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Abstract

In various applications such as data cleansing,
being able to retrieve categorical or numeri-
cal attributes based on notions of approximate
match (e.g., edit distance, numerical distance)
is of profound importance. Commonly, ap-
proximate match predicates are specified on
combinations of attributes in conjunction. Ex-
isting database techniques for approximate re-
trieval, however, limit their applicability to
single attribute retrieval through B-trees and
their variants. In this paper, we propose
a methodology that utilizes known multidi-
mensional indexing structures for the prob-
lem of approximate multi-attribute retrieval.
Our method enables indexing of a collection
of string and/or numeric attributes to facili-
tate approximate retrieval using edit distance
as an approximate match predicate for strings
and numeric distance for numeric attributes.
The approach presented is based on represent-
ing sets of strings at higher levels of the index
structure as tries suitably compressed in a way
that reasoning about edit distance between a
query string and a compressed trie at index
nodes is still feasible. We propose and eval-
uate various techniques to generate the com-
pressed trie representation and fully specify
our indexing methodology. Our experimental
results show the benefits of our proposal when
compared with various alternate strategies for
the same problem.
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1 Introduction

Data cleansing, namely the process of removing errors
and inconsistencies from data in databases, has tradi-
tionally been an area of high research interest due to
its vast practical significance. A multitude of problems
(e.g., typing/insertion mistakes, lack of standardized
ways for recording data fields such as addresses) can de-
grade data quality and possibly impact common busi-
ness practices. Traditionally, data cleansing method-
ologies have been used on data in an off-line fashion.
An algorithm is executed on large data sets or directly
on relational tables aiming to identify and report all
candidate inconsistencies [1, 9, 10, 17, 18]. Inconsis-
tencies are quantified in terms of proximity expressed
via similarity measures defined on pairs of attribute
values. Such measures include edit distance [11], co-
sine similarity [9] or variants thereof [5, 21]. As an ex-
ample, given a large relation of customer names, tech-
niques in the spirit of [1, 9, 10] will identify all pairs of
customers that according to some particular similarity
measure (e.g., edit distance) applied on each pair of
names, are within a pre-specified threshold value (say
within an edit distance of 3). Algorithms operating in
this fashion could be highly time consuming, as they
commonly involve joins between large data collections,
possibly complemented by additional post processing
of the results.

A variety of applications with data cleansing re-
quirements, however, list strong demand for interac-
tive response times. Consider, for example an opera-
tor during a service call. The customer supplies per-
sonal information such as name, year of birth, address
etc, in order for the operator to retrieve the relevant
profile from the database. Such examples are preva-
lent in common business practices. It is desirable to
support searches while being able to cope with data-
quality problems existing either in the underlying data-
base or the query itself. In such cases, for example, it
is desirable to retrieve all relevant records from the
database that are “close” (with respect to some sim-
ilarity measure) to the query values, in case an exact
match is not identified. This requirement is imperative
in order to aid operators in this example to correctly
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decide the customer identity. It is also desirable to
return such close matches in an online fashion provid-
ing interactive response times. As another example,
consider a data-cleansing scenario with a clean, refer-
ence table [7]. Given a new input record, we want to
quickly find records in the reference table that poten-
tially match this record. In these applications, there is
a clear requirement to relax query semantics and return
fuzzy (approximate) matches quickly.

In this paper, we propose a methodology to effi-
ciently support such fuzzy queries in an interactive
fashion, when the specified attributes contain various
data types including numerical and character strings
and combinations thereof. Our methodology enables
adoption of various similarity functions, one per at-
tribute type in the query. Queries specify values and
bounds on multiple attributes (e.g., name, address,
age), effectively enabling conjunctive queries constrain-
ing the similarity function on each specified attribute.
We refer to such queries as fuzzy range queries. Con-
sider a relation R with attributes name and YOB. As-
sume we adopt edit distance, ed, to quantify proximity
of string values in the name attribute and absolute nu-
merical distance for proximity in the YOB attribute. A
query q specifying values Qname and QY OB will return
all tuples t from R such that

ed(Qname, tname) ≤ δname & |QY OB − tY OB | ≤ δY OB

for constants δname and δY OB supplied at query time.
We realize our methodology for answering fuzzy

range queries by proposing indices that utilize preva-
lent concepts from common indexing techniques (such
as R-trees). Designing practical indices for such prob-
lems faces a multitude of challenges. Firstly, when the
query attributes have mixed types, different similarity
functions (one per type) have to be supported by the
index (e.g., edit distance for strings, absolute numeric
difference for numbers). Although multi-attribute in-
dices have been studied for the case of exact string re-
trieval [14], we are not aware of work on multi-attribute
indices supporting mixed types for fuzzy retrieval. Sec-
ondly, to assure practical deployment of such indices,
they should be easy to realize drawing as many con-
cepts as possible from common indexing practise.

We propose the Mixed-Attribute-Type Tree (“MAT-
tree”), an R-tree-based indexing structure that aids
fuzzy retrieval for range queries specifying combina-
tions of numbers and strings on input. Edit distance
has been previously utilized in various contexts, includ-
ing data cleansing to quantify similarity of strings. We
adopt it to quantify similarity between the query and
database strings. We use the absolute numerical dis-
tance to quantify similarity between query values and
database numeric values. We fully specify and describe
our index restricting ourselves to a single (string, num-
ber) query pair to ease presentation. Following a very
similar approach it is possible to generalize our frame-

work for larger collections of strings and numbers. In
this work, we make the following contributions:

(1) We propose and fully specify the MAT-tree as a
solution to the problem of fuzzy range query answering,
for queries involving mixed types. Our work is the first
to address this important problem.

(2) Although supporting fuzzy numerical retrieval
in the index follows from applications of known con-
cepts from B-trees, handling fuzzy retrieval for strings
in conjunction presents many challenges. In order to
support the edit distance as a similarity predicate for
strings in the index, we show it is possible to represent
information about a collection of strings on internal
index nodes using a fixed amount of space, while still
being able to reason about edit distance in the string
collection. We propose and evaluate various algorithms
for reducing (compressing) the string volume to a fixed
amount of space. We also derive an algorithm to rea-
son about edit distance between a query string and the
compressed string collection.

