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1 Introduction

Systems integrating dozens of databases, in the scien-
tific domain or in a large corporation, need to cope
with a wide variety of imprecisions, such as: different
representations of the same object in different sources;
imperfect and noisy schema alignments; contradictory
information across sources; constraint violations; or in-
sufficient evidence to answer a given query. If standard
query semantics were applied to such data, all but the
most trivial queries will return an empty answer.

We believe that probabilistic databases are the right
paradigm to model all types of imprecisions in a uni-
form and principled way. A probabilistic database is
a probability distribution on all instances [5, 4, 15,
12, 11, 8]. Their early motivation was to model im-
precisions at the tuple level: tuples are not known
with certainty to belong to the database, or represent
noisy measurements, etc. Tuple-independent probabil-
ity distributions were sufficient for such applications,
and have a very simple semantics. However, more com-
plex types of imprecisions, like those discussed in this
paper, require complex correlations between tuples,
for which the query semantics has not been previously
studied.

In this paper we consider two specific kinds of im-
precise information, statistics on the data and explicit
probabilities at the data sources. We ask a funda-
mental question: is it possible to answer queries by
using such information ? We show that these impre-
cisions are modeled by a certain kind of probabilistic
databases (with complex tuple correlations) and give
explicit methods for answering queries, thus answering
the question positively in this model. Throughout the
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paper we will assume the Local As View (LAV) data
integration paradigm [17, 16], which consists of defin-
ing a global mediated schema R̄, then expressing each
local source i as a view vi(R̄) over the global schema.
Users are allowed to ask queries over the global, me-
diated schema, q(R̄), however the data is given as in-
stances J1, . . . , Jm of the local data sources. In our
model all instances are probabilistic, both the local
instances and the global instance. Statistics are given
explicitly over the global schema R̄, and the probabil-
ities are given explicitly over the local sources, hence
over the views. We make the Open World Assumption
throughout the paper.

1.1 Example: Using Statistics

Suppose we integrate two sources, one show-
ing which employee works for what depart-
ment, and the second showing for each de-
partments in which building(s) it is located.

S1 :
name dept

Larry Big SalesDept
Frank Little HR
Frank Little SalesDept
. . . . . .

S2 :
dept bldg

SalesDept EE1
HR EE1
HR MGH
SalesDept LOW
. . . . . .

We want to find all employees working in build-
ing EE1. The information we have here is insufficient
to answer the query, for example we cannot be cer-
tain that Frank Little works in the EE1 building: he
might work in the LOW building, or perhaps in yet an-
other buildings (because of the Open World Assump-
tion). Our proposal is to use statistics on the data
to infer query answers with some probability. Exam-
ples of such statistics include: every department has
on average 5 employees; every employee works on av-
erage in 1.2 departments; every building has about 8
departments, except LOW which has 20 departments;
etc. Such statistics may have been collected from a
different but similar data instance by using various
data mining techniques, derived from other statistics
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over the data, or may simply be postulated by domain
experts. In addition, sometimes we also know some
constraints, for example that each employee works in
only one building. Our goal is to develop a general
framework in which queries can be answered proba-
bilistically from such statistics.

We formalize the problem using the LAV (local
as view) method. We define a global mediated rela-
tion R(name, dept, bldg), and define mappings (views)
from the global schema to the sources:

S1 : v1(n, d) : − R(n, d,−)

S2 : v2(d, b) : − R(−, d, b)

The query is now expressed over the mediated schema:

q(n) : − R(n,−, EE1)

Any statistics or constraints we know about the data
are expressed over this mediated schema as well. For
example, we may say:

fanoutR[dept⇒ (name, bldg)] = 5

name→ bldg

The first is a statistics, saying that the expected av-
erage number of (employee, building) pairs per each
department is 5, while the second is a hard constraint
(functional dependency) saying that each employee
works in only one building. In this simplified example
Frank Little is an answer to the query with proba-
bility ≈ 1/5 (see Example 3.4). In our approach, the
system computes such a probability for each employee,
and ranks the answers according to their probabilities.
We have chosen for illustration a very simple exam-
ple; in general, the formula for the probability is much
more subtle, and we will derive it in Sec. 3.

1.2 Example: Using Probabilistic Views

The Cancer Genome Anatomy Project exposes (among
many other things) associations between tags and
genes, and between genes and functions1. Thus, a very
simplified fragment of the site consists of two relations:

TG(tag, gene) GF(gene, function)

All tuples in both tables are probabilistic. In the
case of TG the probability of each tuple derives from in-
herent uncertainties in the experiments that produced
the tag-gene association, while in GF the probability
is based mostly on inconsistencies found in the litera-
ture describing the gene’s function. Important for our
discussion is that no tuple in TG or GF is known with
certainty to belong to that table. Thus, a fragment of
the data may look like:

1The SAGE viewer and the Gene Ontology at
http://cgap.nci.nih.gov/SAGE.

TG Tag Gene P

TCCTGTAGCC GSTA2 0.8
. . . . . .

GF G F P

GSTA2 motor-activity 0.3
. . . . . .

A typical query is: find all functions that are
believed to be associated to the tag TCCTGTAGCC.
This can be expressed over a global mediated schema
R(tag,gene,function) as:

q(f) :- R(’TCCTGTAGCC’, g, f)

As before, we need to use statistics to derive an-
swers. In this particular domain, several statistics
are considered common knowledge: for example, it is
known that each gene has a limited number of tags
(say, around 8-10), and a limited number of functions
(say 4-6). However, unlike the first example, here the
data at the sources is probabilistic, which further com-
plicates the computation of the answer probabilities.
We will present a general method for doing so in Sec. 4.

1.3 Summary of contributions

The paper proposes a probabilistic model for answer-
ing queries from statistics and probabilistic views. The
model extends the Local As View (LAV) data inte-
gration paradigm [17, 16], by adding statistics on the
global schema and probabilities to the views, and by
computing probabilistic answers to queries. This is
a radical departure from traditional query answering
and processing techniques, where all answers are deter-
ministic. The paper shows that probabilistic answers
can be computed, and identifies some cases when they
can be computed efficiently. Specifically, it makes the
following contributions:

• It describes a model for probabilistic databases
over statistics and probabilistic views; Sec. 2.

• It describes an algorithm for computing the prob-
ability of a query from statistics and (determinis-
tic) views; Sec. 3.

• It describes an algorithm for computing the prob-
ability of a query from statistics and probabilistic
views, Sec. 4.

• It describes some sufficient conditions under
which the probabilistic answers to a query can
be computed directly by a rewritten query Sec. 5.

2 Problem Definition

We define here our probabilistic model and the query
answering problem. The model borrows ideas from
probabilistic databases [12] and models of belief [3],
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and adds statistics, constraints, and probabilistic
views.

