-
pected number of tuple I/O operations performed by the
algorithm and its expected output in its various stages. For
this analysis, we assume a fixed A1:B1 reading policy for
the in-memory phase and a fixed A2:B2 reading policy that
begins when the flushing phase begins. Let q1 = A1

A1+B1
and

q2 = A2
A2+B2

. Assuming that M ≤ |R|, let f = M/|R| be the
fraction of R partitions completely in memory after all of R
has been read. The number of I/O operations (not counting
reading inputs) is: 2∗(|R|+ |S|− f ∗|R|− f ∗Le f tS) where
le f tS = |S|−M ∗ (1−q1)− (1−q2)∗ (|R|−M ∗q1)/q2 in
Section 3.2. Basically, you save by keeping a fraction f of
R in memory and save a fraction f of the tuples of S read
after all of R is read (le f tS). Note that this formula reduces
to the the formula for hybrid hash join with q1 = q2 = 1.

In the default configuration of EHJ (1:1 reading then 5:1
reading), the number of I/O operations is 2 ∗ (|R|+ |S| −
f ∗ |R|− f ∗ (|S|−0.4M−|R|/5). For small memories, the
number of I/Os for EHJ and DHJ is very close. For larger
memories, EHJ performs more I/Os because 1:1 reading is
used until memory is full. This motivates switching from
1:1 reading even before memory is full in many cases.

In the infinite memory stage, we can calculate exactly
the number of outputs expected after k tuple reads. Anal-
ysis of the expected output rate for a fixed reading policy
in the flushing phase is difficult to determine exactly. Let c
be the fraction of memory occupied by tuples of R. When
flushing begins, c = q1 for a fixed reading strategy A1:B1.
Eventually, c will go to 1 due to biased flushing. At that
point, the expected output rate is σ ∗ (1− q2) ∗M as only
tuples from S can potentially generate any output. Dur-
ing the transition period, we can approximate the expected
output rate by assuming that a tuple of S gets flushed ev-
ery time a tuple arrives. It will take N = (M −M ∗ q1)/q2

846

tuple reads before c = 1. The fraction c at time k is
(k ∗ q2 + M ∗ q1)/M. Thus, the expected output rate after
k tuple reads have been performed after full memory where
k ≤ N is σ∗M ∗ (q2 ∗ (1− c)+(1−q2)∗ c).

4.4 Duplicate Detection

Duplicate results are not possible with one-to-many joins
because a tuple on the many-side is discarded as soon as
it produces a join result. Duplicate detection for many-
to-many joins requires assigning an arrival timestamp for
each tuple. The arrival timestamp is an increasing integer
value that is the count of the number of tuples read so far
(k in Section 3.1). The arrival timestamp is stored when
the tuple is in memory and is flushed to disk with the tuple
if the tuple is evicted from memory. Duplicate detection
using timestamps is required during the last phase of the
algorithm after all tuples from R and S have been read and
when the background process is executing.

Let TR be a tuple in R and TS be a tuple in S. The times-
tamps of TR and TS are denoted as T S(TR) and T S(TS) re-
spectively. Let the P partitions of R and S be denoted as
R1,R2, ...,RP and S1,S2, ...,SP. When a partition is flushed,
we record a flush timestamp. For instance, the timestamp
that partition 5 of R is flushed is denoted by T SF(R5). Let
the partition index that a tuple T hashes to be P(T). The
biased flushing policy guarantees that T SF(Si) < T SF(Ri).