(3) In addition to fully specifying the operations in
our index (including dynamic maintenance under in-
sertions and deletions), we conduct a thorough exper-
imental evaluation of our index comparing it with a
multitude of alternate applicable approaches based on
M-trees or q-gram structures. Our results indicate that
our methodology offers large performance advantages
for this problem as parameters of interest vary. The
results validate that indexing strings in a tree struc-
ture can support effective pruning during a top-down
traversal of the tree using the string condition, in ad-
dition to the pruning by the numerical attribute. Such
pruning effectively improves the search performance.

We emphasize the following about the MAT-tree in-
dexing structure. First, our technique can be adopted
to solve the problem of indexing strings as a tree to
support approximate predicates, which by itself is of
independent research interest. Such a tree can be eas-
ily integrated with another indexing structure on nu-
meric data. Second, the intuition behind using a tree
on multiple attributes is that, doing a search using such
an integrated tree tends to be more efficient than us-
ing two separate trees and intersecting their answers,
similarly to the observation that the pruning power of
an R-tree is generally better than two B-trees together.
By keeping “ranges” of both the numeric attribute and
the string attribute in an internal node in the tree, we
can support more effective pruning during a tree tra-
versal. This advantage is verified by our experiments.

This paper is organized as follows. Section 2 for-
mulates the studied problem. Section 3 summarizes
approaches that naturally extend existing structures.
Section 4 gives an overview of our proposed MAT-tree
structure, and discusses how to represent strings in an
index entry. Section 5 presents how to construct such
a tree structure, how to compress strings to fit into
an indexing entry, and how to maintain the structure
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incrementally. Section 6 reports our experimental re-
sults. We conclude the work in Section 7.

1.1 Related Work

A lot of work on data cleansing has focused on the
off-line case, in which algorithms are applied to base
tables to identify inconsistencies, commonly identify
pairs of tuples which are approximate duplicates. Gra-
vano et al. [9, 10] discuss how to realize popular simi-
larity functions between strings in a declarative frame-
work. Anathakrishana et al. [1] discuss a related sim-
ilarity function for the same problem. Hernandez and
Stolfo [13] examine the same problem by weighting and
combining multiple attributes. Garhaldas et al. [8]
examine declarative specifications of cleaning opera-
tions. Sarawagi et al. [23] present a learning framework
for identifying approximate duplicates, and Raman et
al. [20] develop an interactive system for data cleans-
ing. A survey of some data cleaning system prototypes
is available in [22].

An indexing structure supporting fuzzy retrieval us-
ing a similarity function called fms (a variant of edit
distance between entire tuples) is proposed [7]. Such
an approach is probabilistic (returns exact tuples with
high probability), and it may miss relevant results.
Moreover, the entire approach suggested in [7] is not
capable of taking individual type information as well
as constraints associated with individual types into ac-
count. Jagadish et al. [14] proposed a family of in-
dexing structures supporting prefix and exact match
queries on multi-attribute strings. Such structures can-
not support fuzzy retrieval using notions of approxi-
mate string match. Jin et al. [16] study how to estimate
selectivity of fuzzy string predicates.

A large body of work in combinatorial pattern
matching deals with problems of approximate retrieval
of strings [2, 11]. Leading data structures utilized for
this purpose are suffix trees [11] and suffix arrays [2].
Such structures however, are highly specialized and
commonly non-balanced, and they are static in their
majority, i.e., they do not provide efficient support
for incremental changes. Moreover, the bulk of these
works assume the index fits in memory. Extensions to
secondary storage exist, but are primarily of theoreti-
cal interest.

2 Problem Formulation

Consider a relation whose schema includes a string at-
tribute AS , a numeric attribute AN , and possibly other
attributes. Table 1 shows such a relation, which stores
information about movie stars and directors. “Name”
is a string attribute (AS) and “YOB” (“Year of Birth”)
is a numeric attribute (AN ). The relation also has
other information such as the movies they starred in
or directed. Although our framework is general enough
to encompass a variety of attributes with mixed (string,
numeric) types, we realize things concrete by confining

our discussion on two attributes. In the full version
of this paper [15] we discuss how to extend our tech-
nique to more general distance functions and queries
with conditions on more than two attributes.

Name YOB Movies . . .
Hanks 1956 Forrest Gump . . .
Robert 1968 Erin Brockovich . . .
Roberrts 1977 Notting Hill . . .
Crowe 1964 Gladiator . . .
. . . . . . . . . . . .

Table 1: A movie relation.

We consider mixed-type fuzzy queries with condi-
tions on both attributes. Each query consists of a tu-
ple (QS , δS , QN , δN ), where QS is a string for attribute
AS , δS is a threshold for this attribute, QN is a value
for attribute AN , and δN is a corresponding threshold.
The query is requesting all records r in the relation,
such that:

ed(r.AS , QS) ≤ δS & |r.AN − QN | ≤ δN ,

where “ed” stands for “edit distance.” Formally,
given two strings s1 and s2, their edit distance, de-
noted ed(s1, s2), is the minimum number of edit oper-
ations (insertions, deletions, and substitutions) of sin-
gle characters that are needed to transform s1 to s2.
For instance, ed(“Robert”, “Roberrts”) = 2. Con-
sider a user query (“Roberts”, 2, 1967, 10) on the
movie relation. The answers are (“Robert”, 1968)
and (“Roberrts”, 1977). Tuple (“Robert”, 1968) is
an answer because ed(“Roberts”, “Robert”) = 1 and
|1967 − 1968| = 1. Tuple (“Roberrts”, 1977) is also
an answer since ed(“Roberts”, “Roberrts”) = 1 and
|1977 − 1967| = 10.

