
Discovering Large Dense Subgraphs in Massive Graphs

David Gibson Ravi Kumar Andrew Tomkins

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120
{davgib@us, ravi@almaden, tomkins@almaden}.ibm.com

Abstract

We present a new algorithm for finding large,
dense subgraphs in massive graphs. Our al-
gorithm is based on a recursive application of
fingerprinting via shingles, and is extremely
efficient, capable of handling graphs with tens
of billions of edges on a single machine with
modest resources.

We apply our algorithm to characterize the
large, dense subgraphs of a graph showing
connections between hosts on the World Wide
Web; this graph contains over 50M hosts and
11B edges, gathered from 2.1B web pages. We
measure the distribution of these dense sub-
graphs and their evolution over time. We show
that more than half of these hosts participate
in some dense subgraph found by the anal-
ysis. There are several hundred giant dense
subgraphs of at least ten thousand hosts; two
thousand dense subgraphs at least a thousand
hosts; and almost 64K dense subgraphs of at
least a hundred hosts.

Upon examination, many of the dense sub-
graphs output by our algorithm are link spam,
i.e., websites that attempt to manipulate
search engine rankings through aggressive in-
terlinking to simulate popular content. We
therefore propose dense subgraph extraction
as a useful primitive for spam detection, and
discuss its incorporation into the workflow of
web search engines.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1 Introduction

A canonical challenging problem in the analysis of
large graphs is extraction of dense subgraphs. Many
graphs, such as the World Wide Web, the telephone
call graph, and the global social network graph have
different behaviors locally and globally. Globally, these
graphs are typically sparse, with a constant average
degree. Locally, however, there may be regions that
contain far more than their fair share of links: on the
web, these regions might be communities or even link
spam; in a social network, they might be groups of
friends or to a lesser extent geographic localities.

Thus, dense subgraphs often represent cohesive
groupings of nodes that are the natural focal points
for studying network structure, dynamics, and evo-
lution. Dense subgraph extraction is therefore a key
primitive for any in-depth study of the nature of a
large graph. Currently, there are some tools that in
practice extract small dense subgraphs of a particu-
lar form [24, 23, 15, 22, 21], but at heart these al-
gorithms typically look for very small structures con-
taining on the order of ten nodes. There are no effi-
cient techniques in common usage for discovery of large
dense subgraphs. Yet real-world graphs do contain
locally dense subgraphs whose size is several orders
of magnitude larger than what is handled by existing
techniques; for example, we show collections of tens
of thousands of web sites that link together densely.
Thus, the size of locally dense regions may be highly
variable, and much of this dynamic range is inaccessi-
ble using current techniques.

We propose a new algorithm for this problem based
on recursive stages of fingerprinting the graph, which
over multiple applications turn dense subgraphs of ar-
bitrary size into fingerprints of constant size. This
algorithm is extremely efficient and realizable in the
data stream model augmented with sorting and is ca-
pable of handling graphs with tens of billions of edges
on a single machine with modest resources.

We apply our algorithm to characterize the large,
dense subgraphs of a graph showing connections be-
tween hosts on the World Wide Web; this graph con-

721

tains over 50M hosts and 11B edges, gathered from
2.1B pages. We measure the distribution of these
dense subgraphs and their evolution over time. We
show that more than half of these hosts participate in
some dense subgraph found by the analysis. There are
several hundred giant dense subgraphs of at least ten
thousand hosts; two thousand dense subgraphs at least
a thousand hosts; and almost 64K dense subgraphs of
at least a hundred hosts.

Upon examination, many of the dense subgraphs
output by our algorithm are link spam, i.e., websites
that attempt to manipulate search engine rankings
through aggressive interlinking to simulate popular
content. We therefore propose dense subgraph extrac-
tion as a useful primitive for spam detection, and dis-
cuss how it may be incorporated into the workflow of
a standard web search engine with minimal overhead.

The remainder of the paper proceeds as follows. In
Section 2, we introduce the basic notation and the
background material. In Section 3, we present our
algorithm for discovering large and dense subgraphs
in massive graphs. This algorithm is based on a recur-
sive application of the shingling algorithm. In Section
4, we discuss the results of running this algorithm on a
50M node graph. In Section 5 we discuss the possibil-
ity of using our algorithm to detect link spam. Section
6 contains concluding remarks.

2 Preliminaries

In this section we first provide some background mate-
rial on graphs, communities, and approximate finger-
printing.

2.1 Definitions and notation

A directed graph G = (V,E) consists of a set V of
nodes and a set E of edges, where each edge is an
ordered pair of nodes. The indegree of a node u is
the number of nodes v such that (v, u) ∈ E; here, v
is an inlink of u. The outdegree of u is the number of
nodes v such that (u, v) ∈ E; v is an outlink of u and
the set of outlinks of u is denoted Γ(u). There is a
directed path from u to v in G if there is a sequence of
nodes u = w1, . . . , wk = v such that (wi, wi+1) ∈ E for
1 ≤ i < k. An undirected graph G = (V,E) consists
of a set V of nodes and a set E of edges, where each
edge is an unordered pair of nodes; an undirected path
between pairs of nodes is defined in an obvious manner.
A connected component in an undirected graph is a
subset of nodes such that for every pair of nodes in
the subset, there is an undirected path between the
pair.

2.2 Communities in graphs

A bipartite clique is a pair of subset A,B ⊆ V of nodes
such that (a, b) ∈ E for every a ∈ A and b ∈ B. In-
formally, a dense bipartite subgraph is a pair of subset

A,B ⊆ V of nodes such that (a, b) ∈ E for ‘most’
a ∈ A, b ∈ B; here, ‘most’ parametrizes the density
of the subgraph. A clique in an undirected graph is
a subset A ⊆ V of nodes such that (a, b) ∈ E for ev-
ery a, b ∈ A. Unfortunately, finding bipartite cliques
and dense subgraphs are notoriously hard combinato-
rial problems, even to solve approximately (see, e.g.,
[13]). We therefore resort to heuristics that are simple,
efficiently implementable, and effective.