2.1 Preliminary Definitions

Basic Notations D denotes the finite domain of
atomic values, and its cardinality is n = |D|. One
should think of n as a very large number, say 232 if
D = int. R1, . . . , Rk denote the relation names in the
relational schema, and Attr(Ri) is the set of attributes
of Ri. Tup(Ri) is the set of all possible tuples over re-
lation Ri, and Tup =

⋃

i=1,k Tup(Ri) is the set of all
tuples. A data instance I is a set of tuples, I ⊆ Tup
and RI

1, . . . , R
I
m denotes its relational instances. We

write Inst (= P(Tup)) for the set of all instances.

Unless otherwise mentioned, all queries are con-
junctive queries [1]; occasionally, we will also con-
sider unions of conjunctive queries and recursive
datalog programs. We denote queries and views
with q, q′, v, v′, . . ., and denote boolean queries and
views with upper case letters Q,Q′, V, V ′, . . . We use
a, b, c, . . . for constants, and x, y, z, u, v, . . . for vari-
ables in a query’s body.

Consider the statement t1 ∈ v1, . . . , tm ∈ vm,
where t1, . . . tm are tuples and v1, . . . , vm are views.
If J = {t1, . . . , tm}, then the statement says that each
tuple in J is an answer to some view (which is pre-
cisely the Open World Assumption). We will always
represent such a statement as a single boolean view
(query) V . For example, the single statement t ∈ v
is equivalent to the boolean conjunctive query V =
v[t/x̄], where x̄ are the head variables in v, and, when
we have m statements, we take the conjunction of
these boolean views. To illustrate, consider the view:
v(x, y) ← R(x, a, z), S(z, y) and J = {(a, b), (c, b)},
then the statement (a, b) ∈ v, (c, b) ∈ v is equivalent
to: V ← R(a, a, z1), S(z1, b), R(c, a, z2), S(z2, b).

Probabilistic Databases

Definition 2.1 A probabilistic database is a proba-
bility distribution on Inst, i.e. P : Inst → [0, 1] s.t.
∑

I P(I) = 1. Its entropy is:

H =
∑

I∈Inst

P[I] log
1

P[I]
(1)

We will use the terms probabilistic database and
distribution interchangeably in the sequel. If P is a
property on instances and f a numeric function, then
P ’s probability and f ’s expected value are:

P[P ] =
∑

I|P (I)=true

P[I] (2)

E[f ] =
∑

I

f(I)P[I] (3)

The conditional probability and the conditional ex-
pected value are given by:

P[P0|P ] =
P[P0P ]

P[P ]

E[f |P ] =
E[cP f ]

P[P ]

where P0P = P0 ∧ P and cP (I) = 1 when P (I) =
true, cP (I) = 0 when P (I) = false. In this paper we
are concerned with the probabilities and conditional
probabilities of boolean conjunctive queries and/or of
constraints.

Probabilistic Views

Given a number p ∈ [0, 1], a probabilistic fact is a state-
ment of the form P[t ∈ v] = p, where v is a view and
t a tuple. Equivalently, it is a statement of the form
P[V ] = p, where V is a boolean view, hence we also
call it a probabilistic view. For illustration, Sec. 1.2
showed two probabilistic facts, with probabilities 0.8
and 0.3 respectively. When p = 1 then we call it a
deterministic fact or view. We denote with F a set of
probabilistic facts (including any deterministic facts),
and write P |= F if all the probabilistic facts in F
hold2 in P. When F consists only of deterministic
facts, then we express it as one single boolean view V .

Constraints

We will consider two kinds of constraints: functional
dependencies (FD) and inclusion/equality constraints
(IND). A functional dependency on a table R is de-
noted Ā → B̄, where Ā and B̄ are sets of attributes.
An inclusion/equality dependency is an expression of
the form R.Ā = S.B̄ or R.Ā ⊆ S.B̄. We make the
restriction that every time a relation occurs in an in-
clusion/equality dependency it does so with the same
set of attribute; e.g. we allow R.A ⊆ S.B, S.B ⊆ T.D,
but disallow R.A ⊆ S.B, S.C ⊆ T.D. Hence, our de-
pendencies are acyclic, since cyclic inclusions become
equalities3. We write Γ for the set of FDs and INDs;
I |= Γ means that the instance I satisfies Γ; P |= Γ
means that the probabilistic database P satisfies Γ, i.e.
∀I.P(I) > 0⇒ I |= Γ; equivalently, P[Γ] = 1.

Statistics

We consider two kinds of statistics in this paper, car-
dinalities and fan-outs, written as:

cardR[B̄] = σ (σ > 0) (4)

fanoutR[Ā⇒ B̄] = σ (σ > 1) (5)

A cardinality statistics on a relation R is written as (4)
above, and states that the expected number of distinct

2
P[V ] = p holds, if P[V ], when computed using Eq.(2), is p.

3Thus, we avoid the intractability problems due to cycles [1].

807



tuples in the B̄ attributes of R is σ. More precisely,
we say that a probability distribution P satisfies this
statistics if E[card(ΠB̄(RI))] = σ. When B̄ = Attr(R)
then the statistics simply asserts the expected size of
R and we write it card(R) = σ. A fanout statistics is
written like (5) above, and its meaning is the following.
For an instance I and ā ∈ ΠĀ(RI), the fanout of RI at
ā is the number of tuples of the form (ā, b̄) in RI . We
say that P satisfies the statistics fanoutR[Ā ⇒ B̄] =
σ, if ∀ā, the expected value of the fanout at ā, over all
instances that contain ā, is σ: E[card(ΠB̄σĀ=ā(RI)) |
a ∈ ΠĀ(RI)] = σ.

We denote Σ a set of statistics, both cardinality
and fanout statistics. We write P |= Σ if P satisfies
all statistics in Σ. We restrict our model to statistics
that are “chains” (but see Sec. 2.3). More precisely, we
require Σ to contain precisely the following statistics
about R, and no others:

cardR[Ā1] = σ1 > 0 (6)

fanoutR[∪j<iĀj ⇒ Āi] = σi > 1, i = 2, . . . , k

where k ≥ 1, and Ā1∪. . .∪Āk is a partition of Attr(R).

One can check that the expected size of R is
∏k

i=1 σi.
As a simple example, consider a table R(E,D,B)

(similar to the example in Sec. 1.1) and the statistics:

cardR[D] = σ1 = 160

fanoutR[D ⇒ E,B] = σ2 = 5

The expected size of R is σ1σ2 = 160∗5 = 800.
Constraints and fanout statistics may conflict. For

example A→ B and fanout[A⇒ B] = 2 are inconsis-
tent. To eliminate such cases, we require that when-
ever we have an FD where A occurs on the left and B
on the right, and A ∈ Āi, B ∈ Āj then i ≥ j. Simi-
larly, whenever R.Ā occurs in an inclusion or equality
constraint, we require ∃i s.t. Ā ⊆ Ai, and that all
inclusion/equality constraints are consistent with the
statistics: an equality constraint must correspond to
an equality between the corresponding statistics, while
an inclusion constraint must correspond to inequality.