3 Existing Approaches

We present existing indexing structures to support
mixed-type fuzzy queries, with possible natural exten-
sions. We first focus on how to build an indexing struc-
ture for the string attribute, discuss how to combine
such an indexing structure with the structure on the
numeric attribute to answer mixed-type queries.

M-Trees: The M-tree [4] is an indexing structure
for supporting queries on objects in a metric space.
Since edit distance forms a metric space, we can utilize
an M-tree to index strings to support fuzzy queries on
strings. We build an M-tree using string attribute AS .
Each routing object (string) p in the tree has a radius
r that is an upper bound for the edit distance between
this string and any string in its subtree. (In case rout-
ing strings are too large to fit in a node, they can be
suitably truncated to desired space. The corresponding
radius has to be adjusted in response to such a trunca-
tion.) Given a threshold δS and a query string QS , we
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access the subtree of a routing object (string) p with a
covering radius r in a node only if ed(p,QS) ≤ r + δS .

Q-Trees: Another approach to building an index
tree for the string collection is to use their q-grams.
Given a string s and an integer q, the set of q-grams
of s, denoted Gq(s), is obtained by sliding a window
of length q from left to right over the characters of
string s. If the number of remaining characters in the
window is smaller than q, we use a special symbol not
in the alphabet, e.g., “#”, to fill in the empty slots. For
instance, the set of 3-grams of the string “Roberts” is:
G3(Roberts) = {Rob, obe, ber, ert, rts, ts#, s##}.

Consider a query string s, a record string t, and a
threshold k. We split s into k + 1 pieces (with sim-
ilar sizes), and compute the q-gram set for string t.
Navarro et al. [3] show that, if ed(s, t) ≤ k, then at
least one of the k + 1 pieces “matches” with one of
the q-grams. We say two strings match if they are ex-
actly the same after the longer one being truncated
to the shorter length. The special character we intro-
duced (“#”) does not match with any character in the
alphabet. For example, suppose s = Roberrts, t =
Roberts, and k = 1. We split s into 2 pieces (Robe
and rrts) and use the 3-gram set above for t. Because
ed(s, t) ≤ 1, there must be a match between a piece
and a q-gram. In particular, the piece Robe and the
q-gram Rob match since they are exactly the same if
we truncate them to the shorter length. Therefore, if
none of the k+1 pieces can find a match in the q-grams,
there are at least k + 1 edit distance errors between s
and t, and the condition ed(s, t) ≤ k cannot be true.

If there are many strings in the dataset, we may not
want to store all their q-grams. Instead, we just store
the q-gram range for the strings. For the above string
t, we can just store a lexicographical range (ber, ts#)
that covers all the q-grams of t. (When comparing two
strings, if they have different lengths, we first truncate
the longer one to the shorter length, then do the com-
parison. The special symbol “#” is lexicographically
larger than any other character.) If none of the pieces
falls into the range, we can be sure that ed(s, t) ≤ k
cannot be true.

Based on this observation, we can build a tree,
called “Q-tree,” that indexes the string attribute AS .
Each node in the tree has a list of string ranges
[minS ,maxS ]. The minS and maxS are the minimal
and maximal lexicographical values of all the q-grams
extracted from all the AS strings of the records in the
corresponding subtree. To find all strings within dis-
tance δS of a string QS , we chop QS into δS +1 pieces.
We traverse the Q-tree top down. For each range in
a node, we compare the pieces against the range. We
visit the subtree of the range only if one of the pieces
is within the q-gram range. For the candidate strings
in the leaf nodes, we compare their strings against the
query condition to compute the final answers.

Indexing Structures for Both Attributes: We

can build an indexing structure to support mixed-type
queries by integrating indexing structures for both at-
tributes. Such a structure, called “BQ-tree,” indexes
on both attributes AS and AN by combining a B-tree
and a Q-tree. Figure 1 shows the indexing structure
for our sample dataset. Each node in the tree has a
list of MBR’s (“minimal bounding rectangles”), each of
which stores the range information of the descendent
records. An MBR is represented as: [minS ,maxS ],
[minN ,maxN ]. The minN and maxN are the minimal
and maximal AN values for all the records covered by
this MBR. The minS and maxS are the minimal and
maximal lexicographical values of all the q-grams ex-
tracted from all the AS strings of the records covered
by the MBR. During a search using the tree, at each
entry we use both ranges to prune the branches that
do not satisfy any of the two query conditions. We can
build a similar indexing structure, called “BM-tree,”
by integrating a B-tree on the numeric attribute and
an M-tree on the string attribute.

Spielberg
1946

Hanks
1956

Gibson
1956

Hanks
1957

Crowe
1964

Robert
1968

DiCaprio
1974

Roberrts
1977

<elb,spi>
<1946,1956>

<apr, ts#>
<1974,1977>

<ank,s##>
<1956,1957>

<cro,we#>
<1964,1968>

<ank,s##>
<1946,1957>

<apr,we#>
<1964,1977>

MBR1 MBR2

Root

Leaf
Nodes

Figure 1: A BQ-tree for the movie dataset.

4 The MAT-Tree

In this section we realize our methodology for efficiently
answering mixed-type fuzzy queries by developing an
indexing structure called “MAT-tree.” It is instanti-
ated by adapting concepts from R-trees [12]. Each in-
dex entry in the tree (with a pointer to a child node)
has a numeric range for the numeric attribute AN ,
such that all the descendant records have an AN value
within this range. In addition, their string values of
the AS attribute are represented as a trie, which is
compressed to fit into the index entry with a fixed size.
Figure 2 shows an example MAT-tree for the movie
relation. The details of the tree are explained shortly.