The timestamp check in Figure 1 is used to detect du-
plicates during the cleanup phase. A pair of tuples will
pass this check if they have not been generated in a previ-
ous phase. The timestamp check is true if any one of these
three cases hold:

1. TS arrived before its partition of S was flushed and TR
arrived after the partition of S was flushed: T S(TS) ≤
T SF(SP(TS)) and T S(TR) > T SF(SP(TS))

2. TS arrived after its partition of S was flushed but be-
fore the matching partition of R was flushed and TR
arrived after TS: T S(TS) > T SF(SP(TS)) and T S(TS) ≤
T SF(RP(TS)) and T S(TR) > T S(TS)

3. TS arrived after partition of R was flushed: T S(TS) >
T SF(RP(TS))

In the first case, if TS arrived before the partition of S was
flushed (note that it may never be flushed), then it would
have been matched already with all tuples TR in RP(TS) ex-
cept those that arrive after the partition of S is flushed as
then TS would no longer be in memory. In the second case,
if TS arrived after its partition was flushed, it would be di-
rectly flushed to disk and would only have joined with the
tuples of R currently in memory at that time. Any tuples
of R that arrive after TS arrived would not have joined with
TS. Finally, if TS arrives after the partition of R is flushed,
it would not have joined with any tuples in R and should be
joined with all tuples of R.

Duplicate detection is simpler than XJoin because of the
predictable flushing pattern of biased flushing and because

partitions are frozen once they are flushed. EHJ only needs
one timestamp instead of two for XJoin, and timestamps
are not needed for one-to-many joins. Duplicate detection
with the background processing enabled is slightly more
complex and is covered in the next section.

4.5 Background Processing

Background processing can improve the overall execution
time when processing distributed joins as the system can
use times when the sources are blocked to perform work.
Note that background processing is not beneficial in a cen-
tralized system. Unlike HMJ and XJoin where the join al-
gorithm switches phases when the inputs are blocked, the
background process is concurrent with the main join pro-
cess in EHJ. Thus, it may be used to increase the output
rate as the main join thread is still processing input. Only
one background process is ever active, and it can only ex-
ecute in the flushing phase. If the time since a tuple has
been read is greater than a threshold value, and an on-disk
partition file of S exists where the expected number of join
results is greater than a threshold, the background process
is started. The number of expected results generated is es-
timated by the partition sizes of R and S, the selectivity of
the join, and the last time that on-disk partition S was used
to probe R in memory. The partition that is expected to
generate the most output results is selected. There are two
other factors when selecting a partition. First, if R has been
completely read, all on-disk partitions of S can be used and
then discarded. Second, one-to-many joins require special
handling to prevent duplicates, as we must delete any probe
file tuples that produce output. To prevent both reading and
writing the probe file, the join can be processed like a *:*
join, or the activation threshold is raised to factor in the
higher cost.

The selected partition is recorded so that the main thread
will not flush it from memory while the background pro-
cess is running. If the partition file of S chosen is the file
currently used by the main thread when flushing tuples, the
system closes this file, and creates a new output file for
the main thread to avoid conflicts. Each partition file is
assigned a probe timestamp that is the last time tuples in
that file were used to probe the matching R partition. This
timestamp is originally the flush timestamp of the partition,
and is set to the current time when a background process
begins. The main thread starts the background thread and
continues normal processing. The background thread reads
a tuple at a time from the partition file and probes the cor-
responding in-memory partition of R. As output tuples are
generated, they are placed on a queue for the main thread
to output. When the entire partition file is processed, the
thread ends, and the system may start another thread.

Using a background thread changes the duplicate de-
tection strategy as the final cleanup phase must not gen-
erate output tuples already generated by the background
process. The background process must also not generate
duplicate results. Tuples generated by the background pro-
cess are identified using the probe timestamp stored with

847

each file. For a given partition file used as a probe file either
by the background or cleanup process, let this timestamp be
lastProbeS. An output tuple matching TR with TS is gener-
ated by the background process if TR was in memory the
last time the probe file containing TS was used: T S(TR) ≤
lastProbeS and T S(TR) ≤ T SF(P(TR)). Then, the times-
tamp check presented in the previous section is modified
by adding to the first two cases the condition: and TR was
not in memory before lastProbeS (T S(TR) > lastProbeS
OR T S(TR) > T SF(RP(TS))).