2.2 The Problem

We will now state formally our problem. We are given
the constraints Γ, statistics Σ, and probabilistic views
F . Call a distribution P consistent if:

P |= Γ, P |= Σ, P |= F

In general, there are many consistent distributions. To
choose one, we apply the principle of indifference in
probability theory, which translates into choosing the
distribution that maximizes the entropy. More pre-
cisely, denote PΓ,Σ,F that consistent distribution that
has the maximum entropy H (see Eq.(1)). The prob-
lem is: given a boolean query Q, compute:

µΓ,Σ,F [Q] = lim
n→∞

PΓ,Σ,F [Q]

As a variation, we are given a non-boolean query q,
and want to return the set of pairs (t, µΓ,Σ,F [t ∈ v])
where µΓ,Σ,F [t ∈ v] > 0.

Example 2.2 We illustrate on a very simple example.
Let R(A,B) be a binary relation, and one single cardi-
nality statistics card(R) = σ. Consider the following
boolean query and view:

V = R(a,−), R(−, b)

Q = R(a, b)

Here a, b denote constants, while − denotes an anony-
mous variable. We want to compute PΣ,V [Q] (the view
here is deterministic). Intuitively this means: given
that a occurs in the first column of R and b occurs
in the second column, and given that the expected
size of R is σ, what is the probability that the tu-
ple (a, b) occurs in R ? Notice that we must have
n2 ≥ σ (otherwise the domain is too small R can-
not have cardinality σ), and when n2 = σ then R
contains with certainty all tuples in the domain, in-
cluding (a, b), hence P[Q] = 1. For this problem to
make sense, we need to have n2 � σ. We will avoid
the technical complications arising from maximizing
the entropy, we will consider a simple binomial distri-
bution P instead. Each tuple t ∈ D2 is inserted in
R independently, with probability p = σ/n2: the ex-
pected cardinality of R is indeed σ. Our goal now
is to compute P[Q | V ] = P[QV ]/P[V ] (we show
later that this is ≈ PΣ,V [Q]). It is easy to see that
P[Q] = σ/n2 = P[QV ] (since Q ≡ QV ), but P[V ]
seems harder. Yet a brute force approach yields:

P[V ] = 1− (1− p)[1− (1− (1− p)n−1)2]

The resulting expression for P[Q | V ] is too complex
for practical use. Our approach is to let n→∞. Then
P[V ] simplifies to (σ + σ2)/n2 + O(1/n3), hence:

µ[Q | V ] = lim
n→∞

P[Q | V ] = 1/(1 + σ)

Now it makes sense: when the domain is large, the
probability of (a, b) belonging to R is about 1/(1+σ).
This paper shows how to derive expressions for µ in
the general case, and it also explains the relationship
to the entropy maximization distribution.

2.3 Other Statistics

Despite some restrictions, our model is quite powerful,
and can be used to express some complex statistics.
We illustrate here through examples.

Non-chain statistics Consider the schema
R(emp,dept,bldg) and the statistics:

cardR[emp] = σ1

fanoutR[emp⇒ dept] = σ2

fanoutR[dept⇒ emp] = σ3

fanoutR[bldg⇒ dept] = σ4

808



These do not form a chain, but can still be expressed
in our model. First, it is easy to derive the following:

cardR[dept] = σ1σ2/σ3

cardR[bldg] = σ1σ2/(σ3σ4)

Next, we use two new relation names: S(ed, emp) and
T(ed, dept, bldg), where ed represents, intuitively,
(emp, dept) pairs, on which we define the following
chain statistics and equality constraint:

cardS [emp] = σ1

fanoutS [emp⇒ ed] = σ2

cardT [bldg] =
σ1σ2

σ3σ4

fanoutT [bldg⇒ dept] = σ4

fanoutT [dept⇒ ed] = σ3

S.ed = T.ed

This is now in our model. Finally, replace R(x, y, z)
with S(u, x), T (u, y, z) in all queries/views.

Histograms Consider the following, listing the
expected number of occurrences of departments in the
table R(Emp, Dept, Bldg):

Histogram Dept expected count
SalesDept 50
R&D 20
any other 8

Let σ be the expected number of departments in R.
To express it in our model we partition R horizontally
into three tables, according to their Dept attribute,
and define these statistics:

R1(Emp, Bldg) card[R1] = 50
R2(Emp, Bldg) card[R2] = 20
R3(Emp, Dept, Bldg) cardR3

[Dept] = σ − 2
fanoutR3

[Dept⇒ Emp, Bldg] = 8

Finally, we rewrite any conjunctive query over R into
a union of conjunctive queries over R1, R2, R3 (see
Sec. 3.1.4).

Other types Suppose 70% of name’s in R(name,
age) occur in S(name, phone). We express this by
introducing a new table RS(name), setting card(RS) =
0.7 · cardR[name], and defining the INDs RS.name ⊆
R.name, RS.name ⊆ S.name.

2.4 Discussion

Insufficient statistics If we lack any statistics, then
a probabilistic analysis may become meaningless. For
example, if we know nothing about some table R, then,
by the principle of indifference, every tuple in the do-
main belongs to R with probability 0.5. This leads
to an astronomically large expected cardinality for R;
moreover, any useful evidence we may obtain from

views or other statistics leads to only slight variation
of the default probability 0.5, rendering them useless.
In our model we insist that each table be “covered”
by statistics. When none are available, some default
cardinality estimates should be used.

Errors in collecting statistics Statistics are col-
lected through data mining techniques, inferred from
other statistics, or simply postulated by domain ex-
perts. In all cases one should expect to have errors.
We will do an error analysis in Sec. 3.1.4 to see how
sensitive the query probabilities are to errors in the
statistics. The main role of query probabilities is to
rank query results, so small errors may be tolerated in
practice.

Tuple correlations The probability distributions
we study have complex tuple correlations, which are
introduced by the complex statistics, constraints, and
probabilistic facts that we allow in the model. Our
analysis in the paper is done for distributions with
complex tuple correlations. The technical tools we de-
ploy is to start from simpler tuple-independent dis-
tributions, then perturb them to handle correlations,
but our goal is to analyze a complex, tuple-correlated
distribution.

3 Using Statistics

We have a set of statistics Σ, a set of constraints Γ,
and one (deterministic) boolean view V . We show here
how to compute the limit probability, µΓ,Σ,V [Q], for
a conjunctive boolean query Q. We proceed in two
steps. First we study the probabilities of queries un-
der a specific binomial distribution P based on Σ, and
will show how to compute the conditional probability
P[Q | V,Γ], and its limit µ[Q | V,Γ] for the binomial
distribution. This is the hardest technical result in this
paper. Then we show that this is a close approxima-
tion of the entropy-maximizing distribution PΓ,Σ,V .