Given a mixed-type query {QS , δS , QN , δN}, we tra-
verse the tree from the root to the leaf nodes. For
each index entry in a node n, we check if the range
[QN − δN , QN + δN ] overlaps with the numeric range.
If so, we then check if the strings represented by the
compressed trie could satisfy

minEditDist(QS , Tn) ≤ δS ,

where Tn is the compressed trie in the entry, and we
use minEditDist(QS , Tn) to represent the minimum
edit distance between query string QS and any string
represented by the compressed trie. The child of this
entry is visited only if both conditions are satisfied.
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1956
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Hanks
1957

Crowe
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1968

DiCaprio
1974

Roberrts
1977

<1946,1956> <1956,1957>

<1946,1957> <1964,1977>

MBR

Root

Leaf
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*

<1964,1968>

*

<1974,1977>

*

* *

...
...

...

......

*

...

Figure 2: A MAT-tree for the movie relation.

4.1 Representing Strings as a Compressed
Trie

A trie for a set of strings, is a tree such that every node
excluding the root is labeled with a character. Each
path from the root to a leaf represents a string from
the set of strings; all the paths in the trie represent all
the strings in the set [24]. Figure 3 shows such a trie,
in which the path n1 → n3 → n7 → n13 represents
the string beh.

n1

n2 n3 n4

n5 n6 n7 n8

n14

n9

n10 n11 n12 n13

n15

a b c

a b

c

d

e a b

d
d h

Strings:
aad, abcde, abdfg,
beh, ca, cb

n16 n17
e

f

g

Figure 3: A trie.

When constructing a MAT-tree, we need to store a
trie in a node entry. (A trie can be easily linearized
and stored as a string.) Because the entry has lim-
ited space, we choose to compress the trie to satisfy
the space constraint. Our compression approach is to
select a set of k representative nodes C = {c1, . . . , ck}
in the trie to form the “backbone” of an automaton,
which accepts all the strings in the original trie (and
possibly more). For simplicity of reference, we call
these representative nodes centers.

After selecting nodes as centers, we convert the orig-
inal trie T to a compressed trie Tc as follows. In Tc

there is a node for each center. There is an edge in Tc

from a node ci to a node cj if node ci is an ancestor of
node cj in T , and there is no other center on the path
from ci to cj in T . Figure 4 is a compressed trie for
the trie in Figure 3, where nodes n1, n2, n4, n5, n6,
n7, n11, n13, and n15 are selected as centers. Since n1

is an ancestor of n2, n4, and n7 in T , and there is no
other center between n1 and the other three nodes, we
have an edge from n1 to each of the three nodes in the
compressed trie.

n1

n2 n4

n5 n6

n7

n11

n13

n15

<{b},2>

<{e},1>

<{h},1>

<{a,b,c},2>
<{a},1>

<{a,d},2>

<{b,d},2>

<{f,g},2><{c,d,e},3>

Strings:
aad, abcde, abdfg,
beh, ca, cb

Figure 4: A compressed trie.

We next look at how these centers are used to repre-
sent other nodes in the original trie T . Denoting the set
of nodes in the original trie as N = {n1, . . . , nm}, we
use C ′ = N −C to refer to the set of non-center nodes.
We say a non-center node ni ∈ C ′ is “covered” by a
center cj if cj is an ancestor of ni in T , and the path
from cj down to ni does not contain any other center.
Going back to the earlier example, nodes n8 and n9
are covered by center n4, while node n3 is covered by
center n1.

It is easy to see that each non-center node will be
covered by only one center. For the rest of this paper,
we will refer to the set of nodes covered by a center cj

as its covered-node set, denoted cns(cj). Each center cj

represents the nodes it covers as a tuple 〈Σj , Lj〉. Here
Σj refers to the set of characters that are represented
by cj or any node in cns(cj). Symbol Lj represents
the longest-path length between cj and any nodes in
cns(cj). In Figure 4, since n4 covers nodes n8 and
n9, we have Σ4 = {a, b, c} and L4 = 2, where “2” is
the length of the path from n4 to n8. Obviously, the
amount of information loss in adopting such a com-
pressed trie highly depends on the selection of the k
centers. In Section 5.1, we look at various methods for
selecting k centers to minimize the information loss.

4.2 Minimum Edit Distance Between a String
and a Compressed Trie

Given a query string q and a compressed trie Tc, we
want to compute the minimum edit distance between
q and all the strings represented by Tc, denoted as
minEditDist(q, Tc). The main idea of computing the
distance is to convert the compressed trie to an au-
tomaton, and then compute the minimum edit distance
between the string and all the strings acceptable by the
automaton. We adapt an algorithm for computing such
a distance [19], and show how a compressed trie can be
converted to an automaton.
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4.2.1 Distance Between a String and an Au-
tomaton

Myers and Miller [19] proposed an algorithm for com-
puting the minimum edit distance between a string s
and all the strings accepted by an automaton M . We
use a simple example to briefly illustrate our adapta-
tion of this algorithm. (See [19] for details.) Given
an automaton M and a string s = s1 . . . sn, we con-
struct an edge-labeled directed edit graph, which is de-
signed so that paths between two vertices correspond
to alignments between string s and strings generated
by M . For example, Figure 5 shows a string s = ac,
an automaton, and the corresponding edit graph.

Figure 5: String, automaton, and the edit graph.

In general, the automaton edit graph consists of n+1
copies of M in n+1 rows. For each character si in the
string (i ∈ [0, n]) and each state j in the automaton,
there is a vertex in the edit graph represented as a pair
(i, j). Some nodes are labeled with the empty symbol ε
to connect two nodes. A special vertex Θ represents the
starting node and another special vertex Φ represents
the final ending node. We add three types of edges to
the edit graph corresponding to the three types of edit
operations.

1. If i ∈ [1, n] and either j is the starting state in M
or j �= ε, there is a deletion edge: (i−1, j) → (i, j)
labeled [si, ε]. For instance, edge (0, b) → (1, b)
with label [a, ε] in Figure 5 is a deletion edge.

2. If i ∈ [0, n] and there is a transition edge j → k in
M , then there is an insertion edge (i, j) → (i, k)
labeled [ε, k]. The edge (0, θ) → (0, b) with label
[ε, b] is an insertion edge.