4.6 Proof of Correctness

In this section, we prove the correctness of early hash join
by showing that it generates all output tuples and that it
generates each tuple exactly once.

Theorem 1 For any two relations R and S, EHJ produces
all results in R ./ S.

Proof. Assume an output tuple (TR,TS) where TR ∈ R
and TS ∈ S satisfies the join condition and is not generated.
During the final cleanup phase of the algorithm, every parti-
tion Ri of R is used as a build table for hybrid hashing. If Ri
is not frozen, then Ri is in memory already and is processed
in the first pass. If Ri is frozen, it is brought into memory to
construct the build table in the second pass, and its match-
ing partition file Si is used to probe Ri. Since tuples TR and
TS will only match if they fall in the same partition (and
bucket), every possible output (TR,TS) will be generated.

The two optimizations involving early purging do not af-
fect this result. Assume tuple TS is discarded and not added
to its partition P(TS). TS is only discarded if it is a 1:* join
and it is matched with a tuple TR from R or if R has been
completely read and P(TR) is entirely in memory. If the first
case holds, then since it is a 1:* join, TS has been matched
with the only possible tuple TR to generate (TR,TS). If the
second case holds, then TS will probe and match all the tu-
ples of R similar to if TS was read from the partition file
in the cleanup phase. Thus, in all cases, an output tuple
(TR,TS) is generated.

Theorem 2 For any two relations R and S, EHJ produces
all output results in R ./ S exactly once.

Proof. Assume an output tuple (TR,TS) where TR ∈ R
and TS ∈ S satisfies the join condition and is output twice
as tuples O1 and O2. There are several cases to consider.

Case 1: Both tuples are produced in the hashing phase.
Assume T S(TR) < T S(TS). Then, TS probes TR’s hash table
and generates an output. When TR arrived, TS was not in its
hash table, so no output is generated. A similar argument
follows for T S(TS) < T S(TR). Thus, the hashing phase will
not produce duplicate tuples.

Case 2: One tuple was produced in the hashing phase,
the other in the cleanup phase or by the background pro-
cess. A tuple is produced by the hashing phase if:

1. Both tuples are in memory before the P(TS) is flushed:
T S(TS) < T SF(SP(TS)) and T S(TR) < T SF(SP(TS)) or

2. TS arrives after TR and TS arrives before R’s partition is
flushed: T S(TS) > T S(TR) and T S(TS) < T SF(RP(TS)).

For the cleanup phase or background process to pro-
duce a duplicate tuple, it must pass one of the three con-
ditions of the timestamp check. Condition 1 is false be-
cause either T S(TR) < T SF(SP(TS)) or T S(TS) > T S(TR).
Condition 2 is false as either T S(TS) < T SF(SP(TS)) or
T S(TS) > T S(TR). Condition 3 is false as for both possibil-
ities T S(TS) < T SF(RP(TS)) (as T SF(SP(TS)) < T SF(RP(TS))
for biased flushing). No duplicate tuples are generated.

Case 3: One tuple produced by background process,
the other by the background process or cleanup phase. A
tuple is produced by the background process if tuple TR is
in memory the last time a probe file was used containing
TS: T S(TR) ≤ lastProbeS.

For either the background process or cleanup phase to
generate a tuple already produced, it must pass one of the
three conditions in the timestamp check. The addition of
the condition T S(TR) > lastProbeS will prevent a duplicate
tuple from being generated.

Case 4: Both tuples produced by cleanup phase. This is
not possible as the cleanup phase uses each partition Ri as
a build partition once and probes it once with the matching
partition Si. Thus, the algorithm does not generate dupli-
cate tuples and produces each output result exactly once.

