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Abstract 
This paper addresses the efficient processing of 
top-k queries in wide-area distributed data 
repositories where the index lists for the attribute 
values (or text terms) of a query are distributed 
across a number of data peers and the 
computational costs include network latency, 
bandwidth consumption, and local peer work. 
We present KLEE, a novel algorithmic 
framework for distributed top-k queries, 
designed for high performance and flexibility. 
KLEE makes a strong case for approximate top-k 
algorithms over widely distributed data sources. 
It shows how great gains in efficiency can be 
enjoyed at low result-quality penalties. Further, 
KLEE affords the query-initiating peer the 
flexibility to trade-off result quality and expected 
performance and to trade-off the number of 
communication phases engaged during query 
execution versus network bandwidth 
performance. We have implemented KLEE and 
related algorithms and conducted a 
comprehensive performance evaluation. Our 
evaluation employed real-world and synthetic 
large, web-data collections, and query 
benchmarks. Our experimental results show that 
KLEE can achieve major performance gains in 
terms of network bandwidth, query response 
times, and much lighter peer loads, all with small 
errors in result precision and other result-quality 
measures. 

 
1. Introduction 
1.1   Motivation 
Top-k query processing has received much attention in a 
variety of settings such as similarity search on multimedia 
data [CGM04, NR99, Fa99, GKB00, Bey99, Na01, 

deV02], ranked retrieval on text and semi-structured 
documents in digital libraries and on the Web [AKM01, 
LS03, TWS04, Kau04, Ba03, So01, PZS96, Yu01], 
spatial data analysis [BBK01, CP02, HS03], network and 
stream monitoring [BO03, Kou04, CW04] collaborative 
recommendation and preference queries on e-commerce 
product catalogs [YPM03, MGB04, BGM02, GKB01, 
CH02], and ranking of SQL-style query results on 
structured data sources in general [Ag03, Ch04, BCG02]. 
In terms of efficiency, the most successful approaches are 
based on the family of threshold algorithms (TA) 
originally developed by [FLN03, GKB00, NR99]. These 
techniques are fairly well understood for centralized data 
management, but much less explored for distributed 
systems such as peer-to-peer (P2P) federations [Hue05] or 
sensor networks. For example, building a P2P Web search 
engine where thousands of nodes collaborate to provide 
Google functionality in a decentralized and self-
organizing manner would be a great application for 
distributed top-k query processing. 

In this paper we assume that index lists for text terms 
or data attributes are distributed across peers. Index lists 
are crucial for a TA-style top-k algorithm; in their 
distributed processing we are judicious about the resulting 
communication costs: a) network latency incurred by 
message rounds and b) network bandwidth consumption 
incurred by the data exchange among the peers that 
collaborate on behalf of a given query. Moreover, to limit 
the local processing costs of each peer, we consider TA-
sorted variants (aka. NRA) [FLN03, GKB01] that 
disallow random accesses to index list entries and rather 
limit themselves to sorted accesses, which are 20 times 
faster for large, disk-resident index lists. We also consider 
applying probabilistic approximations to the true top-k 
result, using techniques like the ones in [TWS04]. Such 
relaxations are well justified for most applications of top-
k queries, where both the underlying score functions and 
the result interpretation by the user have a heuristic nature 
anyway. In wide-area P2P systems, approximation 
techniques are even more appropriate as we face 
significant tradeoffs between execution cost and search 
result quality. 

1.2   Problem Statement 
We consider a distributed system with N peers, Pj, 
j=1,…,N, that are connected, e.g., by a distributed hash 
table or some overlay network. Data items are either 
documents such as Web pages or structured data items 
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such as movie descriptions. Each data item has associated 
with it a set of descriptors, text terms or attribute values, 
and there is a precomputed score for each pair of data 
item and descriptor. The inverted index list for one 
descriptor is the list of data items in which the descriptor 
appears sorted in descending order of scores. These index 
lists are the distribution granularity of the distributed 
system. Each index list is assigned to one peer (or, if we 
wish to replicate it, to multiple peers). 

In the following we use only IR-style terminology, 
speaking of “terms” and “documents”, for simplicity. 
Each peer Pj stores one index list, Ij(t), over a term t. Ij(t) 
consists of a number of  (docID, score) pairs, where score 
is a real number in (0, 1] reflecting the significance of the 
document with docID for term t. Each index list is 
assumed to be sorted in descending order according to 
score. In general, score(docID) reflects the score 
associated with docID in an index list, e.g., a tf*idf-style 
(term_frequency*inverse_document_frequency) or 
language-model-based measure derived from term 
frequency statistics.  

A query, q(T, k),  initiated at a peer Pinit, consists of a 
nonempty set of terms, T = {t1, t2,… tt}, and an integer k. 
Assuming the existence of a set of, say m, peers having 
the most relevant index lists for the terms in T, with m≤t, 
our task is to devise efficient methods for  Pinit to access 
these distributed index lists at the m peers, so as to 
produce the list of (the IDs of) the top-k documents for 
the term set T. The top-k result is the sorted list in 
descending order of TotalScore which consists of pairs 
(docID, TotalScore), where TotalScore for a document 
with ID docID is a monotonic aggregation of the scores of 
this document in all m index lists. For the sake of 
concreteness, we will use summation for score 
aggregation, but weighted sums and other monotonic 
functions are supported, too. In case an index list does not 
contain a particular docID, its score for docID is set to 
zero, when calculating its TotalScore. Note that Pinit  
serves as a coordinator only for the given query; different 
queries are usually coordinated by different peers. 

A naïve solution would be to have all m cohort peers 
send the complete index lists to Pinit and then execute a 
centralized TA-style method on the copied lists at Pinit. 
This approach is unacceptable in a P2P system for its 
waste of network bandwidth resulting from transferring 
complete index lists.  

An alternative approach would be to execute TA at 
Pinit and access the remote index lists one entry at a time 
as needed. This method is equally undesirable for it incurs 
many small messages and needs a number of message 
rounds that is equal to the maximum index-scan depth 
among the participating peers. Even when messages are 
batched (e.g., with 100 successive index entries in a single 
message), the total latency of many message rounds 
renders this approach unattractive. 