3. If i ∈ [1, n], there is a transition edge j → k in
M , and k �= ε, then there is a substitution edge
(i−1, j) → (i, k) labeled [si, k]. The edge (1, θ) →
(2, b) with label [c, b] is a substitution edge.

After constructing the edit graph, we can assign a
weight to each edge, which is the cost of the corre-
sponding edit operation. That is, the weight of an

edge [x, y] is 1 if x �= y; and 0 otherwise. It can be
shown that the minimum edit distance between s and
M is the length of a shortest path from the starting
state Θ to the ending state Φ, which can be computed
efficiently using a shortest-path algorithm [6].

4.2.2 Converting a Trie to an Automaton

Given an uncompressed trie, we can convert it to an
automaton as follows: each node of the trie becomes
a state, and each edge becomes a transition edge be-
tween the two corresponding states in the automaton.
Given a compressed trie, we consider each compressed
node 〈Σ, L〉 and expand it to a substructure of L lev-
els, which creates the enumeration of strings with every
possible length from 1 up to L. Each level contains all
the single nodes of characters in Σ, and every node is
connected to a common tailing ε. This ε state has a
direct link to the final “tail” ε. We call this kind of
link a “bypass link.” For instance, the substructure of
a compressed node [{a, b, c}, 2] is shown in Figure 6.
We convert the final expanded trie to an automaton.
In [15] we discuss how to do early termination during
the computation of the minimum edit distance.

Figure 6: Expanding a compressed node [{a, b, c}, 2]
to automaton nodes.

5 Construction and Maintenance

There are two ways to construct a MAT-tree. The
first way is to perform repetitive insertions into an
empty structure. Handling insertions is described in
Section 5.2 where we deal with dynamic maintenance
issues. Here, we describe how the index can be con-
structed in a bottom-up fashion.

Initially we assume that records are materialized on
disk with each tuple consisting of a string-and-numeric
value pairs (and possibly other values). The bottom-
up construction follows common bulk-loading practise.
The records are sorted according to an attribute, either
string in alphanumeric order or the numeric, depending
on which attribute one wishes to maintain proximity
(this is an analog of the low-x bulk-loading algorithm
for R-trees [12]). As pages are filled with tuples, all
the strings belonging to a page are grouped into a trie,
which is subsequently pruned down to fixed space, via
algorithms detailed in the next subsection. In addi-
tion, the minimum and maximum values of the range
corresponding to the numeric values associated with
all the strings in the page are computed and stored
along with the resulting trie (after compression) as an
index node entry for that page. After the first (leaf)
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level of the index is constructed, the remaining levels of
the index are constructed in a recursive fashion. Com-
pressed tries at level i are merged at their roots and
subsequently pruned (Section 5.1) down to a fixed size
to form tries at level i + 1 until the root is formed.

5.1 Effective Trie Compression

One critical requirement is to accurately represent a set
of strings using a compressed trie that can fit into an
indexing entry in the tree. The amount of information
loss in compression greatly affects the pruning power
during a traversal of the tree to answer a query. We
now discuss three different methods for compressing
the trie with each method trying to minimize a different
measurement of information loss.

Method 1: Reducing Number of Accepted
Strings. One way to measure the accuracy of a com-
pressed trie is to use the number of its strings rep-
resented. Intuitively, we want to minimize this num-
ber since the more additional strings the compressed
trie (suitably transformed into an automaton) can ac-
cept, the more inaccurate the compression is, compared
to the original one. As a result the trie will provide
more inaccurate edit distance estimates against a query
string, and the pruning power during the search will be
weakened. We use a goodness function referred to as
“StrNum()” to compute such a number. Formally, let
T be a trie and C = {c1, . . . , ck} be a set of k centers.
Each center is represented as 〈Σi, Li〉. Consider the
corresponding compressed trie Tc with these k centers.
The function “StrNum” computes the total number of
strings accepted by Tc. StrNum(T,C) = f(c1) where
c1 is the center at the root of Tc, and f(ci) is a recursive
function defined as follows:
• If all descendants of ci are not in C, then f(ci) =
|Σi|Li .

• Otherwise, let cm1 , . . . , cmp
be the set of the closest

centers that are descendants of ci. Then f(ci) =
|Σi|Li ∗

∑mp

j=1 f(cj).
Take the compressed trie in Figure 4 as an example.

Given the nine centers placed at the indicated nodes,
each path from the root to a leaf node represents a fi-
nite set of strings. For example, the path from the root
n1 to n5 will result in at most 12*11*22=4 strings. By
summing up the number of strings that could poten-
tially be represented by each path, we will be able to
compute the function StrNum(T,C).

Given a trie T and a number k, we want to se-
lect k nodes to be centers, so that the corresponding
compressed trie yields a small value for StrNum. Fig-
ure 7 shows a randomization algorithm for solving the
problem. The main idea is the following. We always
choose the root as a center. Initially we randomly pick
k − 1 nodes as centers. Then we attempt to replace
some centers in the current selection so that the good-
ness function is improved (i.e., the function value is
decreased). We randomly select a center ci from C,

and then randomly pick another non-center node nj

as a candidate to replace ci. A new selection of cen-
ters Cnew is formed by removing ci from C and adding
nj into C. If the StrNum value of Cnew is lower than
that of the original C, then Cnew is considered to be a
better solution, and it will be used to replace C. The
algorithm terminates after the attempt to find a better
solution is unsuccessful for M times.

Algorithm: Randomization
Input: T , original trie; k, number of centers;

M : number of iterations;
Output: a set of k centers according to Method 1.
Method:

select root of T as the center c1;
randomly pick k − 1 nodes as remaining centers;
C = {these k centers}; i=0;
while (i ≤ M) {

randomly select a center ci in C (i �= 1);
randomly select a non-center node nj ;
let Cnew = C − {ci} + {nj};
If StrNum(T, Cnew) < StrNum(T, C) then

{ C = Cnew; i=0; }
else i++;

}
Output C;

Figure 7: Randomization for selecting centers.