5 Experimental Evaluation

We have performed an experimental evaluation comparing
the performance of dynamic hash join (DHJ) [5], XJoin
[20], hash-merge join (HMJ) [16], and early hash join
(EHJ). DHJ is used as a benchmark for the fastest overall
execution time as it is a variant of the standard hybrid hash
join [4]. All algorithms are implemented in Java and tested
on JDK 1.5. The test machine was an Intel Pentium IV 2.8
GHz with 2 GB DDR memory and a 7200 rpm IDE hard
drive running Windows XP. We have used the same dual
hash table structure for all algorithms in order to remove
any biases in its implementation. This hash table struc-
ture consists of P partitions where each partition contains
B buckets. A bucket stores a linked list of tuples. The hash
table supports different flushing policies. Since XJoin or
HMJ do not specify a reading strategy, we chose alternate
reading as it is the best fixed reading policy.

We have used both a random data set and the standard
TPC-H data set (1 GB size) for testing. Only the results for
TPC-H are presented here as the random data experiments
exhibited similar characteristics. Output tuples generated
are discarded and not saved to disk. Charts displaying I/O
operations do not include the I/Os required to read the in-
put. All data points are the average of 5 runs. A first run
was executed to prime the Java HotSpot JIT compiler and
its results were discarded. We forced the garbage collec-
tor to execute after each run. For all join algorithms, the
standard deviation was less than 10% of the average time.
We tested the join algorithms for centralized database joins
where the inputs were read from the hard drive, and for me-

848

diator joins where the inputs were received over a network
connection that may have delays.

5.1 Overall Experimental Results Summary

EHJ has consistently better overall performance than HMJ
and XJoin. Its optimizations improve performance on
many-to-many joins by 10%-35% and one-to-many joins
by 25%-75% (or more). This overall performance does not
come at the sacrifice of producing results quickly, and the
response time of EHJ is an order of magnitude faster than
DHJ. EHJ typically has execution time within 10% of DHJ,
and often has near identical performance.

EHJ is faster than HMJ/XJoin in almost all configura-
tions and memory sizes. The only exception is that EHJ has
roughly equivalent performance when an alternate read-
ing strategy is used throughout a many-to-many join where
both relations have the same size. In this case, no opti-
mizations can be applied. In the many-to-many case, EHJ
is faster if any one of the conditions hold: alternate reading
is not used throughout, the relations are not the same size,
or the memory available is at least 10% of the size of the
smaller relation. The relative advantage increases signif-
icantly with the ratio of the relation sizes, memory avail-
able, and with aggressive reading of the smaller relation.
Of these three factors, the optimizer can control the read-
ing strategy. EHJ is a clear winner for one-to-many joins
in all cases. HMJ and XJoin do not work well with the op-
timizations and reading strategies discussed as their flush-
ing policies are not compatible with them. In a centralized
database, EHJ should always be used over HMJ/XJoin.

EHJ has similar overall time and I/Os as DHJ for all
types of joins when it uses a biased reading strategy that
favors the smaller relation. EHJ is a generalization of the
DHJ algorithm that supports early generation of results,
and allows a tradeoff of when I/Os are performed relative
to when results are generated. Instead of having a large
upfront cost before results are generated, reading strategies
can spread the I/Os throughout the join execution. Thus,
EHJ does not pay the high response time penalty of DHJ
and still gets most of the benefits of reduced I/O operations
and improved overall execution time.

5.2 Basic Algorithm Tuning

The hash table parameters P and B were tuned for each al-
gorithm. The number of partitions P directly relates to the
number of temporary files created. The best performance
for HMJ was 20 partitions (which agrees with [16]), and
XJoin had equivalent performance between 5-40 partitions.
DHJ and EHJ are more sensitive to the number of parti-
tions because they flush frozen partitions at the page-level,
which results in more random I/Os. In comparison, XJoin
and HMJ flush relatively large partitions. DHJ and EHJ
have better performance with a fewer number of partitions,
as long as the number of partitions is large enough to ensure
that individual partitions can fit in memory in the cleanup
phase. Eleven partitions was the best in most cases, with

larger values used for smaller memories. The page block-
ing factor was set to 20 tuples as TPC-H tuples have sizes
between 150-225 bytes and we used a 4 KB page size.