As recently shown by [CW04], a good network-cost-
conscious algorithm should ensure that distributed top-k 
algorithms terminate within a fixed, small number of 
phases. In each phase Pinit, acting as a coordinator, 

receives information from the peers’ index lists and then 
tries to intelligently estimate whether it has enough 
information to compute a high quality approximation of 
the top-k list and stop the process as early as possible. The 
number of phases should ideally be constant, to guarantee 
acceptable latency, while requiring the cohort peers to 
send only as little as possible information, aiming to 
minimize network bandwidth consumption. To this end 
the coordinator needs to address two major issues:  

1) Missing scores are an issue when document IDs are 
included in the responses of some peers and not in the 
responses of others. This complicates the estimation of the 
total scores for these documents, which in turn makes it 
difficult to prune top-k candidates early or at least to 
produce a high-quality top-k approximation.  

2) Missing documents are an issue in the coordinator’s 
incomplete view of the documents that are candidates for 
the top-k result. It is difficult for the coordinator to learn 
about documents with relatively low scores (and deeper 
positions) in the index lists of all peers; such documents 
may nevertheless be good candidates for the top-k result if 
their total score, summed up over all index lists, is high.  

1.3   Contributions 
This paper presents a novel family of algorithms for 
distributed top-k query processing, coined KLEE. The 
name of the algorithm refers to the plant known as clover 
in English: KLEE uses three or, optionally for additional 
optimization, four algorithmic steps.  

The most relevant prior work [CW04] provided a 
distributed top-k algorithm with a small, fixed number of 
(only three) communication phases, ensuring small query 
response times. We also adopt the requirement for a small 
number of communication phases. However, KLEE goes 
far beyond. The salient features and novel contributions of 
KLEE are the following:  

• KLEE comes with two flavors, one involving only 
two and one involving three communication phases. 
It recognizes that the number of communication 
phases is only one aspect of guaranteeing short 
response times, which, in turn, is only one aspect of 
overall efficiency. In particular, as limited network 
and IO bandwidth appear to be key contributors to 
response times, KLEE ensures that significantly 
smaller messages are exchanged and that random IOs 
at participating peers are avoided, resulting in strong 
gains in response time and network bandwidth and 
lighter peer loads compared to TPUT. 

• KLEE is the first to make a strong case for 
approximate top-k algorithms for wide-area networks, 
showing how significant performance benefits can be 
enjoyed, at only small penalties in result quality. 

• KLEE provides a flexible framework for top-k 
algorithms, allowing for trading-off efficiency versus 
result quality and bandwidth savings versus the 
number of communication phases. 

• We have implemented KLEE and a number of 
competing algorithms and conducted comprehensive 
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experimental performance evaluation using real-
world and synthetic data, which shows  the consistent 
superiority of KLEE over its competitors. 

• KLEE is equipped with various fine-tuning 
parameters and we provide a discussion of how these 
can be automatically adjusted to underlying data and 
system characteristics. 

2. Related Work 
Among the ample work on top-k query processing (see 
the references in Section 1.1), the TA family of 
algorithms for monotonic score aggregation [FLN03, 
GBK00, NR99] stands out as an extremely efficient and 
highly versatile method. The current paper builds on the 
TA-sorted (aka. NRA) variant which processes the 
(docID, score) entries of the relevant index lists in 
descending order of score values, using a simple round-
robin scheduling strategy and making only sequential 
accesses on the index lists. TA-sorted maintains a priority 
queue of candidates and a current set of top-k results, both 
in memory. The algorithm maintains with each candidate 
or current top-k document d a score interval, with a lower 
bound worstscore(d) and an upper bound bestscore(d) for 
the true global score of d. The worstscore is the sum of all 
local scores that have been observed for d during the 
index scans. The bestscore is the sum of the worstscore 
and the last score values seen in all those lists where d has 
not yet been encountered. We denote the latter values by 
high(i) for the ith index list; they are upper bounds for the 
best possible score in the still unvisited tails of the index 
lists. The current top-k are those documents with the k 
highest worstscores. A candidate d for which bestscore(d) 
< topKscore can be safely dismissed, where topKscore 
denotes the worstscore of the rank-k document in the 
current top-k. The algorithm terminates when the 
candidate queue is empty (and a virtual document that has 
not yet been seen in any index list and has a bestscore = 
Σi=1..m high(i) can not qualify for the top-k either). 

For approximating a top-k result with low error 
probability [TWS04], the conservative bestscores, with 
high(i) values assumed for unknown scores, can be 
substituted by quantiles of the score distribution in the 
unvisited tails of the index lists. Technically, this amounts 
to estimating the convolution of the unknown scores of a 
candidate. A candidate d can be dismissed if the 
probability that its bestscore can still exceed the 
topKscore value drops below some threshold: 
P[worstscore(d) + Σi S(i) > topKscore] < ε, where the 
S(i) are random variables for unknown scores and the sum 
ranges over all i in which d has not yet been encountered. 

The first distributed TA-style algorithm has been 
presented in [BGM02, MGB04]. The emphasis of that 
work was on top-k queries over Internet data sources for 
recommendation services (e.g., restaurant ratings, street 
finders). Because of functional limitations and specific 
costs of data sources, the approach used a hybrid 
algorithm that allowed both sorted and random access but 
tried to avoid random accesses. Scheduling strategies for 
random accesses to resolve expensive predicates were 

addressed also in [CH02]. In our widely distributed 
setting, none of these scheduling methods are relevant for 
they still incur an unbounded number of message rounds. 

The method in [Su03] addresses P2P-style distributed 
top-k queries but considers only the case of two index 
lists distributed over two peers. Its key idea is to allow the 
two cohort peers to directly exchange score and candidate 
information rather than communicating only via the query 
initiator. Unfortunately, it is unclear and left as an open 
issue how to generalize to more than two peers. 

The recent work by [Ba05] addresses the optimization 
of communication costs in P2P networks. However, the 
emphasis is on appropriate topologies for overlay 
networks. The paper develops efficient routing methods 
among super-peers in a hypercube topology. 