Early work studied online communities in the con-
text of hypertext and content analysis [7, 25]; web
communities were first studied in [24, 23, 15]. Kumar
et al. [24] defined communities to be dense bipartite
subgraphs. Their hypothesis was that any topically
focused community on the web is likely to contain a
dense bipartite subgraph (the signature) and almost
every occurrence of the signature corresponds to a web
community. Their algorithm was a two-step process—
a careful enumeration and removal of small-sized bi-
partite cliques, followed by an apriori -style [3] enu-
meration algorithm on the residual, hopefully smaller,
graph. Abello et al. [1] consider dense subgraph ex-
traction based on a notion of pruning candidate sets
of nodes, in a model in which the nodes but not the
edges of the graph may be memory-resident. Flake et
al. [15] adopted a more sophisticated definition of a
web community based on network flow and Kumar et
al. [21] use a local search heuristic to find dense bipar-
tite communities with certain special properties. In
presenting our algorithm for finding large dense sub-
graphs, we will discuss the differences in the problem
domain that make existing algorithms ineffective.

2.3 The shingling algorithm

Shingles were introduced in [9], and have since seen
wide usage to estimate the similarity of web pages us-
ing a particular feature extraction scheme based on
overlapping windows of terms (motivating the name
“shingles”); they were also used to detect mirror sites
(see Chakrabarti [11] and Bharat et al. [5]). We will
employ the technique to solve the following problem:
given a subset S of a universe U of elements, gener-
ate a constant-size fingerprint such that two subsets
A and B may be compared by simply comparing their
fingerprints.

A simple and natural measure of the similarity of
two sets is the Jaccard coefficient, defined as the size of
the intersection of the sets divided by the size of their
union: |A ∩ B|/|A ∪ B|. Formally, if π is a random
permutation of the elements in the ordered universe U
from which A and B are drawn, then it can be shown
that (see, e.g., [8])

Pr[π−1(min
a∈A

{π(a)}) = π−1(min
b∈B

{π(b)})] =
|A ∩ B|
|A ∪ B|

.

That is, the probability that the smallest element
of A and B is the same, where smallest is defined by

722

the permutation π, is exactly the similarity of the two
sets according to the Jaccard coefficient. Using this
observation, we compute the fingerprint of A by fix-
ing a constant number c of permutations π1, . . . , πc

of U , and producing a vector whose i-th element is
mina∈A πi(a). The similarity of two sets is then esti-
mated to be the number of positions of their respective
fingerprint vectors that agree.

This formulation is not yet sufficient for our needs;
we require one generalization. The formulation as
given may be viewed as follows: consider every one-
element set contained entirely in A or B, and measure
agreement by the fraction of these one-element subsets
that appear in both sets. Generalizing, we may instead
consider every s-element set contained entirely within
either set, and measure similarity by the fraction of
these s-element subsets that appear in both. This is
identical to measuring the similarity of A and B by
computing the Jaccard coefficient of two sets As and
Bs, where As = {{a1, a2, . . . , as} | ai ∈ A}, and Bs is
defined likewise. The same fingerprinting scheme ap-
plies unchanged to As and Bs. We will refer to each of
the s-element subsets as a shingle, and to the algorithm
that produces the set as an (s, c) shingling algorithm.
By tuning both s and c, we may arrive at an algo-
rithm that accurately distinguishes between sets that
are above or below a certain threshold of similarity;
see Section 3.5 for a discussion.

Fortunately, we need not consider all possible per-
mutations π in our choice of c such permutations; a
more succinct family of min-wise independent permu-
tations will accomplish the task. For more details, see
[9, 8]. In practice, we employ two-universal hash func-
tions, which have been shown to work well.

In the first step of our algorithm, each set will rep-
resent the outlinks of a particular node, and two nodes
will be considered similar if they share many outlinks.
In later stages of the algorithm, we will employ exactly
the same formulation recursively to determine the sim-
ilarity between two shingles in terms of the set of nodes
that contain each shingle. A time and memory effi-
cient (s, c) shingling algorithm for a set {a1, . . . , an} is
as follows:

Algorithm Shingle(a1, . . . , an, s, c)

Let H be a hash function from strings to integers
Let p be a large random prime (say, 32 bits)
Let a1, b1, . . . , ac, bc be random integers in [1 . . . p]
For i = 1 to n do xi = H(“ai”)
For j = 1 to c do

For i = 1 to n do yi = (aj ∗ xi + bj) mod p

Let y′1, . . . , y
′
s be s minimal elements of y

Let zj = H(“y′1 ◦ · · · ◦ y′s”)
Output z1, . . . , zc

3 Algorithm for discovering large
dense subgraphs

In this section we present our algorithm for extract-
ing large dense bipartite subgraphs in massive graphs.
The goal of the algorithm is to enumerate as many
such disjoint subgraphs as possible. As we men-
tioned earlier, this problem has been considered be-
fore [24, 23, 15, 22, 21], so we would prefer to apply
known techniques to our case. Unfortunately, we are
unable to do so for the following reasons. Existing al-
gorithms for identifying dense subgraphs perform well
when the size of the subgraph is manageably small.
The pruning and a priori -based methods in [24, 23],
the network flow approach of [15], and the local search
heuristic of [21] are effective only so long as the size of
the dense subgraph is small, say, a few tens of nodes.
But our goal is to find dense subgraphs that are large:
say, of the order of tens of thousands of nodes. This,
plus the possibility that there could be thousands of
such subgraphs, necessitates new methods for finding
dense subgraphs. Furthermore, our goal is to find as
many of the dense subgraphs as possible or at least
find most of the nodes in these dense subgraphs.

The desirable features of a good algorithm for find-
ing dense subgraphs are that it should:

1. be able to identify large dense subgraphs and in
the worst, be able to identify most of the nodes
in large dense subgraphs,

2. be extremely efficient in terms of running time,

3. preferably be realizable in the data stream model
[4, 20], i.e., use very little main memory and pro-
cess data on the fly with read/writes to secondary
storage, and

4. be scalable.