Method 2: Keeping Accepted Strings Clus-
tered. Another way to measure the goodness of a
compressed trie is to look at the distribution of its ac-
cepted strings, and check how similar they are to the
original ones. Ideally we want to keep these strings
as similar to the original ones as possible. To maxi-
mize this possibility, given k centers, our strategy is
to place these centers as close to the root as possible,
so that the strings represented can share common pre-
fixes. That is, given k as the number of centers, we can
do a breadth-first traversal of the trie, and choose the
first k as centers. Figure 8 shows how the earlier trie in
Figure 3 will be compressed using this algorithm with
k=9 centers being placed at n1, n2, . . . , n9.

n1

n2 n3 n4

n5 n6 n7 n8 n9

a b c

<{a,d},2>

<{b,c,d,e,f,g},4> <{e,h},2>

<{a},1>

<{b},1>

Strings:
aad, abcde, abdfg,
beh, ca, cb

Figure 8: Compressed trie (BreadthFirst).

Method 3: Combining Methods 1 and 2. We
can combine the two previous methods by considering
both the number of accepted strings and their similar-
ity to the original strings. For instance, when adopting
method 2, we could have chosen a node as a center,
while it is the starting node of a long path. Choos-
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ing this node to compress could introduce a lot of new
strings. (Recall that the number of strings accepted by
a compressed node 〈Σ, L〉 is |Σ|L.)

In combining the two methods, we still try to keep
the prefixes of the original strings by placing the cen-
ters close to the root of the trie. In addition, we
also consider the number of strings accepted by each
compressed node in making the selection. We present
a simple, yet intuitive compression technique called
“BottomUp.” The intuition is that for the edit dis-
tance calculation, especially with the early termination
ideas, the nodes close to the root are relatively more
important. Therefore, we want to keep them as pre-
cise as possible. Figure 9 shows the algorithm, in which
“cost(x)” for a node x is the number of additional ac-
cepted strings if node x is compressed. Figure 10 shows
how the algorithm selects centers for the trie in Fig-
ure 3. The result has k = 9 centers located at n1, n2,
n3, n4, n5, n6, n7, n11, and n12.

Algorithm: BottomUp
Input: T , original trie; k, number of centers;
Output: a set of k centers according to Method 3.
Method:

set C = empty; priority query Q = empty;
for the parent node p of each leaf node

insert pair (p, cost(p)) into queue Q;
while (T has more than k nodes) {

pick the entry (n, x) from Q with the smallest x;
remove the entries for n’s descendants from Q;
remove from T the subtree rooted at n;
add n to C;
remove n’s descendant centers from C;
p = parent node of n;
insert pair (p, cost(p)) into queue Q;

}
Output C;

Figure 9: BottomUp for selecting centers.

n1

n2 n3 n4

n5 n6 n7

n11 n12

a b

<{a,d},2>

<{c,d,e},3>

<{e,h},2>

<{a,b,c},2>

<{d,f,g},3>

b

Strings:
aad, abcde, abdfg,
beh, ca, cb

Figure 10: Compressed trie (BottomUp).

5.2 Dynamic Maintenance

The MAT-tree is a fully dynamic index. As such it
provides support for common index-management oper-
ations such as insertion, deletion, and update of tuples.

Insert record (s, n): where (s, n) is a string-
number pair. A search operation is first issued in the
index. If the pair is not present, its position in a page

p is identified. If the insertion does not cause page
overflow, the compressed trie Tc corresponding to this
page needs to be updated. This can be accomplished
by going through each character of s in conjunction
to Tc and walking down the trie, skipping characters
of s as indicated by the branches of Tc. If a node in
Tc is reached which does not match the correspond-
ing character of s, then the character is added into
that node in Tc. Since center nodes are of O(Σ) in
length, there is always space to handle this insertion.
For improved space efficiency, center nodes are repre-
sented as bit vectors (a bit for each character in Σ),
thus inserting a character is a simple bitwise opera-
tion. This process is repeated until the end of s or
the end of the corresponding branch in Tc whichever
occurs first. If Tc is modified, then a similar opera-
tion has to be issued recursively to s and the parent
of Tc, until the root of the index or until a compressed
trie is reached in which there is no modification. If
a page split occurs, two new pages are formed con-
taining approximately equal number of string-number
pairs. A compressed trie is constructed for each of
them using the method above, and the corresponding
numeric ranges for each trie are computed. The result-
ing entries are inserted into the parent node of the split
page. This process is repeated recursively upwards as
long as page overflow occurs. Splitting a page into two
containing approximately equal number of compressed
trie-numeric-range pairs can be performed using algo-
rithms similar to those used in R-trees (e.g., quadratic
split [12]). However, the objective function needs to
be adjusted to the particular domain. Any function on
StrNum of the compressed trie and the corresponding
numeric range can be used as an objective for opti-
mization while splitting a page into two.

Delete record (s, n): A delete operation is han-
dled in a similar way. First the (s, n) pair is located
in a page and is removed. If the page does not under-
flow, then the operation halts. Otherwise, the page is
merged with a neighboring leaf page if possible, in a
way similar to R-trees. After the merge, a trie is con-
structed for all entries of this newly formed page, and
is pruned to the fixed space. Subsequently the com-
pressed tries in the leaf page are merged at their roots
and pruned to the fixed space, recursively up until the
root in the worst case. Merging two tries is easy. De-
pending on the structure of the compressed trie, there
are several way to do the merging. An example is the
following: in the bit vector representation, we just per-
form a logical OR operation between the center repre-
sentation. If a page underflow occurs, this process is
also repeated in the index pages as well.