The TPUT algorithm by [CW04] is closest to our 
KLEE approach; their architectural goal of a fixed, small 
number of communication phases has also influenced 
KLEE, but our design philosophy is broader in a number 
of dimensions. TPUT executes TA in three phases: 1) 
fetch the k best (DocID, Score) entries from each cohort 
peer and compute the topKscore using zero-score values 
for all missing scores; 2) ask each of the m cohort peers 
for entries with Score > topKscore / m, then compute a 
better topKscore value and eliminate candidates whose 
bestscore is not higher than topKscore; 3) fetch the still 
missing scores for the remaining candidates, asking the 
cohorts to do random accesses.  

3. Key Ideas and Data Structures 
The proposed approach is based on having a per-query 
coordinator peer and a set of cohort peers. In our setting, 
the coordinating peer is the peer where the query was 
initiated, Pinit. The cohort peers, are the peers storing the 
index lists, based on which the document scores will be 
computed. The algorithm is structured to proceed in a 
number of phases, with each phase consisting of a round-
trip communication between the coordinator and the 
cohorts. In general, in each phase, the coordinator 
requests and receives from each peer a portion of the 
peer’s local index information, which permits the 
coordinator to run a top-k algorithm (such as the TA 
algorithm or variants) based on the collected information 
about the peers’ index lists. 

3.1   The HistogramBlooms Structure 
In KLEE, each peer maintains a set of statistical metadata 
describing its index list. In particular, histogram-based 
information is maintained to describe the distribution of 
scores in the index list. The range of possible score values 
cover the range (0, 1]. For simplicity, we assume that peer 
histograms are equi-width, consisting of n cells, each cell 
being responsible for (1/n)th of the score range. It would 
be straightforward to employ other  forms of histograms. 

Associated with each cell i, each peer maintains the 
following information: 
• The lower and upper values, lb[i], ub[i], respectively, 

defining the range of scores being covered by this cell, 
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• The value of freq[i], defining the number of document 
IDs whose scores in the peer’s index list fall within 
lb[i] and ub[i], 

• The average score, avg[i], computed over all scores in 
the cell, and 

• A synopsis: of the document IDs whose scores fall in 
this cell, filter[i]. In particular, this compact 
representation is constructed using Bloom filters. 

Bloom filters have received a lot of attention in our 
community, given their distinguishing ability to, on the 
one hand, represent compactly the contents of a set and, 
on the other, efficiently test whether a given item is a 
member of the set. Briefly, in their simplest form, Bloom 
filters work as follows: a bitmap V containing b bits, 
initially all set to 0, is used to compact the information in 
a set S = {α1, α2,…, αs}. Each value of set S is hashed into 
V. In general h independent hash functions, h1, h2,…, hh 
can be used for each element of S producing h values, 
each varying from 1 to b and setting the corresponding bit 
in vector V. Testing if an element e belongs to set S is 
now very fast: simply, the same h hash functions are 
applied on e and the bits of V in positions of h1(e), h2(e),.., 
hh(e) are checked. If at least one of these bits is 0, then e 
does not belong to S. Else, it is conjectured that e belongs 
to S, although this may be wrong (this is referred to as a 
"false positive"). Given the number of items, s, of the set 
for which a filter is created, which set a number of bits in 
the filter, by tuning h and b one can control the 
probability for false positives, which is given by 

h-hs/bPFP )e-1(≈  [Bl70, Fan98], where s is the 
number of values in the set S, b is the size of the 
filter/bitmap, and h is the number of hash functions. When 
h=1, the term b/s coined the load factor, controls PFP. 

As mentioned, KLEE uses Bloom filters to compactly 
represent, for each histogram cell, the set of documents 
whose scores fall in this cell. This information, coupled 
with the statistical metadata, can prove of great value to 
the coordinator to compute a high quality top-k 
approximation swiftly and efficiently. 

3.2.   Harvesting HistogramBlooms 
In the first phase, at the coordinator’s request, each cohort 
peer replies with its local top-k list, and a fraction of its 
HistogramBlooms data structure. The coordinator then 
can address the missing-scores problem as follows: for 
every peer Pi that has not reported a score for docID, 
using the Bloom-filter cell summaries of Pi and the hash 
functions, it can find to which histogram cell of peer Pi 
the docID belongs say c, (by simply testing for 
membership of docID in the filters of each cell, and 
stopping when a test is successful). Then, it can use the 
average score associated with that histogram cell, avg[c], 
to replace the missing score of Pi for docID.  

The missing-documents problem can then be dealt 
with as follows: The coordinator, having attacked the 
missing-scores problem, can then produce an 
approximation of the top-k result and identify the k-th 
total score in this top-k approximation, topKscore. Thus, a 
per-peer candidate list can be constructed, consisting of 

all the docIDs (and their scores) that locally in a peer have 
a score that is greater than topKscore/m. Each of the m 
cohort peers then can be asked to send its candidate list. 
After receiving this information, the coordinator can then 
compute a higher-quality top-k approximation.  

Intuitively, the HistogramBlooms structure allows the 
coordinator of the algorithm the chance to gather score 
information from deep enough into the index lists of the 
cohort peers, without paying the bandwidth cost of 
retrieving long subsets of the peers’ index lists. 

3.3   The Candidate List Filters Matrix Structure 
The above solution to the missing-documents problem, 
although helpful, may require further optimization. At the 
end of the 1st phase, the coordinator has qualitative 
information at its disposal that allows it to estimate how 
good its top-k score approximation is. For instance, if too 
many missing values are replaced by averages from “low-
end” (“high-end”) peer-histogram cells, then the 
approximation is with high probability of low (high) 
quality. In addition, and perhaps more importantly, even if 
the topKscore approximation at the end of the first phase 
is accurate, it is possible that the per-peer candidate lists 
sent by the peers in the second phase will be much longer 
than needed, wasting thus a lot of bandwidth. The reason 
is that, the value topKscore / m, especially for larger 
values of m, may be very small, and a very large fraction 
of the docIDs at each peer may have a higher score.  