Below, we describe an algorithm that fulfills these
desiderata.

3.1 A high-level description

Our algorithm seeks clusters of nodes that tend to
link to the same destinations, and proceeds as follows.
First, for each node in the graph, it applies an (s, c)
shingling algorithm to the set of destinations linked-
to from that node, resulting in c shingles per node.
For each distinct shingle created by this process, it
produces a list of all nodes containing that shingle.
We have now succeeded in bringing together the nodes
that share a particular shingle (and therefore a partic-
ular set of s outlinks). In order to begin clustering
nodes together, we must find sets of nodes that jointly
share a sufficiently large number of shingles. In the
next phase, we would like to perform one further level
of analysis, grouping together shingles that tend to oc-
cur on the same nodes, so that we may use these sets

723

of commonly co-occurring shingles as the defining pat-
terns of a dense subgraph. Such an analysis is yet an-
other application of the (s, c) shingling algorithm, this
time to the set of nodes associated with a particular
shingle, and results in bringing together shingles that
have significant overlap in the nodes on which they
occur. If necessary, the sequence of operations may
be repeated for as many levels as required, as shown
in Figure 1. In practice, we will now show that two
levels of this algorithm suffice to convert dense sub-
graphs of arbitrary size (i.e., hundreds or hundreds of
millions of nodes) into small-size fingerprints that can
then be recognized in a straightforward manner. The
particular density threshold captured by the scheme is
determined by the parameters s and c.

Figure 1: Recursive shingling flowchart.

3.2 An example: complete subgraphs

For an extreme example of a dense subgraph, consider
a subgraph consisting of n nodes, each of which has
an edge to every one of the n nodes, i.e., an n-clique
with self-loops. We will walk through the stages of the
algorithm on this subgraph, as represented pictorially
in Figure 2. The discussion below covers nodes vi that
might have an outlink to a node Oj . While all of these
are nodes in the graph, we will adopt the notational
convention that v refers to a node that is being clus-
tered together with other nodes based on its outlinks,
while O refers to an outlink.

Initially, the subgraph consists of n nodes
v1, . . . , vn, each of which contains n outlinks
O1, . . . , On. At this point, the representation of the
subgraph requires quadratic space in n. We apply our
(s, c) shingling algorithm to the outlinks of each node,
creating c shingles of size s. For concreteness, assume
s = 3. Thus, the first shingle for node vi might be
Si,1 = (O4, O7, O22). If a node had slightly different
outlinks, then many of its shingles would be identical
to the shingles of other nodes, but a few of its shin-
gles might differ. To complete the first-level shingling,
we reformat the file to list each distinct shingle along
with all the nodes containing this shingle; we describe
below how to accomplish this reformatting efficiently.

Original: n × n size

v1 : O1, O2, · · · On

v2 : O1, O2, · · · On

· · · · · · · · · · · · · · ·
vn : O1, O2, · · · On

After first-level shingling: c × n size

S1 : v1, v2, · · · vn

S2 : v1, v2, · · · vn

· · · · · · · · · · · · · · ·
Sc : v1, v2, · · · vn

After second-level shingling: c × c size

M1 : S1, S2, · · · Sc

M2 : S1, S2, · · · Sc

· · · · · · · · · · · · · · ·
Mc : S1, S2, · · · Sc

Figure 2: Reduction of data by recursive shingling.

In our clique example, each node contains the exact
same outlinks and thus contains the exact same shin-
gles, so each shingle occurs on all n nodes; we therefore
represent a shingle as simply Sj . This results in the
representation in the middle of the figure, which has
moved from an O(n2) size layout to an O(c · n) size
layout.

The first-level shingles could in some extremal cases
be used to detect dense subgraphs without any further
work. The most conservative approach to doing so is
to cluster all nodes that have identical first-level shin-
gles. In our example of a complete subgraph, this will
successfully return the clique as a cluster. However, as
soon as the clique becomes simply a dense subgraph,
the nodes begin to differ slightly in their shingles, and
the output begins to fragment. On the opposite end
of the spectrum is the most aggressive scheme possible
given the available data: begin with every node in a
separate cluster, and repeatedly merge pairs of clus-
ters A and B as long as the same shingle appears in
some node of A and some node of B. This scheme
may introduce spurious clusters because many sites
share a few popular outlinks, such as microsoft.com
or adobe.com, and consequently share a shingle.

Rather than adopting either of these extreme
schemes, a natural approach is to follow the middle
ground and declare two nodes to belong to a dense
subgraph if and only if they have significant overlap
in their shingles. Fortunately, a recursive application
of our shingling algorithm may be employed to exactly
this purpose; this is the key idea behind our technique.
We apply it in the first level to find groups of nodes
that have significant overlap in their outlinks; we may
apply it again to find groups of shingles that have sig-
nificant overlap in the nodes that contain them.

724

Back to our example of the clique, we now pick
for each distinct first-level shingle Si a set of c “fin-
gerprints,” where each fingerprint now consists of a
small set of s nodes which contain Si. For example,
shingle S1’s first fingerprint might be (H7,H8,H20).
This fingerprint is a second-level shingle, or a meta-
shingle, which we will refer to as Mj . We then refor-
mat as detailed below to find the set of all shingles
that share some meta-shingle; that is, the set of all
shingles which appear jointly on a particular finger-
print set of nodes, resulting in the representation at
the bottom of Figure 2. But observe the data reduc-
tion which has occurred as part of this operation. By
applying the first-level shingling, we moved from the
initial O(n2) representation to a new representation of
size O(c ·n). In applying the second-level shingling, we
again improved our representation size down to O(c2).
So for any graph, any clique of any size will be con-
verted into a set of shingles, whose size is independent
of the size of the clique. The process behaves similarly
for subgraphs above a certain density (dependent on
the count and size of shingles being produced at each
level), giving us small representations of large dense
subgraphs in the original graph.