3.1 The Binomial Distribution

The binomial distribution P introduced here is associ-
ated to a set of statistics Σ, which we assume fixed.

3.1.1 Definition

Consider a single relation R(A1, . . . , Am) with m at-
tributes, and let us start by assuming a single cardinal-
ity statistics on R, card(R) = σ. The associated bino-
mial distribution is: each tuple in Dm has probability
p = σ/nm. Tuples in R are chosen independently and
with probability p. Hence, the binomial distribution
is P[I] = p|I|(1− p)nm−|I|.

The probability P[I 6= ∅] is 1 − (1 − σ/nm)nm

,
and the expected cardinality of a nonempty I is
σ/(1− (1− σ/nm)nm

), i.e. slightly larger than σ. We
need below a binomial distribution for which the ex-
pected cardinality of a nonempty I is exactly σ. This
is precisely the binomial distribution for the statistics
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σ̂, s.t. σ̂/(1− (1− σ̂/nm)nm

) = σ. Such a σ̂ exists and
is unique if and only if σ > 1.

Consider now an arbitrary set of statistics on R,
and we use the notations in Eq.(6) in Sec. 2. Denote
B̄i =

⋃

j≤i Aj . We define the following distribution,

which we still call “binomial”. Let mi = |B̄i|, and
R(i) = ΠB̄i

[R], for i = 1, . . . , k. The generative model

starts by choosing randomly an instance for R(1), us-
ing a binomial distribution for σ1: i.e., the expected
size of R(1) is σ1. Next, for each tuple b̄1 ∈ R(1) gen-
erate a random non-empty instance of tuples ā2, using
binomial distribution σ̂2 (σ̂2 exists since σ2 > 1): R(2)

consists of all tuples (b̄1, ā2) thus generated. The ex-
pected size of R(2) is σ1σ2. In general, generate R(i) as
follows: for each tuple b̄i−1 ∈ R(i−1) generate a ran-
dom nonempty instance of tuples āi using binomial
distribution σ̂i. R(i) consists of all tuples (b̄i−1, āi).
Finally, output R = R(k). This gives us a probability
distribution P. We can prove that P indeed satisfies
the statistics Σ.

When the schema consists of multiple relations
R1, . . . , Rk, the binomial distribution is defined inde-
pendently on each relation. In the sequel, P denotes a
binomial distribution associated to some statistics Σ.

3.1.2 Two Query Parameters

Our main result expresses µ[Q | V ] in terms of two
query parameters, called exponent and the coefficient,
whose definition requires lots of notations. As a con-
sequence this section is quite technical, and may be
skipped by a reader interested only in the high level
results. The important point is that these parameters
are just two numbers, which can be computed from the
query expression, the statistics, and the constraints,
in exponential time in their sizes. To make the nota-
tions below more readable we proceed in three steps
an illustrate along the way with the following running
example:

Schema R(A,B,C,D), S(E,F )
Statistics cardR[A] = σ1

fanoutR[A⇒ BC] = σ2

fanoutR[BC ⇒ D] = σ3

cardS [E] = σ4

fanoutS [E ⇒ F ] = σ5

Query Q : −R(a, u, v, x), R(a, x, w, y), S(y, z)

In Q, a is a constant while x, y, z, u, v, w are vari-
ables.

From Q to Q(∗) First we extend the schema based
on the statistics. If Σ partitions the attributes of
a relation R into k sets Ā1, . . . , Āk, and we denote
B̄i =

⋃

j≤i Āj , then we introduce k new relation

names: R(1)(B̄1), . . ., R(k)(B̄k); we may identify R(k)

with R, since they have the same attributes. The
proper arity of R(i) is A(R(i)) = |Āi| and the proper

attributes of R(i) are Āi. We illustrate the extended
schema on our running example, and underline the
proper attributes (not to be confused with keys):

R(1)(A), R(2)(A,B,C), R(3)(A,B,C,D)

S(1)(E), S(2)(E,F )

Given a query Q, we construct Q(∗) by expanding
each subgoal referring to R into k subgoals on the rela-
tions R(1), . . . , R(k), then eliminate duplicate subgoals.
In our example:

Q(∗) : − R(1)(a), R(2)(a, u, v), R(3)(a, u, v, x),

R(2)(a, x, w), R(3)(a, x, w, y),

S(1)(y), S(2)(y, z)

The subgoal R(1)(a) initially occurred twice, and we
kept only one occurrence.

The arity, degree, and constant of a query

Here we associate three constants to a query Q, the ar-
ity, the degree, and the constant, denoted A(Q), D(Q),
C(Q). The first two are:

A(Q) =
∑

g∈subgoals(Q(∗))

A(g) (7)

D(Q) = A(Q)− V (Q)

A(g) denotes the proper arity of the relation occurring
in the subgoal g, and V (Q) is the number of variables
in Q. In our running example (count the underlined
attributes in Q(∗)):

A(Q) = 1 + 2 + 1 + 2 + 1 + 1 + 1 = 9

D(Q) = 9− 6 = 3

To define C(Q) we need more definitions. An occur-
rence of a variable in a subgoal of Q(∗) is called proper
if it is in a proper attribute; a variable in Q(∗) is triv-
ial if it has only one proper occurrence; and a subgoal
in Q(∗) is called trivial if all its proper attributes have
trivial variables. In our running examples u, v, w, z are
trivial variables (since they are underlined only once
in Q(∗)), and R(2)(a, u, v), S(2)(y, z) are trivial subgoal
(since their proper attributes are all trivial variables);
all other subgoals are non-trivial.

C(Q) is given by a product, consisting of one factor
Cnt(g) for each non-trivial subgoal g, and one factor
Ct(R

(i)) for all trivial subgoals of type R(i). If g is a
non-trivial subgoal referring to relation R(i), then:

Cnt(g) =

{

σi/(1− e−σi+1) i ≤ k

σi i = k
(8)

If there are l trivial subgoals for R(i), then:

Ct(R
(i)) = 1− e−σi

∑

0≤j≤l

(σi)
j

j!
(9)
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This number is 1 when l = 0. Finally, C(Q) is:

C(Q) =
∏

g∈non-trivial-subgoals(Q(∗))

Cnt(g)
∏

R(i)

Ct(R
(i))

For our running example, C(Q) is given below. The
first line represent Cnt(g) for the five non-trivial sub-
goals, the second line represents Ct(R

(2)) and Ct(S
(2)),

each of which has l = 1 trivial subgoal.