For these reasons, an additional “candidate list 
reduction” phase may be employed to avoid high network 
bandwidth overheads. The central insight is to gather 
information about the contents of the per-peer candidate 
lists so that only docIDs that belong to “enough” 
candidate lists (and have a chance to have a TotalScore 
higher than topKscore) are sent; the rest will be filtered 
out and not sent.  In this phase, the peers will:  
1. each identify the contents of its candidate list set, that 

is find those docIDs associated locally with a score 
that is better than (topKscore / m) and  

2. create a bitmap filter of this set, called the peer’s 
Candidate List Filter, CLF. Specifically, for each 
docID with score(docID) > (topKscore / m), the peer 
will hash the docID and set the proper bit in its CLF. 
Pinit utilizing the histogram statistics received, can 

know from the 1st phase the number of documents at each 
peer that have a better score than topKscore / m. The 
maximum of these numbers will be sent to the peers and 
will be used by them in the bitmap construction so that all 
peers’ CLFs will have the same size, b. When Pinit 
receives these CLFs it constructs a bitmap matrix, the 
CLF Matrix. The CLF Matrix: 
• is an m × b matrix,  
• its i-th row is the CLF received from the i-th peer. 

3.4   Harvesting Candidate List Filters 
The rationale for building the CLF Matrix is that, by 
construction, all docIDs (from all m peers) which have a 
higher score than the topKscore/m in R of the m peers, 
will be hashed into a column of the CLF Matrix with R bit 
positions set. The central conclusion that can now be 
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drawn is that the docIDs that hashed into columns with a 
small number of set bits, need not be sent, since they have 
a better score than topKscore/m in only a small number of 
peers, making the likelihood of these docIDs having a 
total score better than topKscore very small. Thus, for 
appropriately selected values of R (e.g. for a majority of 
the peers) the docIDs that hashed into columns of the CLF 
Matrix which have R bits set, need be sent only. In this 
way, Pinit can substantially reduce the size of the set of 
(docID, score) pairs which peers will be asked to send, 
yielding obvious bandwidth benefits. 

Associated with the construction and exploitation of 
the CLF Matrix, there are three challenges:  
1. obtain the needed information with low network 

bandwidth overhead, while 
2. avoiding extensive filtering of docIDs that would 

reduce the quality of the top-k list result, and 
3. being able to estimate the expected benefits of 

producing and exploiting Candidate List Filters before 
hand, so to avoid having an additional communication 
phase if they are not needed. 

4. The KLEE Algorithmic Framework 
4.1   The Peer Cohorts’ Preparation 
Each peer, given its sorted index list, constructs the 
HistogramBlooms structure described previously. The 
construction of the histogram-related data is 
straightforward. The construction of the per-histogram-
cell filters is also simple: In the same scan of the index list 
needed to construct the histogram data, for each histogram 
cell, a set, cell-docID-set, is created whose elements are 
the docIDs belonging to this cell. For each such i, cell-
docID-set[i] a Bloom filter, filter[i], is constructed.  

All peers use the same number of and the same hash 
functions for the filter[i] construction, for all i. However, 
different peers, in general, will be expected to have 
histogram cells of different sizes. Therefore, the size of 
the filters filter[i] at different peers will of course be 
different, driven primarily of the need to ensure a low 
probability for false positives. 

Since the construction of the histograms and related 
filters may be time-consuming, these can be precomputed 
and stored locally at each peer, to avoid incurring the 
overhead of computing these ‘on line’. 

4.2   KLEE: A High-Level View  
When a query q(T,k) is initiated at a peer, Pinit, this peer 
assumes the responsibility for coordinating the execution 
of the top-k algorithm, communicating with the m cohort 
peers with relevant index lists for the terms in T. 

The algorithm has in general the following four steps: 
1. The Exploration Step. Pinit communicates with the m 

cohort peers in order to produce a good estimation of 
the topKscore, which in turn yields the per-peer 
candidate lists. For a peer Pi its candidate list is 
defined to contain those docIDs for which 
score(docID) > (topKscore / m). 

2. The Optimization step. This step is performed by Pinit 
locally. It analytically estimates the expected benefits 

from engaging a Candidate List Reduction phase, by 
arguing about the expected values in the candidate list 
filters that would be constructed by the cohort peers. 

3. The Candidate List Reduction Step. This step is 
optional, in the sense that it is executed only when 
indicated by the previous step. It requires one round-
trip communication phase with the cohorts to 
construct the Candidate List Filter Matrix data 
structure. Using the latter, a new set of per-peer 
candidate lists are constructed, replacing the ones 
constructed in the first step. Specifically, for a peer Pi 
its candidate list is defined to contain those docIDs for 
which hash(docID) is one of the columns of the CLF 
Matrix with enough bits set. 

4. The Candidate List Retrieval Step. This consists of a 
final round-trip communication phase with the cohorts 
to obtain their candidate lists and compute the final 
top-k result. 
Note that the optimization step acts basically as a 

point for trading-off bandwidth performance vs the 
number of communication phases. This step predicts the 
potential bandwidth savings resulting from the candidate 
list reduction; these, in turn, can be weighed against the 
cost in latency of engaging an additional round-trip 
communication phase with the peers. Different decisions 
can be made, depending on which metric is considered to 
be more critical. In the following subsections each step of 
the framework is presented in detail.  

4.3   The Exploration Step 
This is the first step of KLEE embodying the first 
coordinator-cohorts communication phase. It addresses 
the missing-scores problem as follows: 
1. Pinit  sends a ‘start’ request with the query q(T,k).  
2. Peers respond with: 

a. their local top-k lists, 
b. for each of the c ‘high-end’ cells (i.e. for the cells 

covering up to, say the top few percent of the 
highest scored documents): the histogram-cell 
information (freq[i], lb[i], ub[i], avg[i], and 
filter[i]), i=1, …, c. 

c. for each of the remaining i, i=c+1,…,n, ‘low-end’ 
cells: freq[i], and avg[i]. 