3.3 The algorithm

We describe the two main components of the
algorithm—the recursive shingling (Section 3.3.1) and
the clustering that we apply once the last round of
shingling terminates (Section 3.3.2).

3.3.1 The recursive shingling step

We now formally describe the two-level recursive shin-
gling algorithm described in the example above. This
algorithm applies an (s1, c1) shingling algorithm first
to the outlinks of each node and then applies an (s2, c2)
shingling algorithm to the first-level shingles. The al-
gorithm proceeds as follows.

Algorithm Shingle2(v1, . . . , vn, s1, c1, s2, c2)
For i = 1 to n do

S1(vi) = Shingle(Γ(vi), c1, s1)
Let S = ∪n

i=1S1(vi)
For s ∈ S do

Let Γ(s) = {v | S1(v) 3 s}
S2(s) = Shingle(Γ(s), c2, s2)

Let T = ∪s∈SS2(s)
For t ∈ T do

Let Γ(t) = {s ∈ S | S2(s) 3 t}
Output 〈t, Γ(t)〉

The above algorithm can easily be realized in the
data stream model, together with a sorting primitive,
as described below. As in the algorithm, let Γ(v) be
the set of outlinks of node v. Assume that the input is
presented in the form of 〈vi,Γ(vi)〉 for every node vi,

i.e., each node appears together with its outlinks (the
adjacency list representation). As the given graph is
read in this form, the c first-level shingles of node vi

may be written out on the disk as c distinct lines of
the form 〈sj , v〉 for each shingle s1, . . . , sc.

These pairs may then be sorted by the first column
using an external sorting algorithm, and then aggre-
gated to produce a file of the form 〈s,Γ(s)〉 containing
for each shingle s the nodes that contain that shingle.
This file has the same format as the original file, so
the same code may be applied to perform the second-
level shingling. The output of the second-level shin-
gling is once again sorted and aggregated to be of the
form 〈t,Γ(t)〉 where t is a second-level shingle and Γ(t)
are all the first-level shingles that share a second-level
shingle.

3.3.2 The clustering step

Finally, we must define a notion of clusters of first-level
shingles. Let S be the set of all first-level shingles; that
is, shingles produced by the application of the (s1, c1)
shingling algorithm to the set of outlinks of a node.
Each such shingle corresponds to a set of s1 outlinks.
Then let T be the set of second-level shingles; that
is, the shingles produced by application of the (s2, c2)
shingling algorithm to the set of nodes corresponding
to a first-level shingle. Each such shingle corresponds
to a set of s2 nodes. We say that two first-level shingles
a, b ∈ S are related if and only if they share a second-
level shingle. Clusters of first-level shingles are then
equivalence classes under this relation. Algorithmi-
cally, we create an undirected graph GS whose nodes
represent the first-level shingles and whose edges repre-
sent the above relation. Clusters of first-level shingles
then correspond to connected components in GS .

To efficiently find connected components in this
graph, we resort to the classical union-find algorithm.
This algorithm maintains a family of sets via a stan-
dard union-find data structure. Initially, the family
contains only singleton sets, each consisting of exactly
one node of the graph. For every edge (u, v), the sets
in the family containing u and v are merged. It is easy
to see that after all the edges are processed, each set in
the family contains the nodes of a connected compo-
nent. In our case, notice that the output of Shingle2
is of a special form—〈t,Γ(t)〉, which means that GS

is a union of cliques, i.e., GS has edges of the form
(s1, s2) for every s1, s2 ∈ Γ(t). Therefore, the con-
nected components algorithm can exploit this property
and work with an implicit representation of the edges
of GS rather than constructing them explicitly; this
represents a massive savings in terms of computational
time and space. Note that the only place where main
memory is used is to store the sets in the family—this
can be done in space linear in the number of nodes
in GS . The rest of the processing can be done in
the data stream model. To reduce space requirements

725

further, we may discard second-level shingles t’s with
|Γ(t)| very small. This compromises the correctness
marginally, but as we argued earlier, nodes in a large
dense subgraph will share several second-level shingles,
and therefore this step will not have any drastic effects
in terms of missing such subgraphs. The algorithm is
described below.

Algorithm CC (t1,Γ(t1), . . . , tm,Γ(tm))
Let VS = ∪m

i=1Γ(ti)
Let C = {{s} | s ∈ VS}
For i = 1 to m do

Merge the sets { Find(s) | s ∈ Γ(ti)} in C
For C ∈ C

Output cluster {s | s ∈ C}

Furthermore, in the case of graphs so large that not
even the list of nodes will fit in main memory, this al-
gorithm may be replaced by a randomized algorithm
in the data stream model augmented with an exter-
nal sort primitive using just logarithmic memory and
a logarithmic number of passes; for details of this data
stream algorithm, see [2]. Thus, finding connected
components is not a bottleneck even if the number
of nodes far exceeds the size of main memory.

3.3.3 Putting it all together

We now present the entire algorithm for detecting
dense subgraphs. Given a graph, we first run the
two-level shingling algorithm Shingle2 and then iden-
tify clusters of first-level shingles using the connected-
components algorithm CC. At the end of this step, we
have sets of first-level shingles that need to be mapped
back to the nodes of the given graph. To do this, we
merge the clusters C of first-level shingles and the out-
put S of the first-level shingle step; this can be ac-
complished by sorting on the first-level shingle. The
algorithm is described below.

Algorithm DenseSubgraph 〈v,Γ(v)〉
Choose c1, s1, c2, s2

Shingle2(〈v,Γ(v)〉, c1, s1, c2, s2)
Let S = 〈s,Γ(s)〉 be first-level shingles
Let 〈t,Γ(t)〉 be second-level shingles
C = CC(〈t,Γ(t)〉)
For C ∈ C do

Output ∪s∈CΓ(s) as a dense subgraph

3.4 Highlights of the algorithm

Our new algorithm has many advantages, especially
scalability and efficiency.