A second factor is that all early algorithms will perform
more random I/Os than dynamic hash join as they are con-
stantly switching the input being read from. Thus, instead
of reading individual tuples, several blocks are read from
an input relation before switching to the other to avoid ex-
cessive random I/Os. Still, this is an issue that favors DHJ
and the implementation of all the early algorithms may be
improved by low-level I/O and buffering control [19].

5.3 Reading Strategy

To investigate reading strategies, EHJ is run in multi-
ple configurations: EHJA performs alternate (1:1) reading
throughout, EHJ1 starts with 1:1 reading then switches to
5:1 reading when memory is full (default EHJ configura-
tion), EHJ2 starts with 2:1 then switches to 10:1, and EHJ*
reads all the left input first similar to DHJ. The join per-
formed is a many-to-many join in TPC-H:
select * from partsupp p1, partsupp p2
where p1.p partkey=p2.p partkey

The Partsupp relation contains 800,000 tuples and
the join result is 3,200,000 tuples.2 The memory size
M = 300,000 tuples. In Figure 2 is a summary of the per-
formance of the algorithms in terms of response and overall
times and number of page I/Os performed.

Phase 1 Response Total Page
Results Time (sec) Time (sec) I/Os

EHJA 114,975 0.4 50.9 130,613
EHJ1 114,975 0.4 46.3 111,704
EHJ2 100,754 0.4 46.2 107,296
EHJ* 0 16.2 44.3 101,277
HMJ 114,975 0.4 53.9 160,091
XJoin 114,975 0.4 52.6 130,244
DHJ 0 16.2 45.4 101,836

Figure 2: Effect of Reading Strategy

These results show that EHJ uses its optimizations to re-
duce the number of I/Os performed (about 14% and 30%
less than XJoin and HMJ respectively). All configurations
of EHJ are faster than XJoin/HMJ. All versions of EHJ
return the first 1000 results (response time) in less than
a second compared to over 16 seconds for DHJ. EHJ1 is
an excellent tradeoff between response time (less than 1
second) and overall execution time (only 2% slower than
DHJ). EHJ* has the statistically equivalent performance as
DHJ.3 Figures 3 and 4 show the execution time and number

2The Partsupp relation was randomly permuted before the experi-
ment as by default it is sorted on partkey. The overall execution time
is the same as the case when it is not permuted, but the expected number
of results generated over time is different.

3EHJ* performs slightly fewer I/Os than DHJ due to partitioning issues
as a few more tuples happened to fall into the in-memory partitions for
EHJ* compared to DHJ.

849

of page I/Os. This example join is the worst-case config-
uration for the optimizations in EHJ as both relations have
the same size. If the relations are not the same size, then
the relative advantage of EHJ over XJoin/HMJ increases.
The formula for predicting the number of results in phase 1
before memory is full given in Section 3.1.1 is accurate as
it predicted 112,500 for EHJ1 and 100,000 for EHJ2.

 0

 10

 20

 30

 40

 50

 60

 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Results * 1000

EHJ1
EHJ2
DHJ
HMJ

XJoin

Figure 3: Many-to-Many Join: Execution Time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 500 1000 1500 2000 2500 3000

I/O
s

*
10

00

Results * 1000

EHJ1
EHJ2
DHJ
HMJ

XJoin

Figure 4: Many-to-Many Join: I/Os Performed

5.4 One-to-Many Joins

The example one-to-many join shown in Figure 5 joins
the Customer (150,000 tuples) and Orders (1,500,000
tuples) relations of TPC-H on c custkey and produces
1,500,000 result tuples. The memory size for the join is
75,000 tuples. In the charts, only EHJ1 is shown as it has
equivalent performance as the more aggressive EHJ2. Both
EHJ1 and EHJ2 have times close to DHJ because they use
biased flushing and optimizations to reduce the number of
I/O operations. HMJ and XJoin cannot take full advan-
tage of the optimizations without also performing biased
flushing, but still are about 10% faster than when the opti-

mizations are turned off. EHJ1 is 35% and 45% faster than
XJoin and HMJ. EHJ has about the same time and I/Os as
DHJ, but has a response time of one second compared to 4
seconds for DHJ.