3. Pinit then approximates the top-k list, as follows:  
a. When the score of some document with docIDi is 

missing in some index list Ij(t), Pinit hashes docIDi 
and checks for membership in the filter[r], r=1,…c 
(i.e., in the per-cell document filters sent by peer 
Pj) to find out to which histogram cell in Pj docIDi 
belongs. The check stops when either a 
membership test is successful, or until all available 
filter[r] summaries are exhausted. 

b. If docIDi is found to be a member of, say, filter[r], 
Pinit uses the average score associated with that 
cell, avg[r], to replace the missing score. 

c. Else, Pinit replaces the missing score with a 
weighted average score computed using the 
frequencies and average scores associated with the 
‘low-end’ cells of Pj. 
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d. This process is repeated for all docIDs for which 
scores are missing and for all Pj from which scores 
are missing. 

4. Having replaced all missing scores, Pinit computes the 
top-k list approximation and identifies the score of 
the k-th document in this list as the topKscore. 

5. Furthermore, given topKscore, implicitly defines the 
candidate list of each peer as follows: The 
CandidateList of peer Pj is defined to be the set: 
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Figure 1: Two peers responding to Pinit 

4.4   The Optimization Step 
This is the second step of KLEE. It requires no 
communication; it is executed completely locally within 
Pinit. The main task here is to analytically estimate the 
expected bandwidth savings resulting from possibly 
employing the candidate list reduction phase. Thus, we 
derive the fundamental relation that yields these expected 
savings and the parameters it depends on. 

The analysis uses the value d, defined as the average 
size of the peer candidate lists (that is, the average number 
over all peers of docIDs having a score that is greater than 
topKscore/m, at the end of phase 1). For clarity, we 
assume that the probability of false positives is made very 
small, using appropriate load factors, so approximating 
the average number of (docID, score) pairs sent by each 
peer with d, is acceptable; actually, these probabilities are 
not hard to compute, but would make the presentation 
harder to follow. Recall that for the CLF construction, 
peers use just one hash function. 

Arguing about the expected values of the CLF Matrix, 
we note that the probability of any bit of a column being 
set (independently by a peer in its CLF filter) is given by  

lfP /11 =  where, lf is the load factor for the Bloom filter 
which is given by: dblf /=  where b is the size of the 
peers’ CLFs. Next, the key value to estimate is the 
expected number of columns of the CLF Matrix which 
have at least R bit positions set. The term PR refers to the 
probability of any column satisfying this criterion. PR is 
given by the following binomial distribution:       
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The bandwidth cost, measured in terms of the number of 
(docID, score) pairs sent by all peers, in the final phase of 

KLEE without the Candidate List reduction phase, C, is 
given by C = d × m. 

The bandwidth cost in the version of KLEE with the 
candidate list reduction phase engaged, Cr, consists of the 
cost of sending the candidate list filters at phase 2, Cr,2 
and the cost of sending the (docID, score) pairs in the 
final phase 3, Cr,3. For the latter cost, recall that Pinit sends 
to the peers in the phase 3 the column indices which are 
found to satisfy the criterion that at least R bits are set and 
that each peer responds only with the docIDs that hash 
into these positions. Thus, we need to compute the 
probability that in each peer CLF there is a bit set for the 
specific indices sent by Pinit. Cr,3 is thus given by Cr,3 = PR 
× d × m since in each peer’s CLF  filter, a bit position 
belongs to a column with at least R bits set with 
probability PR, and since there are d bits set in each peer, 
and there are m peers in total.  

Comparing Co and Cr,3  we see that  Cr,3 = PR × C0 
making the value of PR the key to the expected savings 

in the bandwidth in the last phase of the algorithm.  
The actual costs Co and Cr must be multiplied by the 

average number of bytes required for each (docID, score) 
pair. Additionally, the cost of sending the candidate list 
filters, Cr,2, must also be accounted for. This cost is 
simply given by Cr,2  = (m × b / 8) bytes. 

4.5   The Candidate List Reduction Step. 

The following details step 3 of KLEE, which revolves 
around the construction and manipulation of the peers’ 
CLF structures. 
Candidate List reduction: Improving the quality of the 
top-k approximation and addressing the missing 
documents problem: 
1. Pinit first refines the set candidate_list(P) for a peer, P, 

to be all docIDs that:  
 P has not sent to Pinit so far and  
 have a score in the index list of P that is greater 

than the minimum score of the histogram cell 
holding the value topKscore / m. 

2. Pinit computes the size of candidate_list(Pi) for each 
peer Pi, based on the histogram data received in step 1 
and then finds their maximum, 
max_size_candidate_list. Then,  
 Pinit sends to each peer Pi the current top-k estimate 

and max_size_candidate_list,  
 Each peer Pi, computes and returns to Pinit:  

 The CLF: using just one hash function and a 
bitmap with size b = load_factor × 
max_size_candidate_list, with a load_factor 
value large enough to ensure low probabilities of 
false positives. The CLF is constructed by 
hashing each docID of its candidate list into this 
bitmap, and   
 the true scores of the docIDs in the top-k 
estimate. 

3. Pinit constructs the CLF bit matrix, CLFM, of size m × 
b. As mentioned, the rows in this matrix are the CLF 
filters received from the peers: CLFM [i,j] represents 
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the jth entry in peer Pi’s CLF filter for 
candidate_docs(Pi).  

4. Pinit defines the interesting columns of its CLFM to be 
the indices of those columns with at least a number R 
of bits set. 

5. Finally, Pinit redefines the candidate list of a peer Pi to 
be the subset of Pi’s original candidate list consisting 
of only the docIDs that hash into the interesting 
columns of Pi’s CLF. 
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Figure 2: Constructing CLFM from CLFs 
As mentioned, by construction, after phase 2, all 

docIDs which have a higher score than the (topKscore / 
m) in R peers, will be hashed into a column of CLFM with 
R entries set. The converse, however, does not necessarily 
hold; i.e. when two different bit positions in a column of 
CLFM are set, they may either come from the same docID 
known to the respective peers, or from two different 
docIDs that happened to hash into the same bit position. 
This obviously implies that these false positives 
introduced by the CLF filters of the different peers will 
lead to having peers send more docIDs than absolutely 
necessary in the next phase. This problem is in essence 
the false positives problem and can be addressed by 
appropriate settings of the values of the load factor for the 
filter construction. 