C(Q) =
σ1

1− e−σ2
σ3

σ2

1− e−σ3
σ3

σ4

1− e−σ5

(1− e−σ2)(1− e−σ5)

=
σ1σ2σ

2
3σ4

1− e−σ3

The exponent and the coefficient Finally, we
will define the exponent and the coefficient of Q. Now
we will take the constraints Γ into account, and will
start by “chasing” Q with all inclusion/equality depen-
dencies in Γ: chasing with the dependency R.Ā ⊆ S.B̄
means adding a new subgoal S(−, . . . ,−, x̄,−, . . . ,−)
for every subgoal R(. . . , x̄, . . .) in Q; chasing for an
equality dependency means chasing for the inclusions
in both directions. Since there are no cycles, this pro-
cess terminates. After chasing, we minimize the query.
Hence, in the sequel, we will assume that Q is chased
and minimized.

Next we consider substitutions of the variables in Q
with variables and/or constants: a substitution is not
allowed to use other constants except those already
present in Q. We will consider all possible substitu-
tions on Q, denoting h(Q) for the query obtained by
applying the substitution h to Q. We do not distin-
guish between isomorphic queries (which can be trans-
formed into the other by renaming variables), hence it
suffices to consider only substitutions that use only
the variables in Q, and therefore we need to consider
only exponentially many substitutions h. We write
h(Q) |= Γ if h(Q) viewed as a canonical database sat-
isfies4 Γ.

A substitution h partitions the subgoals of Q into
equivalence classes, s.t. g and g′ are in the same
equivalence class if h(g) = h(g′). We say that h is
a most general unifier if for any other substitution
h′ producing the same partition as h, there exists f
s.t. h′ = f ◦ h. We will consider in the sequel only
substitutions h that are most general unifiers, and
in this case call G = h(Q) a most general unifying
query for Q. For example, assume a ternary table
R(A,B,C) and the query Q = R(a, x, y), R(z, b, b).
Assume a cardinality constraint on R, i.e. k = 1,
hence Q(∗) = Q. There are exactly two most gen-
eral unifying queries: Q itself and G = R(a, b, b);

4h(Q) always satisfies the IND’s; we only have to check if it
satisfies the FDs.

the query G′ = R(a, x, b), R(z, b, b) is not most gen-
eral unifying. Now suppose that we have a cardinal-
ity statistics on C and a fanout statistics C ⇒ A,B.
Then Q(∗) = R(1)(y), R(a, x, y), R(1)(b), R(z, b, b), and
we are allowed to “unify” y and b, hence the most
general unifying queries are now Q,G, and G′.

We can finally define the query’s exponent exp(Q)
and coefficient coeff(Q):

MGUQΓ(Q) = {h(Q) | h = most general unif.,

h(Q) |= Γ}

expΓ(Q) = min{D(G) | G ∈MGUQΓ(Q)}

MGUQ0
Γ(Q) = {G | G ∈MGUQΓ(Q),

D(G) = expΓ(Q)}

coeffΓ(Q) =
∑

{C(G) | G ∈MGUQ0
Γ(Q)}

MGUQΓ(Q) is the set of all most general unifying
queries, and contains at most exponentially many
queries; hence both numbers expΓ(Q) and coeffΓ(Q)
can be computed in exponential time. We will drop
the subscript Γ when Γ = ∅, and write MGUQ(Q)
etc.

In our running example, MGUQ(Q) = {Q,G1, G2}
where:

G1 : − R(a, x, w, x), R(a, x, w, y), S(y, z)

G2 : − R(a, x, w, x), S(y, z)

G1 is obtained by unifying the two R(2) subgoals
in Q(∗) (hence u = x, v = w), while G2 is ob-
tained by unifying these two, plus the two R(3) sub-
goals (hence u = x, v = w, x = y). We have
exp(Q) = A(Q) = A(G1) = A(G2) = 3, hence
MGUQ0(Q) = {Q,G1, G2} and coeff(Q) = C(Q) +
C(G1) + C(G2). We have seen C(Q) already; C(G1)
and C(G2) are computed similarly and give: C(G1) =

σ1σ2σ2
3σ4

(1−e−σ2 )(1−e−σ3 )
, C(G2) = σ1σ3σ4

(1−e−σ2 )
.

3.1.3 Query Probability

Here we state our technically most difficult result: how
to compute the query probability µ[Q | V,Γ] for the
binomial distribution associated to a set of statistics
Σ. This, in essences, solves our goal of answering a
query from a set of statistics (since we will show in the
following section that this distribution is the same, for
practical purposes, as the entropy-maximization dis-
tribution). The expression of µ will use the exponent
and the coefficient introduced in the previous section.
All proofs are omitted, and can be found in [7].

Theorem 3.1 Let Σ be a set of statistics, P the bi-
nomial distribution for Σ, and Γ a set of constraints.
Let Q be a conjunctive query. Then:

P[Q|Γ] =
coeffΓ(Q)

nexpΓ(Q)
+ O(

1

nexpΓ(Q)+1
)
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Corollary 3.2

µ[Q | V,Γ] =

{

coeffΓ(QV )
coeffΓ(Q) if expΓ(QV ) = expΓ(V )

0 if expΓ(QV ) > expΓ(V )

We illustrate the results with several examples.

Example 3.3 Continuing Example 2.2,
MGUQ(V ) = {Q,V } and MGUQ(Q) = {Q}. We
have D(V ) = D(Q) = 2, MGUQ0(V ) = MGUQ(V ),
C(V ) = σ2, C(Q) = σ. Hence exp(V ) = 2,
coeff(V ) = σ + σ2. Similarly we can com-
pute exp(QV ) = 2, coeff(QV ) = σ (since
MGUQ0(QV ) = {Q}). The theorem and corol-
lary give us:

P[V ] =
σ2 + σ

n2
+ O(

1

n3
)

P[QV ] =
σ

n2
+ O(

1

n3
)

µ[Q | V ] =
1

1 + σ

Example 3.4 This example is adapted from the mo-
tivating example in Sec. 1.1. We have one rela-
tion R(N,D,B) with statistics: cardR(D) = σ1,
fanoutR(D ⇒ N,B) = σ2. The view and the query
are:

V : − R(LarryBig, SalesDept,−),

R(−, SalesDept, EE1)

Q : − R(LarryBig,−, EE1)

In other words, we know that LarryBig works in the
SalesDept and that the SalesDept is in building EE1
and want to find the probability that LarryBig is in
building EE1. Start by computing V (∗):

V (∗) : − R(1)(SalesDept),

R(LarryBig, SalesDept,−),

R(−, SalesDept, EE1)

We have: D(V ) = 5−2 = 3, C(V ) = σ1σ
2
2/(1− e−σ2).