The optimizations of discarding tuples from the hash ta-
ble and avoiding inserts is a major factor in the performance
of the algorithms. A table showing the inserts avoided, tu-
ples discarded from the hash table, and total tuple I/Os is
in Figure 6. HMJ is especially poor for one-to-many joins
as the relation sizes are not balanced. When the smaller
relation is exhausted, HMJ flushes empty partitions of the
smaller input and gets no benefit while reading the larger
input (as the smaller input eventually gets totally flushed
out of memory). This explains the large jump in Figure 5
for both XJoin and HMJ.

 0

 10

 20

 30

 40

 50

 60

 70

 200 400 600 800 1000 1200 1400

T
im

e
(s

ec
)

Results * 1000

EHJ1
DHJ
HMJ

XJoin

Figure 5: One-to-Many Join: Execution Time

Inserts / Discards I/O Savings Total I/Os
EHJ1 675,783 / 9,594 1,370,754 1,800,931
EHJ2 681,825 / 5,049 1,373,748 1,793,390
DHJ 682,321 / 0 1,362,000 1,798,998
HMJ 32,870 / 31,353 128,446 3,202,907
XJoin 160,576 / 41,108 403,728 2,796,038

Figure 6: Effect of 1:N Optimizations

5.5 Memory Size

Larger memory sizes allows EHJ to reduce the number of
I/Os. Due to its higher R reading rate, EHJ2 benefits much
quicker than EHJ1. For the many-to-many join (Figure 7)
with M=640,000 tuples, EHJ1 is 33% faster than XJoin
and 37% faster than HMJ. For the one-to-many join with
M=120,000, EHJ1/2 have almost identical performance to
DHJ, and are 84% and 51% faster than XJoin/HMJ. HMJ
and XJoin receive less benefit of extra memory in terms
of overall execution time, although the extra memory does
allow them to produce more results faster.

For small memory sizes (<10% of smaller relation size),

850

 0

 10

 20

 30

 40

 50

 60

 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Results * 1000

EHJ1
EHJ2
DHJ
HMJ

XJoin

Figure 7: Many-to-Many Join with M=640,000 tuples

all algorithms have equivalent performance for *:* joins,
but 1:* joins are faster with EHJ and DHJ. A smaller mem-
ory causes fewer results to be produced earlier, and pro-
vides limited opportunity for the optimizations in EHJ.
However, EHJ still has a much faster response time than
DHJ. A table summarizing some of these times (in seconds)
for different memory sizes (as % of R) are in Figure 8.

10% 1:* 80% 1:* 10% *:*
EHJA 61.0 32.8 55.5
EHJ1 60.9 32.6 52.8
EHJ2 60.9 32.5 52.4
DHJ 62.6 33.7 52.9
HMJ 87.6 49.5 56.1
XJoin 71.3 60.2 53.0

Figure 8: Effect of Memory Size

5.6 Multiple Joins

We joined Customer-Orders-LineItem in TPC-H
to investigate queries with multiple joins. The size of
LineItem and the join result is 6,001,215. The results
are in Figure 9. The memory size of the first join is
90,000 tuples and the second memory size is 450,000 tu-
ples. EHJ2 has overall execution time 29% and 28% faster
than XJoin and HMJ and near equivalent execution time as
DHJ. The percentage improvements are not as high as the
Customer-Orders case because reading and partition-
ing LineItem dominates the cost of the join and is the
same for all algorithms.