Update record (s, n): It can be handled by locat-
ing the pair in the index and performing the modifica-
tion in that page. The process proceed similarly to the
bottom-up index adjustment in the case of an index
insert operation.
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6 Experiments

In this section, we present the results of our intensive
experiments to evaluate the proposed approaches. We
used two real datasets. Data set 1 consists of 100, 000
movie star records extracted from the Internet Movie
Database.1 Each record has a name and year of birth
(YOB) of a movie star. The length of each name varies
from 5 to 20, and the average length is around 12. We
generated the YOB values using a normal-distribution
data generator. The YOB values vary from 1900 to
2000 with a mean of 1950. Data set 2 is a customer re-
lation database with 50, 000 records. Each record also
has a name and a YOB value. For each dataset, we
randomly chose records, and introduced random er-
rors to the records to form a query set. We ran 100
queries for each experiment and measured the aver-
age performance. All our experiments were run on a
PC, with a 2.4GHz P4 CPU and 1.2GB memory, run-
ning Windows XP. The compiler was Visual C++. In
addition, we used 8, 192 bytes as the page size of the
tree structures. Since the experimental results for both
data sets had similar trends, due to space limitation we
mainly report the results for data set 1. More results
are in [15].

6.1 Advantages of Indexing Both Attributes

We evaluated the performance gains by building an in-
dexing structure on both attributes, compared to two
separate indexing structures. We implemented the fol-
lowing approaches. (1) “B-tree”: We built a B-tree for
the numeric attribute AN (YOB), and postprocessed
the string condition for those records that passed the
B-tree check. (2) “Q-tree”: We built a Q-tree for the
the string attribute AS (name), and postprocessed the
numeric condition for those records that passed the
Q-tree check. (3) “B-tree & Q-tree”: We built a B-
tree on AN and a Q-tree on AS , and intersected the
records that passed the check for either structure. (4)
“BQ-tree”: We built a BQ-tree on both attributes.

B-tree Q-tree B-tree & Q-tree BQ-tree
152 102 212 81

Table 2: Times of different approaches (seconds).

Table 2 shows the running times of these approaches
for a dataset with 80, 000 records, when δN = 4 and
δS = 3. The BQ-tree performed the best, validating
the intuition that integrating two attributes into one
indexing structure performs more powerful pruning in
the tree traversal to answer a query. This result is in
agreement with the intuition that an R-tree is better
than one B-tree or two B-trees with intersection. We
varied the values of δN and δS , and observed similar
results. We also had similar results for other index-

1http://www.imdb.com

ing structures such as M-trees. In general, the savings
depend on the correlation between the two attributes.

In the rest of this section, we mainly focus on
the results of indexing structures on both attributes.
We evaluated the following approaches: (1) Sequen-
tial scan (“SEQ”); (2) BM-trees (“BM-Tree”); (3) BQ-
trees (“BQ-Tree”); (4) MAT-trees with Randomiza-
tion compression (“MAT-RANDOMIZED”); (5) MAT-
trees with BreadthFirst trie compression (“MAT-BF”);
and (6) MAT-trees with BottomUp trie compression
(“MAT-BOTTOMUP”). For sequential scan, to reduce
the running time, we first checked if an entry in a node
satisfied the numerical query condition. If so, we fur-
ther checked the condition on the string attribute. In
the evaluation we measured both the running time and
the number of IO’s for each approach.

6.2 Scalability

We evaluated the scalability of these approaches using
subsets with different numbers of records from data
set 1. We set the numeric range threshold δN = 4 and
edit-distance threshold δS = 3. In addition, we set the
number of centers in a trie k = 400. We report the
running time in Figure 11 and the number of disk IO’s
in Figure 12.
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Figure 11: Time for datasets with different sizes.
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Figure 12: IO’s for datasets with different sizes.

The figures show that MAT-tree took the minimum
running time and the least number of disk IO’s. Among
the three trie-compression approaches of MAT-trees,
BottomUp was the best for both measurements, while
Randomization and BreadthFirst were close to each
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other. BreadthFirst compression was slightly better
than Randomization in running time due to more ef-
ficient optimization for the edit-distance calculation.
For example, when the database had 80, 000 records,
the BottomUp, BreadthFirst, and Randomization ap-
proaches took 3.3, 7.2, and 7.2 seconds, respectively,
while their numbers of disk accesses were 54, 73, and
76, respectively.

For the other approaches, although BM-tree in-
curred many disk IO’s, it took less time than Sequential
Scan and BQ-tree. The reason is that at each node of
the BM-tree, we only need to calculate the edit dis-
tance between the query string and the routing string,
and the pruning can save computation of some edit
distances.

6.3 Changing Thresholds

We next varied the numeric and string thresholds in
queries to study their impact on the performance of dif-
ferent approaches. We ran the experiments on 80, 000
records, and the number of centers in the MAT-tree
was 400. We first fixed δS as 3 and let δN vary from
1 to 8. The time for the approaches is shown in Fig-
ures 13. Similarly, to study the effect of the string
threshold, we fixed δN to 4, and varied δS from 1 to
6. The time and IO count are depicted in Figures 14
and 15, respectively.
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These figures show that, with the increase of the nu-
meric threshold and/or the string threshold, both the
running time and the IO number increased for all the
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Figure 15: Effect of string threshold: IO’s.

approaches. However, different approaches showed dif-
ferent trends. The performance of the MAT-tree with
the BottomUp compression was very stable for differ-
ent numeric thresholds and string thresholds, e.g., it
took less than 4 seconds to find the answers when δN

was 4 and δS was 4. The performance of the BM-
tree approach deteriorated significantly as the string
threshold increased. Still, our proposed MAT-tree had
the best performance and efficiency among these ap-
proaches. The main reason is that, in each node in
the MAT-tree, the compressed trie can effectively rep-
resent the information about the strings in the subtree
of the node. We can use both attributes to do effective
pruning during the traversal of the tree.

6.4 Number of Centers in MAT-trees

As discussed in Section 5.1, the number of centers in
each index entry of a MAT-tree can greatly affect the
accuracy of the compressed trie and thus the pruning
power during the tree traversal. This number deter-
mines how much information we can retain from the
original trie. We ran experiments on the subset of
80, 000 records. The numeric threshold δN was 4 and
the string threshold δS was 3. We varied the number
of centers from 50 to 500.