(1) As we illustrated throughout the description of
the algorithm, the entire algorithm has a very efficient
implementation in the data stream model using basic
primitives such as sorting and merging. The number

of passes made over the input and the amount of main
memory used is very small, enabling the algorithm to
handle graphs with tens of billions of edges even on
machines with modest amount of main memory (as
we demonstrate in the experiment).

(2) As we argued in 3.2, the number of second-level
shingles is independent of the size of the dense sub-
graph, especially if its density is high.

(3) As in Figure 1, our algorithm can be extended to
hierarchically decomposing the given graph into dense
structures in the following way. For each of the first-
level shingle clusters, the shingling algorithm can be
applied once more with stringent parameters s and c.
In this manner, a hierarchical decomposition can be
obtained.

(4) The algorithm works to identify both bipartite
and directed cliques and can be trivially extended to
work for undirected graphs as well.

3.5 Discussion

We remark briefly on the theoretical behavior of the
recursive shingling algorithm. For simplicity, consider
an Erdös–Renýı random graph Gn,p. We shall examine
how the first-level shingle performs on this graph for
various values of p. The function

h(s, c, p) = 1 − (1 − ps)c

captures the probability that at least one shingle in
an (s, c) shingle is shared when the outlinks of a node
are shingled; this corresponds to the correctness of the
procedure. Figure 3 shows the effect of this correct-
ness for various values of c and s. Consider two nodes
whose outlinks have a Jaccard similarity coefficient of
p. Looking up p on the x axis of the figure shows for
various different curves representing settings of c and
s the probability that the two nodes will share at least
one shingle, a critical enabler of our algorithm.

Figure 3: Effect of c, s on the correctness of shingles.

726

4 Dense subgraphs in the host graph

In this section we apply the algorithm of Section 3 to
discover large collections of densely-interlinked web-
sites on the World Wide Web. We study the host graph
(e.g, [6]), a directed graph in which nodes are hosts
and edges are present from a source host to a destina-
tion host whenever a page of the source host links to
a page on the destination host. More formally, host t
(the destination) is an outlink of host s (the source),
i.e., t ∈ Γ(s), if some page hosted on host s contains a
hyperlink to some page hosted on t. Variants of this
model could also incorporate the multiplicity of links
from s to t but we do not consider these in this paper.

4.1 Data set

IBM’s WebFountain project [18, 12] performs large-
scale analysis of unstructured information, including
the web. We make use of the WebFountain crawl,
which contains over 2B pages and 50M sites. Through-
out this analysis, we use the word site to mean all the
pages that are retrieved from a particular hostname.1

WebFountain includes a site store designed to ag-
gregate information across all the pages of a site. It
is rebuilt at regular intervals, using the most recent
data from the crawler to update and replace the set of
pages which it covers. It consists of a record for each
site which is completely precomputed so that all the
data is available instantaneously at query time. The
results of each build have been archived over the pe-
riod of June to October 2004, so that we can monitor
the changes that have occurred in web content and
structure over this interval. The site store grew from
40 million sites in June 2004 to 55 million in October.
This growth reflects both natural growth in the web
and increased coverage of our crawler. Further details
on the architecture of the site store are discussed in
[17, 16].

Note that the update process does not currently
report 404s or any other form of site and page dis-
appearance to the site store. Thus the data set that
we have gathered documents the graph as of the last
time each page was successfully crawled: new copies of
pages replace their older version, but pages that have
disappeared still contribute edges to the graph.

For our experiments, we focus on the link data in
the site store: for each site we keep all the other sites
referenced, along with a count of the number of links
to each site. This forms a labeled directed host graph.
This host graph consists of approximately 50M nodes,
representing about 2.1B underlying web pages. There

1This definition of site is not completely accurate: of-
ten sites run by large entities will serve a coherent set of
content from several hostnames, and the same hostname
may also serve content from several separate and indepen-
dent entities. The single hostname per site rule, however,
allows us to avoid the error-prone detection of such cases
and works correctly for a large majority of sites.

are around 11B edges, implying a mean outdegree of
around 220.

4.2 Results

The first operation we performed was a two level
(4, 16) shingling, whose goal was to pull together hosts
with a relatively large fraction of outhost overlap.

The first-level shingling resulted in 17G of output
(5.5G compressed) containing 275M distinct first-level
shingles, and 420M host occurrences. The number of
hosts per shingle averaged between one and two, but
included almost one thousand giant shingles contain-
ing in excess of ten thousand hosts.

The second-level shingling of this file produced a
1.7G result (690M compressed) containing 60M dis-
tinct second-level shingles, and 98M total occurrences
of first-level shingles. As described in Figure 2, a clique
of size n produces c shingles of size n at the first level,
but only c shingles of size c at the second level. Large
shingles at the second level are instead the result of
large semi-dense graphs with random linking patterns.
In fact, the 60M second-level shingles contain no shin-
gle that corresponds to more than one hundred first-
level shingles, and very few shingles whose size is larger
than c = 16. For each shingle size between five and
sixteen, we see between 200K and 400K such shingles.
Once we reach size 17, we see fewer than 3000 such
shingles, and fewer than 1500 shingles that are larger
than 17. Thus, the second-level shingling has done
an effective job of producing an essentially constant-
degree graph for processing.

At this point, the connected components algorithm
produced 2.8M components whose number of first-level
shingles is shown in the histogram of Figure 4.

Figure 4: Histogram of cluster sizes in both hosts and
first-level shingles, after connected components com-
pletes on second-level (4, 16) shingles.

727

Expanding first-level shingles back to their hosts
resulted in (an average of) 2.5 shingles getting mapped
to (an average of) 24 hosts. The component sizes are
shown overlaid in Figure 4.

We turned next to a more aggressive (3, 90) shin-
gling algorithm; this algorithm runs slower than the
(4, 16) shingling algorithm. As Figure 3 shows, these
values provide a tighter separation and capture hosts
with a lower fraction of overlap, down to about 25%
with 95% accuracy. The first-level shingling resulted
in 100G of output (30G compressed) containing 957M
distinct shingles and 2.5B host occurrences. All sub-
sequent recursive steps were performed using a (4, 16)
shingling algorithm.