This demonstrates that EHJ maintains its relative ben-
efits over HMJ/XJoin for queries involving multiple joins.
As with standard join processing, it is an interesting chal-
lenge to allocate memory across the individual joins. This
motivates examining generalizing EHJ to a multi-way join
similar to the generalization [22] for XJoin. That general-
ization is beyond the scope of this paper.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1000 2000 3000 4000 5000 6000

T
im

e
(s

ec
)

Results * 1000

EHJ1
EHJ2
DHJ
HMJ

XJoin

Figure 9: Multiple Join Tree with total M=540,000 tuples

5.7 Mediator Joins

Mediator join results are not presented here due to space
constraints. In summary, EHJ can either enter a blocked
stage like XJoin or use its concurrent background process
to boost the join output rate when sources are slow but not
blocked. The reading “strategy” is dictated by the input ar-
rival rates. When the join processing rate is slower than the
network rate (about 10Mbps for our hardware), a join can
control its reading strategy to a high degree. In either case,
the expected output rate and performance of EHJ is dic-
tated by the “reading strategy” that it effectively sees. Fi-
nally, since EHJ biases its execution to one input, that input
should be the input that is expected to arrive the fastest for
: joins (for 1:* joins always chose the one-side). For slow
networks, local join processing time is largely irrelevant as
network costs dominate. For faster networks, the perfor-
mance of EHJ is very close to the centralized processing
case. In all cases, EHJ outperforms XJoin and HMJ for
overall execution time, especially for one-to-many joins,
and has a significantly better response time than DHJ.

6 Applications and Impact
The primary application for EHJ is interactive querying on
a centralized database. EHJ satisfies the demand for a fast
initial response time and a minimal overall execution time.
For long running joins, it is possible to interactively change
the algorithm’s execution by varying its reading strategy.
EHJ is also more suitable than DHJ for data pipelining
both within and outside of the database system. Since it
produces results quickly, EHJ works better in the iterator
model. It is also increasingly common that the DBMS is
just one component of an overall information processing
architecture. EHJ produces results quickly and allows the
consumer process to begin its work immediately. This re-
sults in a lower overall execution time. Thus, EHJ is useful
in distributed and grid-based data processing where there
are multiple producers and consumers of data.

EHJ can be used with LIMIT (top N) queries. EHJ
is a light-weight join compared to DHJ because it gener-

851

ates results without reading all of the smaller input. EHJ
is more suitable for pipelining, especially for large, multi-
join queries. It also avoids some of the challenges asso-
ciated with using a STOP operator [1] as it is inherently
“restartable”, and has considerably better performance than
using nested-loop joins for large N. However, EHJ is
not order-preserving, so it cannot be readily used when
ordering is required (which is common for many LIMIT
queries). In general, the ability to produce join results
early may not always improve overall query response time
if other blocking operators are in the query plan including
ordering and grouping. In these situations, EHJ can default
to the reading strategy of hybrid hash join (read all R first),
in which case it does not produce results early.

Finally, EHJ is not designed for online aggregation [8,
14], although it may be possible to adapt EHJ if the inputs
are randomly sampled [12] before joining. One issue is
that EHJ is not designed to preserve randomness during its
flushing phase. EHJ would also need to be adapted for use
with stream joins [2], and would require the stream have
suitable metadata punctuation [6].

7 Conclusions
Early hash join is an excellent algorithm for interactive
querying with its rapid response time and minimal overall
execution time. It is customizable throughout the join, and
the join output rate and number of I/Os can be calculated
as the reading strategy changes. EHJ can be dynamically
customized to maximize the output rate or minimize the
overall execution time. EHJ is significantly faster for one-
to-many joins than other early hash join algorithms, and has
better overall performance over almost all memory and join
configurations. The execution time of EHJ is only slight
longer than DHJ, but its response time is an order of mag-
nitude smaller. Thus, EHJ can replace standard hash joins
in many situations as it produces initial results faster, is
more suitable for pipelining, and has only a slightly longer
overall execution time.

Future work includes extending EHJ to a multi-way
join, adapting EHJ for online aggregation problems, and
testing EHJ for distributed data processing environments.
We also plan to implement and test EHJ in the PostgreSQL
database system.