4.6   The Candidate List Retrieval Step 

This is the final step and represents the final 
communication phase between the coordinator and the 
cohorts. 
1. Pinit asks and receives from each peer Pj the (docID, 

score) pairs, for each docID that belongs in Pj’s 
candidate list, as the latter is defined either from step 1 
or from step 3. 

2. Pinit then calculates the new top-k list result, based on 
the (docID, score) pairs received. 
In essence, with the 4-step version of the algorithm, 

peers are asked to perform some more processing, 
introducing a trade-off between top-k approximation 
latency and peer resource utilization, on the one hand, and 
overall network bandwidth on the other. 

5. KLEE Parameters 
The main parameters characterizing the functionality 
offered by KLEE are: (i) the number of cells, c, for which 

filters are sent by each peer in the first step and (ii) the 
number of bits, R, that have to be set in order for any 
column of the CLFM to be considered as interesting by 
the coordinator in the third step. KLEE also utilizes 
parameters pertaining to the construction of the 
histogram-cell Bloom filters and in the construction of the 
CLFs at peers; these parameters are the load factor and 
the number of hash functions to be used so that, given the 
number of entries, the probability of false positives is kept 
below an acceptable threshold value. The values for the 
latter parameters, however, are well understood from the 
related literature and do not deserve further attention.  

A good choice of the parameter c depends on the skew 
of the score distributions. We employ a technique that 
bounds the score-prediction error that we make by 
fetching only the top c histogram cells compared to the 
entire histogram.  

Defining the right value for the parameter R, which 
represents the number of bits that need be set in order for 
a column of CLFM to be considered interesting in step 3, 
may be error-prone. A key insight would be to utilize the 
histogram data available at Pinit. Instead of simply 
counting set bits in the columns of CLFM, we could 
multiply each set bit with an appropriately-selected score 
value from the peers’ histograms. This value could be the 
average or the highest score of the remaining docIDs a 
peer has not sent to Pinit, or some alternative score. For 
example, after histogram-based statistical analysis, the 
average score augmented by a multiple of the standard 
deviation adequate to capture a certain percentile of the 
remaining score distributions could be used. Obviously, 
this is beyond the scope of this paper. However, we 
present an approach that is based on the above insight 
avoids the conundrum of selecting an appropriate R value.  

The basic idea is for peers in the third step of the 
algorithm to construct CLFs that are no longer simple bit 
maps: a non-zero value in a CLF position indicates now 
the cell number of the docID hashing into this position.  

Specifically, in the third step of KLEE: 
1. For each docID that belongs into its candidate list, 

each peer hashes the docID and stores, in the CLF 
position indicated by the hash, the cell number of the 
peer’s histogram into which this docID belongs. 
Formally, CLF[i] = r, if and only if hash(docID) = i, 
and lb[r] ≤ score(docID) ≤ ub[r]. 

2. Pinit after receiving the peer CLFs constructs as before 
the m × b matrix CLFM.  

3. Finally, Pinit defines a column of CLFM, j,1≤  j ≤ b, as 
interesting if and only if: 

∑
=

>
m

i
topKscorejiCLFMiub

1
]],[[  

 where ubi[r] represents the upper bound of cell r  in 
the histogram of peer Pi. Note that by using the upper 
bound score of the cell to which a docID belongs, the 
definition of interesting CLFM columns ensures that 
no docID that could attain a TotalScore higher than 
topKscore would be missed. 

Obviously, the new definition of the interesting columns 
of the CLFM structure automatically brings about a new 
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definition of the peers’ candidate lists to be retrieved in 
the final step of KLEE. 

The new method for selecting interesting columns 
introduces bandwidth savings and improves the quality of 
the expected result top-k list. However, note that these 
benefits come at the expense of using additional bits for 
the contents of CLFs. Since cell numbers are stored now 
in CLFs, a number of bits equal to log2(n), where n is the 
number of histogram cells, are required. Since n is 
typically fairly small (e.g., ≤ 100), this cost is still small. 

Note that instead of using the upper bound values of 
cells, the average or even the lower bounds could be used, 
offering trade-offs with respect to higher bandwidth 
savings versus reduced accuracy of the resulting top-k list. 

6. Experimentation 
6.1   Experimental Setup 
Our implementation of the testbed and the related 
algorithms was written in Java. All peer related data were 
stored locally at the peer’s disk. Experiments were 
performed on 3GHz Pentium machines. For simplicity, all 
processes ran on the same server. 
Real-World Data Collections and Queries. Two real-
world data collections were used in our experiments: 
GOV and IMDB. The queries for the former contained 
text attributes, whereas queries for the latter collection 
contained text and structured attributes. 

The GOV collection consists of the data of the TREC-
12 Web Track and contains roughly 1.25 million (mostly 
HTML and PDF) documents obtained from a crawl of the 
.gov Internet domain (with total index list size of 8 GB). 
The original 50 queries from the Web Track’s distillation 
task were used. These are term queries, with each query 
containing up to 5 terms. In our experiments, the index 
lists associated with the terms contained the original 
document scores computed as tf * log idf. tf and idf were 
normalized by the maximum tf value of each document 
and the maximum idf value in the corpus, respectively. 

In addition, we employed an extended GOV (XGOV) 
setup, which we utilized to test the algorithms’ 
performance on a larger number of query terms and 
associated index lists. The original 50 queries were 
expanded by adding new terms from synonyms and 
glosses taken from the WordNet thesaurus 
(http://www.cogsci.princeton.edu/~wn/). The expansion 
resulted in queries with, on average, twice as many terms, 
with the longest query containing 18 terms. 