MGUQ(V ) contains two queries, namely V itself and
W :- R(LarryBig, SalesDept, EE1), and both have
D(V ) = D(W ) = 3. Hence:

exp(V ) = 3

coeff(V ) = (σ1σ
2
2 + σ1σ2)/(1− e−σ2)

Consider now MGUQ(QV ). Here there is a single
query with degree 3, namely W above, obtained now
by unifying all three subgoals in QV . Hence:

exp(QV ) = 3

coeff(QV ) = σ1σ2/(1− e−σ2)

It follows that µ[Q|V ] = 1/(1 + σ2).

Example 3.5 Functional dependencies affect
µ, as the following example illustrates. As-
sume R(A,B,C,D,E) with cardinality statistics
card(R) = σ, and consider the view and query:

V : − R(a, b, d, f, g),

R(a,−, c, f,−), R(a′,−, c′, f,−),

R(−, b,−, f, h), R(−, b′,−, f, h)

Q : − R(−, b, c,−,−)

Then MGUQ0(V ) = {V1, V2} where:

V1 : − R(a, b, d, f, g), R(a, b, c, f, h), R(a′, b′, c′, f, h)

V2 : − R(a, b, d, f, g), R(a, b′, c, f, h), R(a′, b, c′, f, h)

D(V1) = D(V2) = exp(V ) = 15, and C(V1) =
C(V2) = σ3. Considering Q, MGUQ0(QV ) = {V1}
and µ[Q | V ] = 1/2. If we add the FD A → B, then
V2 6|= Γ and MGUQ0

Γ(V ) = MGUQ0
Γ(QV ) = {V1}

and µ[Q | V,Γ] = 1. In general, adding FD’s may in-
crease or decrease µ, or increase exp(−). Similarly, in-
clusion/equality dependencies affect the probabilities:
they may increase the exponent.

3.1.4 Discussion

More complex queries Our two main results extend
immediately to unions of conjunctive queries. For ex-
ample, assume Q = Q1 ∪ Q2 ∪ Q3: we have seen in
Sec. 2.4 that we need to consider such queries when
handling histogram style statistics. The inclusion-
exclusion principle gives us the following formula for
the probability of Q:

P[Q] =
∑

i

P[Qi]−
∑

i6=j

P[QiQj ] + P[Q1Q2Q3]

Each query on the right hand side is a conjunctive
query, and we can apply Theorem 3.1 to each individu-
ally. This can be used to compute µ[Q | V ] when both
Q and V are unions of conjunctive queries. Another
immediate extension is to queries with the inequal-
ity predicate, 6=: both Theorem 3.1 and Corollary 3.2
carry over to this case5. More complex predicates like
x < y or x like y require separate treatment: as a
heuristics, one can associate to them a default proba-
bility, say 0.5 to the first and 0.1 to the second.

Error analysis We have discussed that most statis-
tics σ should be expected to have errors, and we need
to understand their impact on the computed probabil-
ities. First, we will replace all factors (1−e−σ) with 1,
since they are≈ 1: e.g. for σ > 4.6, 0.99 < 1−e−σ < 1.
Then, we note that µ[Q | V ] is a fraction of two

5We need to adjust with the number of automorphisms of
Q; e.g. Q = R(x, y)R(y, z)R(z, x), x 6= y, y 6= z, z 6= x, then we
need to adjust with 1/3. Without inequalities, the query unifies
to R(x, x) and no adjustment is needed.
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polynomials in the variables σ1, σ2, . . . (all the num-
bers occurring in the statistics Σ). Moreover, all
coefficients are ≥ 0. We do the error analysis for
one statistics σ at a time, hence the probability is
f(σ) = µ[Q | V ] = P1(σ)/P2(σ), where P1, P2 are
polynomials in σ. Let d1, d2 be their degrees (obvi-
ously d1 ≤ d2). An inspection of the expressions for
coeff(QV ) and coeff(V ) shows that d1 is bounded by
the number of subgoals in (QV )(∗) that refer to the
table R, and d2 is bounded by the number of such
subgoals in V (∗), where R is the table to which the
statistics σ applies. For the error analysis, we com-
pute the derivative6 of f :

|f ′(σ)| = |(
P ′

1(σ)

P1(σ)
−

P ′
2(σ)

P2(σ)
)|f(σ)

≤
(d1 + d2)

σ
f(σ)

which leads to the following formula for the relative
error: |∆f |/f ≤ (d1 + d2)|∆σ|/σ. Thus, the relative
error increases by at most a factor bounded by the
number of subgoals in the query/view relevant to the
statistics σ.

Complexity A naive algorithm for computing
µ[Q | V,Γ] that applies Corollary 3.2 directly runs in
exponential time in Q and V .

3.2 The Entropy Maximization Distribution

We now return to our original goal, of computing the
query answer for the entropy maximization distribu-
tion: so far we have shown only how to compute the
binomial distribution. This section shows how they
are related (all proofs are deferred to [7]). First, one
can check directly (using Lagrange multipliers) that,
in the absence of constraints and views, the entropy-
maximization distribution PΣ is equal to the binomial
distribution P:

Proposition 3.6 PΣ = P

Next we relate the binomial distribution to PΣ,Γ,V .
We first relate PΣ,Γ,V [Q] to PΣ,Γ[Q | V ], then the lat-
ter to PΣ[Q | V,Γ], which is the binomial distribution
P[Q | V,Γ]. Since both Γ and V are boolean prop-
erties on instances, the two steps are instances of the
following lemma, relating two entropy-maximization
distributions:

Lemma 3.7 Let Σ be a set of statistics, and let P1,
P2 be any two boolean properties on instances. Then

there exists a set of perturbed statistics Σ̂ s.t. for any
boolean query Q:

PΣ,P1,P2
[Q] = PΣ̂,P1

[Q | P2]

6We use σ1P ′

1
(σ) ≤ d1P1(σ), σ2P ′

2
(σ) ≤ d2P2(σ).

We consider now the relationship between Σ and Σ̂,
showing that the perturbation is small, although the
exact difference may be difficult to compute in prac-
tice. We consider this separately for V and for Γ.

Perturbation due to the view We will only
describe here the case where Σ consists of cardi-
nality statistics for each relation, which we denote
card(Ri) = σi, for i = 1, . . . , k. Then, in Σ̂ the statis-
tics become card(Ri) = σ̂i. Intuitively, we expect σi

to be greater than σ̂i, roughly by the amount equal to
the number of subgoals of Ri in V . The exact formula
is as follows. Define:

Gi(G) = number of subgoals in G that refer to Ri

Then:

Proposition 3.8 For every i = 1, . . . , k:

σi = σ̂i +

∑

G∈MGUQ0
Γ(V ) Gi(G)C(G)

∑

G∈MGUQ0
Γ(V ) C(G)

(10)

Notice that 0 < σi − σ̂i ≤ Gi(V ).