The second-level shingling resulted in 24G (8.7G
compressed) of output containing 1B distinct second-
level shingles, and 1.2B total occurrences of first-level
shingles. Connected components on this set resulted
in a giant component of 1.8M shingles, showing insuf-
ficient convergence at the second level.

We performed a third-level shingling, which re-
sulted in 16G of data (5.8G compressed), 700M dis-
tinct third-level shingles, and 750M occurrences of
second-level shingles. Let the “size” of a shingle dur-
ing a particular operation be the number of occur-
rences of that shingle, so the size of a first-level shin-
gle is the number of hosts for which the shingle is
present, and so forth for higher-level shingles. Fig-
ure 5 shows histograms reporting how many shingles
of each size appear in the first-, second-, and third-
level shinglings of the (3, 90) shingle dataset. As the
figure shows, the first-level shingling contains many
enormous shingles, some in excess of 100K hosts. How-
ever, a key property of recursive shingling now comes
into play. The second-level shingles all have size less
than 100, although there are a great many of them.
There is nonetheless a giant component in the re-
sulting constant-degree graph. The third-level shin-
gles all have size at most 10, and the connected com-
ponents computation on this graph terminated with
110M of compressed output and does not contain a gi-
ant component. The resulting components of second-
level shingles were mapped back to first-level shingles,
and then to hosts. The histograms for the number
of hosts in each component of the final output of the
second-level and third-level connected component op-
erations are shown in Figure 6. The sizes of host clus-
ters for the third-level shingles show a peak at around
42 hosts. This peak comes about due to the filtering
of small-outdegree shingles described in Section 3.3.1.
We filtered first-level shingles with outdegree less than
six. Thus, the outdegree of each first-level shingle is
manually restricted to be at least six. The second-level
shingles are processed using a (4, 16) shingling, and so
must have outdegree at least four to generate a third-
level shingle. Thus, even a component of size 1 will
map back to four second-level shingles, and 24 first-

level shingles. Unless there is duplication among the
corresponding hosts, clusters of size less than 24 will
therefore not be found by these settings. Nonetheless,
this filtering for efficiency does not impact the discov-
ery of larger communities of fifty or more hosts, and
these larger clusters result in the smooth tail of the
curve in the figure.

Figure 5: Histogram of cluster sizes in first, second,
and third levels for (3, 90) shingles.

Figure 6: Histogram of cluster sizes in second and third
level connected components for the (3, 90) shingles.

4.3 Correctness of extracted subgraphs

We considered a random sample of one hundred dense
subgraphs output from the algorithm, and manually
evaluated whether the dense interlinking was spurious
(as, for example, if several sites linked to Adobe, Mi-
crosoft, and Google). Our conclusion is that, after the
second-level shingling, every subgraph output by the

728

algorithm represents a set of “truly” interlinked sites,
according to human judgment.

4.4 Temporal evolution of dense subgraphs

In this section, we perform a first-order evaluation into
the growth patterns of dense subgraphs, and show
that, in aggregate, growth is more variable than the
growth of individual web sites, supporting the intu-
ition that growth in the graph is likely to be focused
on particular subgraphs; for example, subgraphs rep-
resenting communities that are “hot.”

We begin with a baseline study of the growth of
individual sites. While the outdegree of a site is easy
to measure, it is under the control of a single entity
and does not accurately track the popularity of a site
in the graph at large. Instead, we study the indegree
of a site, which is an emergent property of the graph,
and is known to be a more robust feature (see, e.g.,
[10]).

We generate samples of several thousand sites di-
vided into the following seven categories: first, hosts
where there were no inlinks in June, but some in Oc-
tober; second, hosts where the number of inlinks was 5
to 9 in June; third, hosts where the number of inlinks
grew more than tenfold over the interval; and fourth
through seventh, hosts where the number of inlinks
was exactly 10, 100, 1000, and 10000 in June.

Figure 7 shows the number of inlinks to 1400 sites
drawn randomly from these seven categories, from the
period from 6/2004 to 9/2004. A typical site grows
by a factor of about 1.1 in the interval from June to
September. The number of inlinks in this plot are
taken to be the number of unique inlinking IP ad-
dresses, in order to minimize artifacts in the growth
measurement due to collections of spam sites hosted
from the same address.

Figure 7: Growth rates of number of inlinking IPs to
1400 sites chosen from a distribution of various site
types.

The inlink growth curves are surprisingly smooth
and consistent. As this sample is broad in its coverage,
two conclusions may be drawn from it: many sites do
not grow at all and the initial growth of sites is very
small.

Using this information as a baseline, we proceed
to analyze the dense subgraphs produced above. We
produced a random sample of one hundred dense sub-
graphs. Each such subgraph is characterized by a set
of nodes which share a significant fraction of outlinks.
We extracted the center-set of those subgraphs; specif-
ically, the set of up to eight sites that have the largest
number of inlinks within the subgraph, excluding sites
that are linked-to from more than one subgraph. We
now choose a random sample of four hundred such cen-
ters in order to evaluate their growth. The results are
shown in Figure 8. The plot shows the rate of growth
over time of the number of hosts that link to any node
of the center-set. Each short line segment plots the
number of inlinks over the time interval from June to
October. The line segments are arranged in arbitrary
positions along the x axis, and colored arbitrarily, in
order to convey four hundred distinct growth patterns
in a single image; the x axis thus does not represent
absolute time.

The curves show dramatically that, while many
sites display little variation in the y axis, there are also
many sites that grow dramatically during the three
months of our study. In fact, the curves that show sig-
nificant motion in the y axis typically do so in one or
sometimes two time periods. An examination of the
sites themselves shows that they are typically rapidly
growing spam link farms.

Figure 8: Growth of center-sets over eight timesteps.