The IMDB collection consists of data from the 
Internet Movie Database (http://www.imdb.com). In total, 
our test collection contains about 375,000 movies and 
over 1,200,000 persons (with a total index list size of 140 
MB), structured into the object-relational table schema 
Movies (Title, Genre, Actors, Description). Title and 
Description are text attributes and Genre and Actors are 
set-valued attributes. Genre contains 2 or 3 genres. Actors 
included only those actors that appeared in at least 5 
movies. 
Synthetic Data Collections and Queries. Our synthetic 
benchmarks allow the evaluation of the algorithms under 

different input data characteristics. We systematically 
study the effect of (i) the skewness in score distributions 
and (ii) of the correlation among queried terms on the 
algorithms’ performance.  

We created index lists having score distributions 
following the Zipf law [Zi49], varying the Zipf parameter 
(θ), to create varying skewness. For each set of real-world 
collections (e.g. GOV and XGOV) we kept the docIDs in 
the original index lists in tact and simply replaced the 
scores to follow a Zipf distribution with values of θ = 0.3, 
0.7, and 1.0. The set of queries was the same as in the 
corresponding GOV and XGOV benchmarks. We coined 
these synthetic benchmarks Zipf-GOV and Zipf-XGOV. 

Finally, in real-world applications there will often be 
correlations among the query terms. To systematically test 
this, we generated synthetic index lists that had controlled 
overlap among their docIDs, using a parameter Ω. Given 
any index list I(t1) its overlap with another I(t2) was 
created as follows: for each of the top-k docIDs in I(t1), a 
random (uniform) value, v, was selected in the range 
[k+1, Ω] and this docID was inserted in I(t2) at position v. 
By controlling the value of Ω between [k+1, sizeof(I(t2)], 
we create stronger or weaker correlations (for smaller or 
greater values of Ω, respectively). We created 10 such 
index lists. The queries in these Overlap benchmarks were 
queries involving t terms, t = 2,..,10, with each query 
selecting randomly t index lists from the set of 10. 
6.2   Tested Algorithms  

DTA: This is a Distributed TA algorithm, an extension 
of the standard TA algorithm. Each peer partitions its 
sorted index list into batches, with each batch having k 
entries. DTA proceeds in phases, in each phase each peer 
sends its next batch. After each phase, the coordinator 
runs the TA algorithm on the collected entries and stops 
when all uncollected index entries can be pruned away. 

TPUT: This is the 3-phase algorithm as described in 
[CW04]. TPUT comes in two flavors: the original and a 
version with compression for long docIDs. This optimized 
version instead of sending (docID, score) pairs, hashes the 
docID into a hash array where it stores its score and sends 
the hash array of scores. Even in the experiments 
conducted in [CW04] the compressed optimized version 
did not always perform better. Furthermore, KLEE could 
also use compression for the filters in Step 1 and the 
sparse CLFs in step 3. For these reasons, we report only 
the results for the original TPUT version. 

X-TPUT: As one of our key contributions is to show 
the suitability and significant benefits of approximate top-
k algorithms, we implemented a new version of TPUT, 
which we coined X-TPUT. X-TPUT essentially consists 
of only the first two phases of TPUT. We tested X-TPUT 
given our expectation that even with some missing scores, 
which TPUT retrieves in the 3rd phase, it should still be 
possible to develop an algorithm that performs much 
better than TPUT, at a small precision penalty. 

 KLEE-3: This is KLEE with only three steps, two 
communication phases – i.e., the version of KLEE 
without Step 3, the Candidate List Reduction Step. 
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KLEE-4: This is KLEE with all four steps, three 
communication phases engaged. 

 
6.3   Performance Metrics 

Cost: Bandwidth. This represents the total number of 
bytes transferred between the query initiator and the 
cohort peers. This is our primary metric, since it is widely 
regarded to be critical in the envisioned applications. 

Cost: Query Response Time. This represents the 
elapsed, “wall-clock” time for running the benchmarks.  

Quality: Relative Recall. This represents the fraction 
of the top-k results produced that are in the “true” top-k 
results without any approximations. By construction, 
DTA and TPUT have a recall value of 1. 

Quality: Normalized Score Error. The score error is 
the average of the differences between the score of the i-
th position in an algorithm’s result top-k list and the score 
in the i-th position in the “true” top-k result, for all 1 ≤ i ≤ 
k. By, construction, DTA and TPUT have a score error 
value of 0. Note that this is an important metric since the 
recall value alone may lead to erroneous conclusions. As 
an extreme example, in cases where the top-2k docIDs 
have very small score differences, it is possible that a top-
k result list can have recall close to 0, while being a very 
good result with only negligible score differences from 
the true top-k result. Since the score error may be a very 
small number, we normalize it by dividing it with the 
topKscore. We also computed the footrule distance for the 
ranks of approximate vs. exact top-k results. 
6.4   Experiments 
We report on experiments performed for each of the 
benchmarks, GOV, XGOV, IMDB, Zipf-GOV, Zipf-
XGOV, and Overlap. In all experiments queries are for 
the top-20 results. KLEE algorithms assume that peers in 
the first step send to the query initiator filters for enough 
histogram cells, whose cumulative score is a certain 
percentage (5%, 10%, and 20%) of the total score mass. 
For space reasons, we show only the results with c = 10% 
of the score mass. For the value of R, we used the 
technique of Section 5 to select the interesting columns. 

In KLEE, the Bloom filters were configured as 
follows:  For the 1st step, the filters for each cell of a 
peer’s histogram were long enough to ensure that pfp < 
0.004. This creates sparse filters, but helps to avoid 
overestimating the topKscore due to false positives. For 
the 3nd step, the size of peers’ CLFs ensured that pfp < 
0.06. This larger pfp is deemed as an appropriate 
compromise between unnecessarily long filters versus a 
few (6%) more (docID, score) pairs that need be sent (for 
docIDs that were mistakenly assumed to be in the 
interesting columns of the CLFs of peers). 