0
5

10
15
20
25
30
35
40
45

0 100 200 300 400 500 600

R
un

ni
ng

 ti
m

e 
(s

ec
)

# of centers in the trie

Running time vs. number of centers in the trie

MAT-Bottomup
MAT-BF

MAT-Randomized

Figure 16: Time versus number of centers.

Figure 17 shows that the number of IO’s decreased
as the number of centers increased. This result is con-
sistent with our analysis. When we increase the num-
ber of centers, the compressed trie is more accurate,
and is more likely to produce a good estimation of
the minimum edit distance to a query string, thus giv-
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Figure 17: IO’s versus number of centers.

ing better pruning power which reduces the number of
IO’s. For example, a MAT-tree with the BottomUp
compression required 192 IO’s with 50 centers, while
only 26 IO’s with 400 centers. Similarly, the numbers
of IO’s for the Randomization and BreadthFirst ap-
proaches dropped from 209 and 201 at 50 centers to 73
and 76 with 400 centers.

However, Figure 16 shows that reducing the number
of IO’s does not necessarily reduce the running time.
The reason is that, as the number of centers grows,
the computational complexity for comparing the query
against the automaton increases. For the BottomUp
and BreadthFirst approaches, this effect is offset by the
fact that the centers are placed near the root, which
provide more opportunities for making use of an early
termination strategy [15]. Thus we only saw a slight
running-time increase for the BreadthFirst approach
when the number of centers was 500. The analysis
cannot be used for the Randomization approach, which
does not have centers concentrated at the root. The fi-
nal trie gives fewer opportunities for early termination.
The increase in the IO pruning due to the larger num-
ber of centers is not able to compensate for the increase
in the computational complexity. We see this taking
effect in two instances in Figure 16 when the number
of centers is increased from 50 to 100 and from 300
through to 500.

6.5 Dynamic Maintenance

We conducted experiments on dynamic maintenance
for a MAT-tree, as described in Section 5.2. We evalu-
ated the efficiency of each change operation for a record
(insertion, deletion, and modification), and the effect
on the indexing structure after such operations.

For these experiments we used data set 1 that con-
sists of 100, 000 records. We created a collection C of
N records that were randomly selected from the data
set, and we let N vary from 60, 000 to 80, 000. We
created a MAT-tree for the collection of the records
using the Randomization approach, and the number of
centers was 300. We generated a workload of 1, 000
operations, including insertion of a new record, and
deletion or update of an existing record in the collec-
tion C. For an insertion, we chose one of the remaining

records not in the collection C to insert (into C). For
a deletion, we randomly chose one record in the col-
lection to delete. For an update, we randomly chose
one record in the collection, and performed the update
by adding or subtracting a random number between
1 and 20 to the numeric value. We also introduced a
random number (between 1 and 5) of edit changes to
the string value. We measured the running time for
each operation. The results are shown in Figure 18.

The figure shows that the MAT-tree can be dynami-
cally maintained very efficiently for each operation. For
instance, when the collection had 80, 000 records, the
maintenance of the MAT-tree for an insertion, deletion,
and update only took 28ms, 29ms, and 20ms, respec-
tively. The update maintenance was faster than other
two operations because in our implementation, an up-
date does not cause page splitting and merging, since
we utilized the space in the MAT-tree for the original
record to store the information for the modified record.
The figure also shows the MAT-tree maintenance per-
formance scales very well for different database sizes.
The main reason is that most of the maintenance time
was spent on the disk IO’s during the top-down traver-
sal and the possible bottom-up adjustment of the tree.
Since the height of the tree does not increase much as
the database size increases, the maintenance time does
not increase much.
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Figure 18: Dynamic-maintenance time for a MAT-tree.

Next, we conducted experiments to evaluate how
the search performance of a MAT-tree degrades as we
increase the number of change operations to the tree.
For a collection of records, after a number of change
operations on the MAT-tree, we ran 100 queries on
the collection, and each query has a numeric threshold
δN = 4 and a string threshold δS = 3. We computed
the average search time using the MAT-tree.

Figure 19 shows the average search time after vary-
ing number of change operations (for varying number
of records in the collection). It shows that the quality
of the MAT-tree remained high as the number of op-
erations increased. For example, for the 70, 000-record
collection, the original MAT-tree could answer a search
query in 8.2 seconds. After 2, 000 operations, the re-
sponse time increased to 10.1 seconds only. In other
words, the experiments show that, if there are not
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Figure 19: MAT-tree research response time after dy-
namic maintenance.

many changes to the data records, the MAT-tree can
still achieve a high search performance. If the num-
ber of operations on the records becomes too large and
the search performance of the MAT-tree becomes too
low, it becomes necessary to rebuild the MAT-tree to
ensure its high quality.

Sizes of Indexing Structures: We collected the
sizes of indexing structures for a dataset with 80, 000
records. The sizes (in KB) of B-tree, Q-tree, M-tree,
BM-tree, BQ-tree, and MAT-tree are 1799, 1854, 529,
531, 2124, and 2034, respectively. The results show
that the size of a MAT-tree has the same scale as other
structures. Specifically, the MAT-tree provided up to
14 seconds of saving in access time, while imposing
about 1.6MB space overhead. This overhead is worth-
while as disks are getting cheaper while their capacities
are getting larger.

7 Conclusions

We proposed a methodology that allows approximate
retrieval on combinations of string and/or numeric at-
tributes using edit distance as an approximate match
predicate for strings and numeric distance for numeric
attributes. We instantiated our methodology using two
attributes. Generalizing it to more than two attributes
with mixed (string, numeric) types is also possible.
The approach is based on representing sets of strings
at higher levels of the index structure as tries suit-
ably compressed in a way that reasoning about edit
distance between a query string and a compressed trie
at index nodes is still feasible. We proposed various
techniques to generate the compressed trie and fully
specified the indexing methodology. Our intensive ex-
periments showed the benefits of our proposal when
compared with various alternate strategies.
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