Figure 9 summarizes the rates of growth and shrink-
age in the above plot, overlaid against the growth
and shrinkage rates for individual web sites. The left-
hand group of ten data points in the plot represents
sites or center-sets that have shrunk; each point is a

729

decile, with the rightmost of the ten points represent-
ing shrinking by 10% while the leftmost represents
shrinking by 100%. The right-hand points represent
growth, with the first point representing growth of 10%
and the rightmost point representing growth of 100%
or more. The sites chosen in the site growth curve are
chosen uniformly from our sample sites whose size in
June is 10, 100, 1k, and 10k pages. Each of the four
categories taken individually shows a similar curve;
we have coalesced them for clarity of presentation.
Overall, center-sets are seen to show significantly more
variation in growth and shrinkage than random sites.
Dense subgraphs, which have been known to repre-
sent good target areas for mining topical information
from the graph (see, e.g., [23]), thus also represent fo-
cused areas of change in the graph. This suggests an
interesting direction for future work: is it possible to
understand the nature of this change with respect to
a particular subgraph, and can such an analysis tell
us important properties such as whether the subgraph
represents link spam?

Figure 9: Summary of growth rates for sites versus
center-sets.

5 On detecting link spam

Link spam refers to websites that attempt to manip-
ulate search engine rankings through aggressive in-
terlinking to simulate popular content. While mea-
surements are difficult, it is generally believed that a
nontrivial fraction of the web is spam of one form or
another; the Search Engine Optimization community
typically reports a number from 25% to 40%, while
Fetterly et al. [14] have reported 5%. These mea-
surements differ radically based on various definitions
of spam and data collection methodologies, but it is
widely acknowledged that link spam is a large and
growing problem. These sites leach valuable band-
width and computational resources from crawlers, bur-

den indexers with additional storage and computa-
tional requirements, and have significant negative im-
pact on the ability of users to find content they seek. It
is widely acknowledged (see, e.g., [19]) that link spam
is one of the most important challenges to web search
engines.

In the course of performing the experiment de-
scribed above, we were struck by the extent to which
the resulting large, dense subgraphs seemed biased to-
wards link spam, compared to the underlying dataset.
In order to evaluate this theory, we considered one
hundred sites chosen as follows. First, we randomly
selected one hundred nodes that participate in a dense
subgraph as output by a two-level (4, 16) shingling al-
gorithm; the algorithm has thus detected that each
of these nodes shares a significant fraction of outlinks
with various other nodes. Next, for each node v drawn
from these hundred nodes, we considered every out-
link of v, and removed those were also linked-to from
a different dense subgraph of the analysis. We ranked
the remaining nodes by the number of inlinks from
the dense subgraph containing v. We selected the top
eight such nodes, and chose one at random for eval-
uation. We evaluated these 100 sites, and discovered
that 88% were link spam. Thus, most of the large
dense subgraphs of the host graph are actually link
spam, and detection of dense subgraphs represents a
potential approach to addressing part of the link spam
problem, with the following desirable properties:

• Our algorithm operates at the level of web sites
rather than individual pages, matching the gran-
ularity of the vast majority of link spam.

• Our algorithm is efficient, and we show below that
it may readily be incorporated into the workflow
of a standard search engine.

• Approaches based on dense subgraph identifica-
tion force spammers to spend more time and effort
constructing dense subgraphs that more closely
mimic organic growth; this additional cost reduces
the economic motivation for spam creation.

Once dense subgraphs have been extracted, there
are a number of natural directions of future research
for making use of them in link spam analysis, based on
statistical tests that could be performed to determine
whether two sites are jointly operated link spammers.
Examples include: Do the sites share a disproportion-
ate number of outlinks? Do the sites update at the
same time or add links to the same destination at the
same time? Do inlinks to the two sites often arrive
at the same time? Do the sites contain identical tem-
plates or similar content shingles? Our algorithm ad-
dress only the first question above: do the two sites
share more outlinks than they “should”.

730

5.1 Incorporating dense subgraph extraction
into search engines.

Large, dense subgraphs are of interest to search en-
gines for several reasons, including link spam, but also
more positive motivations such as identifying densely-
linked high-quality communities which may be em-
ployed to answer certain types of queries more effec-
tively. We speak briefly to the architectural changes
to implement our subgraph detection algorithm in the
architecture of a typical search engine. We will assume
in this discussion that a two-level recursive shingling
followed by a connected component algorithm will suf-
fice.

Observe that large dense subgraphs may be ex-
tracted without aggregating the host graph, but that
the local graph corresponding to a single crawl node
must be dumped. We assume that the outlinks
for each host crawled by a certain node have been
dumped. The first step, then, is to perform first-level
shingling of the outlinks of each host. This operation
requires simply that c heaps are maintained, each con-
taining s elements, and each new element is hashed ac-
cording to the c different hash functions and inserted
into each of the heaps. This requires very little mem-
ory. After the site has been scanned in this manner,
the outhosts in each heap can be dumped and hashed
together to form the c output shingles for the host, and
c records of the form 〈host, shingle〉 can be dumped to
a large file. This file should now be aggregated across
all the nodes of the crawler, and sorted by shingle. The
200-degree host graph need never be shipped, just the
c shingle values per host.

Once the sort completes, the hosts corresponding
to a certain first-level shingle may be aggregated. The
resulting file can now be processed in exactly the same
manner, as it consists of a shingle followed by a num-
ber of outhosts. In our implementation, the same code
is used to perform shingling at all levels, from the host
graph onwards. After the second-level shingling has
been performed, each line of the resulting file will con-
sist of a second-level shingle followed by a reasonably
small number of first-level shingles. The connected
component operation can now the run in streaming
mode in order to group together all the first-level shin-
gles that share at least one second-level shingle. By
sorting these by shingle, and likewise sorting the origi-
nal dump file by shingle, the hosts can be reintroduced
into each component. This completes the operation,
and the resulting large dense subgraphs may be pro-
cessed as necessary. No step of this operation requires
more memory than is available on a single reasonable
machine.