References
[1] M. J. Carey and D. Kossmann. Reducing the Braking Dis-

tance of an SQL Query Engine. In VLDB, pages 158–169,
1998.

[2] S. Chandrasekaran and M. J. Franklin. Streaming Queries
over Streaming Data. In VLDB 2002, pages 203–214, 2002.

[3] S. Chaudhuri, R. Motwani, and V. Narasayya. On random
sampling over joins. In SIGMOD, pages 263–274, 1999.

[4] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker,
and D. Wood. Implementation Techniques for Main Mem-
ory Database Systems. In SIGMOD, pages 1–8, 1984.

[5] D. DeWitt and J. Naughton. Dynamic Memory Hybrid Hash
Join. Technical report, University of Wisconsin, 1995.

[6] L. Ding, E. A. Rundensteiner, and G. T. Heineman. MJoin:
a metadata-aware stream join operator. In DEBS, 2003.

[7] J.-P. Dittrich, B. Seeger, D. Taylor, and P. Widmayer. Pro-
gressive Merge Join: A Generic and Non-blocking Sort-
based Join Algorithm. In VLDB 2002, pages 299–310, 2002.

[8] P. J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In SIGMOD 1999, pages 287–298, 1999.

[9] W. Hong and M. Stonebraker. Optimization of Parallel
Query Execution Plans in XPRS. Distributed and Parallel
Databases, 1(1):9–32, 1993.

[10] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
Top-k Join Queries in Relational Databases. In VLDB, pages
754–765, 2003.

[11] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S.
Weld. An Adaptive Query Execution System for Data Inte-
gration. In SIGMOD 1999, pages 299–310, 1999.

[12] C. Jermaine, A. Pol, and S. Arumugam. Online maintenance
of very large random samples. In SIGMOD, pages 299–310,
2004.

[13] D. T. Liu and M. J. Franklin. GridDB: A Data-Centric Over-
lay for Scientific Grids. In VLDB, pages 600–611, 2004.

[14] G. Luo, C. J. Ellmann, P. J. Haas, and J. F. Naughton. A
scalable hash ripple join algorithm. In SIGMOD, pages 252–
262, 2002.

[15] G. Luo, J. F. Naughton, C. Ellmann, and M. Watzke. To-
ward a progress indicator for database queries. In SIGMOD,
pages 791–802, 2004.

[16] M. Mokbel, M. Lu, and W. Aref. Hash-Merge Join: A Non-
blocking Join Algorithm for Producing Fast and Early Join
Results. In ICDE 2004, pages 251–263, 2004.

[17] M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-
partitioned join method using dynamic destaging strategy.
In VLDB 1988, pages 468–478, 1988.

[18] V. Raman, B. Raman, and J. M. Hellerstein. Online Dy-
namic Reordering for Interactive Data Processing. In VLDB
1999, pages 709–720, 1999.

[19] J. Schindler, A. Ailamaki, and G. R. Ganger. Lachesis:
Robust Database Storage Management Based on Device-
specific Performance Characteristics. In VLDB, pages 706–
717, 2003.

[20] T. Urhan and M. Franklin. XJoin: A Reactively Scheduled
Pipelined Join Operator. IEEE Data Engineering Bulletin,
23(2):7–18, 2000.

[21] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost based query
scrambling for initial delays. In SIGMOD, pages 130–141,
1998.

[22] S. Viglas, J. Naughton, and J. Burger. Maximizing the Out-
put Rate of Multi-Way Join Queries over Streaming Infor-
mation Sources. In VLDB 2003, pages 285–296, 2003.

[23] S. D. Viglas and J. F. Naughton. Rate-based query optimiza-
tion for streaming information sources. In SIGMOD, pages
37–48, 2002.

[24] A. N. Wilschut and P. M. G. Apers. Dataflow Query Exe-
cution in a Parallel Main-Memory Environment. In PDIS,
pages 68–77, 1991.

852