To find Σ̂ one needs to solve the algebraic Equation
(10), which may be difficult in general. However, since
the perturbations are small, for all practical purposes
one can take Σ̂ ≈ Σ.

Example 3.9 Consider the query and view in Exam-
ple 2.2, with the statistics Σ : card(R) = σ. Want to

find a perturbed cardinality statistics Σ̂ : card(R) = σ̂
s.t. PΣ,V [Q] = P[Q | V ], where P is the binomial
distribution for σ̂. Recall that MGUQ0(V ) = {Q,V }
(see Example 3.3), hence

σ = σ̂ +
2σ̂2 + 1σ̂

σ̂2 + σ̂

This leads to an equation of degree 2 in σ̂. Since σ −
2 < σ̂ < σ − 1, we argue to approximate σ̂ with σ in
practice, rather than solve the equation.

Perturbations due to the constraints We
briefly illustrate here functional dependencies, omit-
ting inclusion/equality constraints. FDs cause even
smaller perturbations, which are asymptotically 0:

Proposition 3.10 For any statistics Σ and FDs Γ,

|
PΣ,Γ[Q]

PΣ[Q|Γ]
− 1| ≤ O(

1

n
)

The intuition behind this is that a randomly cho-
sen database instance almost certainly satisfies a func-
tional dependency. This is because a functional de-
pendency is the negation of a conjunctive query with
6=, and it follows from Theorem 3.1 that 1−PΣ[Γ] ≤
O(1/n). Thus, adding functional dependencies does
not change the statistics asymptotically. However,
functional dependencies do affect query probabilities,
see Example 3.5.
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4 Using Probabilistic Views

We now turn to our second major problem: how to
answer a query from statistics and probabilistic views.
We have a set of statistics Σ, a set of constraints Γ, and
a set of probabilistic facts F . Our second main result
in this paper shows how to answer a query Q from
statistics and probabilistic views, by giving an explicit
formula for the limit probability µΓ,Σ,F [Q]. Recall that
the set of probabilistic facts F can be represented by a
set of m boolean views V1, . . . , Vm and m probabilities
p1, . . . , pm ∈ [0, 1]: F is the collection of statements
P[Vj ] = pj , j = 1,m.

To compute PΓ,Σ,F [Q] we will express this proba-
bility in terms of a binomial distribution PΣ̂[− | Γ], for

a slightly perturbed set of statistics Σ̂. However, this
step is more involved than Lemma 3.7, because the
m probabilistic facts cannot be consolidated into one
single view: instead we need to consider 2m “views”,
representing all possible overlaps. For that we intro-
duce the following notations: given m boolean views
V1, . . . , Vm, and m constants p1, . . . , pm, for any set
∆ ⊆ {1, . . . ,m}, denote:

p∆ =
∏

j∈∆

pj

p̄∆ =
∏

j∈∆

pj

∏

j 6∈∆

(1− pj) (11)

V∆ =
∧

j∈∆

Vj

V̄∆ =
∧

j∈∆

Vj ∧
∧

j 6∈∆

¬Vj

Before we can state our main result here, we note
that the probabilistic facts may be conflicting. For ex-
ample if we state that the probability of V1 : −R(a, b)
is p1 = 0.5 and the probability of V2 : −R(a,−) is
p2 = 0.1, then we have a contradiction, since V1 log-
ically implies V2. To avoid such cases we require the
views to be non-conflicting, which means: for any j,
µ[Vj |W ] = 0, where W is the conjunction of all views
other than Vj . Then, we have:

Theorem 4.1 Assuming the views are non-
conflicting, the probabilistic answer to a query
given a set of statistics and probabilistic views is:

µΓ,Σ,F [Q] =
∑

∆

p̄∆µΣ̂[Q | V∆,Γ] (12)

Here µΣ̂ is the limit of the binomial distribution for a

perturbed statistics Σ̂; the perturbation from Σ̂ to Σ is
bounded by the size of F .

Here p̄∆ is given by Eq.(11), while µΣ̂[Q | V∆,Γ]
is given in Corollary 3.2. The proof of the theorem is
sketched in the Appendix. The theorem leads to an
exponential time algorithm: we address this in Sec. 5.‘

Example 4.2 Consider our example in Sec. 1.2,
for which we assume the following set of statis-
tics Σ: cardR(gene) = σ1, fanoutR(gene ⇒
tag, function) = σ2. We abbreviate the constants
TCCTGTAGCC, GSTA2, and motor-activity with t, g,
and m respectively, hence we have:

V1 : − R(t, g,−) p1 = 0.8
V2 : − R(−, g,m) p2 = 0.3
Q : − R(t,−,m)

The views are indeed non-conflicting: µΣ[V1 | V2] =
µΣ[V2 | V1] = 0. We apply Eq.(12) on all three
nonempty sets ∆ : µΣ[Q | V1] = µΣ[Q | V2] = 0,
µΣ[Q | V1, V2] = 1/(1 + σ2). It follows that µΣ,F [Q] =
p1p2/(1 + σ2): we make a small error here by using
σ2 instead of the perturbed statistics σ̂2: the latter is
difficult to compute, and differs by at most 2 (size of
F ) from σ2.

5 Query Rewriting

We now address how to evaluate queries from statis-
tics and probabilistic views efficiently. The method we
consider here consists of rewriting the query in terms
of the view instances; other possibilities exists, such as
approximations through Monte Carlo simulations, but
they are beyond the scope of this paper. In [7] we give
two sufficient conditions under which such rewritings
are possible; for lack of space, we do not include here
the technical conditions, but only illustrate with two
examples, then give a general result for probabilistic
views.

Let v̄ = v1, . . . , vm be a set of (non-boolean) views
and J = J1, . . . , Jm an instance for these views. We
denote with v̄[J ] the boolean view that is the conjunc-
tion of all expressions of the form vi[t], for t ∈ Ji,
i = 1,m (see Sec 2). Given a (non-boolean) query q
we say that a tuple t is an almost certain answer

if µΓ,Σ,v̄J
[t ∈ q] = 1; we say that t is a probable an-

swer if µΓ,Σ,v̄J
[t ∈ q] > 0. Two technical definitions

in [7] give sufficient conditions under which the set of
almost-certain, or the set of probable answers can be
computed by a rewritten query, qr, evaluated on J .
We illustrate with two examples.