6 Conclusions

We have presented a new algorithm for detecting large,
dense subgraphs in massive graphs. Our algorithm

is based on a recursive application of shingling fol-
lowed by a final clustering step. Since the basic steps
can be implemented in the data stream model, our
algorithm is extremely efficient and scalable: it can
handle graphs with billions of edges, while requiring
only modest amounts of main memory. We have ap-
plied this algorithm to detect large, dense subgraphs
in the host graph of the world wide web, containing
50M nodes and 11B edges, and found dense subgraphs
containing order of tens of thousands of hosts. As far
as we know, this is the first web-scale graph analysis
scheme capable of detecting dense subgraphs of this
size with limited resources.

We have analyzed the resulting subgraphs, and de-
termined that many results from link spam. Our al-
gorithms thus generate a useful feature that may be
employed in the battle against link spam. We show
that our subgraph extraction algorithm may be imple-
mented into the workflow of a web search engine with
minimal overhead. Future work includes comparing
the performance of our algorithm to others, including
the peeling algorithm of [1].

References

[1] J. Abello, M. G. C. Resende, and S. Sudarsky.
Massive quasi-clique detection. In Proc. 5th Latin
American Symposium on Theoretical Informatics,
pages 598–612, 2002.

[2] G. Aggarwal, M. Datar, S. Rajagopalan, and
M. Ruhl. On the streaming model augmented
with a sorting primitive. In Proc. 45th IEEE
Annual Foundations of Computer Science, pages
540–549, 2004.

[3] R. Agrawal and R. Srikant. Fast algorithms
for mining association rules in large databases.
In Proc. 20th International Conference on Very
Large Data Bases, pages 487–499, 1994.

[4] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency mo-
ments. Journal of Computer and System Sciences,
58(1):137–147, 1999.

[5] K. Bharat, A. Broder, J. Dean, and M. R. Hen-
zinger. A comparison of techniques to find mir-
rored hosts on the WWW. Journal of the Ameri-
can Society for Information Science, 51(12):1114–
1122, 2000.

[6] K. Bharat, B.-W. Chang, M. R. Henzinger, and
M. Ruhl. Who links to whom: Mining linkage
between web sites. In Proc. 2001 IEEE Interna-
tional Conference on Data Mining, pages 51–58,
2001.

[7] R. A. Botafogo and B. Schneiderman. Identifying
aggregates in hypertext structures. In Proc. 3rd
Conference on Hypertext, pages 63–74, 1991.

731

[8] A. Broder, M. Charikar, A. Frieze, and
M. Mitzenmacher. Min-wise independent permu-
tations. Journal of Computer and System Sci-
ences, 60:630–659, 2000.

[9] A. Z. Broder, S. Glassman, M. Manasse,
and G. Zweig. Syntactic clustering of the
web. WWW6/Computer Networks, 29(8-
13):1157–1166, 1997.

[10] A. Z. Broder, R. Kumar, F. Maghoul, P. Ragha-
van, S. Rajagopalan, R. Stata, A. Tomkins,
and J. Wiener. Graph structure in the web.
WWW9/Computer Networks, 33(1–6):309–320,
2000.

[11] S. Chakrabarti. Mining the Web: Discovering
Knowledge from Hypertext Data. Morgan Kauf-
mann, 2002.

[12] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha,
A. Jhingran, T. Kanungo, S. Rajagopalan,
A. Tomkins, J. Tomlin, and J. Y. Zien. Sem-
tag and seeker: Bootstrapping the semantic web
via automated semantic annotation. In Proc. 12th
International World Wide Web Conference, pages
178–186, 2003.

[13] U. Feige, D. Peleg, and G. Kortsarz. The dense k-
subgraph problem. Algorithmica, 29(3):410–421,
2001.

[14] D. Fetterly, M. Manasse, and M. Najork. Spam,
damn spam, and statistics: Using statistical anal-
ysis to locate spam web pages. In 7th Inter-
national Workshop on the Web and Databases,
pages 1–6, 2004.

[15] G. W. Flake, S. Lawrence, and C. L. Giles. Effi-
cient identification of web communities. In Proc.
6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
150–160, 2000.

[16] D. Gibson. The site browser: Catalyzing improve-
ments in hypertext organization. In Proc. 15th
ACM Conference on Hypertext and Hypermedia,
pages 68–76, 2004.

[17] D. Gibson. Surfing the web by site. In Proc.
13th International World Wide Web Conference
(Poster), page 496, 2004.

[18] D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pat-
tanayak, A. Tomkins, and J. Zien. How to build a
webfountain: An architecture for very large-scale
text analytics. IBM Systems Journal, 43(1):64–
77, 2004.

[19] M. Henzinger, R. Motwani, and C. Silverstein.
Challenges in web search engines. In Proc. 18th
International Joint Conference on Artificial In-
telligence, pages 1573–1579, 2003.

[20] M. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. In DIMACS series
in Discrete Mathematics and Theoretical Com-
puter Science, volume 50, pages 107–118, 1999.

[21] R. Kumar, U. Mahadevan, and D. Sivakumar.
A graph-theoretic approach to extract storylines
from search results. In Proc. 10th ACM SIGKDD
International Conference on Knowledge Discov-
ery and Data Mining, pages 216–225, 2004.

[22] R. Kumar, J. Novak, P. Raghavan, and
A. Tomkins. On the bursty evolution of blogspace.
In Proc. 12th International World Wide Web
Conference, pages 568–576, 2003.

[23] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Extracting large scale knowledge
bases from the web. In Proc. 27th International
Conference on Very Large Data Bases, pages 639–
650, 1999.

[24] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Trawling the Web for emerg-
ing cyber-communities. WWW8/Computer Net-
works, 31(11–16):1481–1493, 1999.

[25] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s
ear: Extracting usable structures from the web.
In Proc. ACM Conference on Human Factors in
Computing Systems, pages 118–125, 1996.

732