Example 5.1 Consider the view and query below:

v(x, y) : − R(x, z), R(y, z)

q(x, y) : − R(x, z), R(y, z)

A view instance J can be thought of as a graph, con-
sisting of edges v(m,n). Then, a tuple (a, b) is a prob-
able answers iff it is an almost certain answer, iff (a, b)
is in the transitive closure of J . Hence, the set of
probable answers can be computed by the following
recursive datalog program qr:

qr(x, y) : − v(x, y)

qr(x, y) : − v(x, z), qr(z, y)
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To see an illustration, consider the following in-
stance for v: J = {(m,n), (n, p), (r, s)}. Then the
boolean query v[J ] is:

VJ : − R(m, z1), R(n, z1), R(n, z2),

R(p, z2), R(r, z3), R(s, z3)

and its unique unifier with minimum D is:

U : − R(m, z), R(n, z), R(p, z), R(r, z3), R(s, z3)

U encodes the connected components of J : the distinct
variables represent the connected components, and a
subgoal R(n, x) in U means that the node n belongs
to the component x. One can check now that for any
two nodes a, b, µ[q(a, b) | v[J ]] is 1 when a, b, and is 0
when a, b are not connected.

Example 5.2 Consider v1, v2, q from the example
in Sec. 1.1, and assume one cardinality statistics
card(R) = σ. Then all probable answers are computed
by:

qr(n) : − v1(n, d), v2(d, EE1)

This is a simple join query, which needs to be evaluated
on the two tables S1 and S2. To appreciate the impor-
tance of such a rewriting, it helps reviewing the direct
approach that applies Corollary 3.2 naively: first build
a huge boolean view V consisting of all conjunction
of views v1[t], t ∈ S1 and v2[t], t ∈ S2, then iterate
over all tuples t in the active domain and compute the
boolean query Q = q[t]; then, apply Corollary 3.2 to
Q and V ; t is probable iff exp(QV ) = exp(V ).

Finally, we show how to compute efficiently query
answers from statistics and probabilistic views. Now
J is a probabilistic view instance, i.e. a set of tuples
with probabilities, and v̄[J ] denotes the correspond-
ing set of probabilistic facts. We want to compute for
each tuple t, the probability µΓ,Σ,v̄[J][t ∈ q]; equiv-
alently, compute the set of pairs (t, µΓ,Σ,v̄[J][t ∈ q]).
For that we will evaluate a rewritten query qr on the
probabilistic database J . This is a non-standard query
evaluation, but efficient methods exists for evaluating
queries under the probabilistic semantics [8]. We have:

Proposition 5.3 Let v̄ = v1, . . . , vm be a set of views.
Suppose that q admits a rewriting qr that computes the
almost-certain answers. Then, if qr is evaluated on the
probabilistic instance J , it computes precisely the set
(t, µΓ,Σ,v̄[J][t ∈ q]).

6 Related Work

Several models of probabilistic databases [5, 4, 15, 12,
11] have been proposed in the past that represent un-
certainties at tuple level. In our recent work [8], we
give efficient algorithms for evaluation of SQL queries
on such databases.

In [6] we have obtained some preliminary results
on asymptotic conditional query probability, without
statistics, constraints or probabilistic views.

There is a lot of work on using statistics and subjec-
tive information in knowledge bases. Our semantics of
a probabilistic database as a probability distribution
over a set of deterministic databases is based on the
possible worlds semantics [13] where subjective infor-
mation, also called degrees of belief, is interpreted as
a constraint over the probability distribution; we add
the critical constraint on the expected cardinalities.
Bacchus et al. [3] use the principle of entropy max-
imization to generate probability distributions from
statistical knowledge. In their latter work [2], they
consider the problem of generating probability distri-
butions from subjective information using the princi-
ple of cross-entropy minimization. Again, this corre-
sponds to our method of entropy maximization when
a uniform prior distribution is assumed. Our Theo-
rem 4.1 is an instance of Jeffrey’s rule, described in [2].

There are various pieces of works that generate sta-
tistical/subjective information on databases. Many of
the schema matching algorithms [18, 9, 20] return some
score for the matched attributes, or even a probabil-
ity [19]. A survey is in [10]. The recent CORDS system
[14] detects correlations are soft functional dependen-
cies between attributes.

7 Conclusions

We have shown that queries can be evaluated from
statistics on the data, and from probabilistic views.
We view this as an important component of a data
integration system that copes with a variety of impre-
cisions: statistics and probabilities in views are among
the hardest forms of imprecisions to use in query evalu-
ation, and we have shown here how to model the prob-
lem, and how to solve it. Our work is foundational,
and the general algorithms resulting from Corollary 3.2
and Theorem 4.1 run in exponential time. Yet we have
shown some limited cases when efficient algorithms ex-
ists for computing queries from statistics and proba-
bilistic views. We believe that other efficient methods
will be discovered in the future.

Acknowledgment Frank Neven pointed us to the
example in Sec. 1.2.
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A Appendix

We sketch here the proof of Theorem 4.1. For each
instance I, let ∆I = {i | Vi(I) = true} be the unique
set s.t. V∆(I) is true. The following follows from the
Langrage multipliers (it generalizes Lemma 3.7):

Lemma A.1 There exists a new set of statistics Σ̂
and m + 1 parameters f , and C1, . . . , Cm, such that
the following holds. For every I s.t. I |= Γ:

PΣ,Γ,F [I] = fC∆PΣ̂[I]

where ∆ = ∆I . For a query Q, it follows:

PΣ,Γ,F [Q] =
∑

∆

fC∆PΣ̂[QV̄∆ | Γ] (13)

We abbreviate PΣ̂[− | Γ] with P[−]. If the views are
non-conflicting then P[QV̄∆] in Eq.(13) is asymptoti-
cally equal to P[QV∆]. Substituting Q ≡ true gives us
an expression for f (since P[true] = 1), and Eq.(13)
becomes Eq.(14) below:

PΣ,Γ,F [Q] =

∑

∆ C∆P[V∆]P[Q | V∆]
∑

∆ C∆P[V∆]
(14)

Assume for the moment that all probabilistic facts
are mutually independent, that is PΣ,Γ,F [V∆] =
∏

j∈∆ PΣ,Γ,F [Vj ] = p∆. We will prove later that this

indeed holds. Substitute Q = V∆0
in (14), and note

that P[V∆0
| V∆] is 1 when ∆0 ⊆ ∆ and is asymptoti-

cally 0 otherwise (since j 6∈ ∆ implies µ[Vj | V∆] = 0):
this leads to (15) below, which, in turn, leads to (16)
using an inclusion-exclusion argument:

∀∆0. p∆0
=

∑

∆0⊆∆ C∆P[V∆]
∑

∆ C∆P[V∆]
(15)

C∆P[V∆]
∑

∆ C∆P[V∆]
=

∑

∆⊆Γ

(−1)|Γ−∆|pΓ = p̄∆ (16)

Substituting back in (14) and taking the limit n→∞
gives us a proof of Theorem 4.1. Once the formula
Eq.(12) is derived, we can verify the independence as-
sumption, asymptotically: computing µΣ,Γ,F [V∆] with
formula (12) gives us indeed p∆, since no view is prob-
able given the others. The proof of the theorem and
more details are in [7].
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