Running the experiments over multiple nodes in a 
network would be inherently vulnerable to interference 
from other processes running concurrently and competing 
for cpu cycles, disk arms, and network bandwidth. To 
avoid this and produce reproducible and comparable 
results for algorithms ran at different times, we opted for 
simulating disk IO latency and network latency which are 

dominant factors. Specifically, each random disk IO was 
modeled to incur a disk seek and rotational latency of 9 
ms, plus a transfer delay dictated by a transfer rate of 
8MB/s. For network latency we utilized typical round trip 
times (RTTs) of packets and transfer rates achieved for 
larger data transfers between widely distributed entities 
[SaLu00]. We assumed a packet size of 1KB with a RTT 
of 150 ms and used it to measure the latency of 
communication phases for data transfer sizes in each 
connection up to 1KB. When cohorts sent more data, the 
additional latency was dictated by a “large” data transfer 
rate of 800 Kb/s. This figure is the average throughput 
value measured (using one stream -- one cpu machines) in 
experiments conducted for measuring wide area network 
throughput (sending 20MB files between SLAC nodes 
(Stanford's Linear Accelerator Centre) and nodes in Lyon 
France [SaLu00] using NLANR's iPerf tool [TQDFG03]. 

Hence, the overall response times were the sum of cpu 
times for an algorithm’s local processing, IO times, and 
network communication times. Since cohorts are running 
in parallel, the longest time was considered in each phase. 
6.5 Performance Results 

6.5.1 On Synthetic Benchmarks 
Bandwidth Costs. Figure 3 shows the bandwidth results 
for Overlap. We show results for θ = 0.7, and t=5-term 
queries, (similar results occur with all other tested values 
of θ and t, and are omitted for space reasons). Ω was 
varied to correspond to the index list positions capturing 
from 10% to 100% of the total score mass.  

We see that the KLEE algorithms show excellent 
performance. KLEE-4 outperforms the TPUT algorithms 
by a factor ranging from approximately 2.5 to more than 
an order of magnitude. Intuitively, higher correlations 
imply that the HistogramBlooms have a greater chance to 
work: when calculating the TotalScores of docIDs in the 
first phase, any missing scores will be (with high 
probability) found in the filters for the docIDs in the top 
histogram cells sent by peers. This results in much better 
approximations of topKscore, which in turn results in not 
having to go very deep into the peer index lists in the 
subsequent phases to retrieve candidates. The difference 
in the performance between KLEE-3 and KLEE-4 shows 
the benefits introduced by the CLFM filtering in the 2nd 
communication phase of KLEE-4. KLEE-3 also enjoys 
much better performance, especially for higher term 
correlations. As Ω values increased, the performance 
gains of KLEE-3 vs TPUT and X-TPUT decreased, due to 
the inability of HistogramBlooms to significantly help. 

Perhaps surprisingly, DTA performs well, for queries 
with higher overlap, since a high overlap implies that, 
after a relative small number of batches, DTA has gone 
deep enough in all index lists. (However, as we shall see 
later, this comes at a very high cost in response times).  

Figures 4 and 5 show the bandwidth results for Zipf-
GOV and Zipf-XGOV, respectively, for θ = 0.7 (similar 
results occur with all other values of θ). In all cases, the 
KLEE algorithms outperform the TPUT competitors. In 
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particular, for Zipf-GOV and Zipf-XGOV, KLEE-4 wins 
by a factor of 2, compared to TPUT and X-TPUT. 

Overlap, c=10%, θ=0.7
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Figures 3: Bandwidth for Overlap  

DTA performs very well for a small number of 
terms/peers. For larger numbers of terms/peers, DTA’s 
bandwidth performance deteriorates, and for more than 
ten terms it is consistently and by far the worst performer. 

With respect to the TPUT algorithms vs KLEE-3, we 
note that for queries with more than 3 terms/peers, KLEE-
3 outperforms X-TPUT, by about 10% to about 50%. 
These smaller gains of KLEE-3 are attributable to the 
very small term correlations in these benchmarks. 

Finally, in general, for less skewed score distributions, 
as shown here, X-TPUT and TPUT have similar 
bandwidth performance. Intuitively, this is due to TPUT 
and X-TPUT using the same score threshold value. The 
less skewed a score distribution is, the larger number of 
docIDs (having higher scores than the threshold) are sent 
by each peer to the coordinator. Thus, the smallest is the 
missing information at the coordinator, which is retrieved 
by TPUT in the 3rd phase.  

Tables 1, 2, and 3 present the aggregate picture for 
most metrics we used, for the Overlap, Zipf-GOV, and 
Zipf-XGOV benchmarks. In total bandwidth, KLEE-4 is 
better than both TPUT algorithms by a factor of about 8 in 
Overlap and by more than 2 in Zipf-GOV and Zipf-
XGOV. KLEE-3 is better by a factor of about 2.5 in 
Overlap and by about 10% in the other two. 
Response Times. We see a similar picture from Tables 1, 
2, and 3, which show total benchmark times (i.e., for the 
entire batch of 50 queries).  In Table 1, for the Overlap 
benchmark, KLEE-4 (KLEE-3 ) is shown to outperform 
the TPUT algorithms by a factor better than 4 (2). 
Similarly, for the Zipf-XGOV benchmark, KLEE-4 
(KLEE-3) outperforms X-TPUT and TPUT by a factor 
higher than 4 (25%). For Zipf-GOV, KLEE-4 is better by 
about 2.5 (3.5) times than X-TPUT (TPUT), respectively.  

The DTA times are very disappointing, due to very 
high number of random IOs. Overall, KLEE-4’s, response 
times are better by 1-2 orders of magnitude. 
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Figure 4,5: Bandwidth for Zipf-GOV and Zipf-XGOV 

Result Quality. Tables 1, 2 and 3 also depict results 
using different metrics for result quality, namely: relative 
recall, normalized average score error, and average rank 
distance. With average recall being higher than 90%, and 
very small rank distance and score errors, the approximate 
algorithms, and especially KLEE, prove themselves as the 
algorithms of choice, given their great performance.  

6.5.2 On Real-World Benchmarks 
Bandwidth Costs. Figures 6 and 8 and the first columns 
of Tables 4, 5 and 6 show the bandwidth results for GOV, 
XGOV, and IMDB respectively. Figure 7 shows 
bandwidth consumption for IMDB. We observe that, 
again, KLEE-4 is the strongest performer, outperforming 
X-TPUT by a factor of about 2 (for > 2 terms) in GOV, 
by a factor of between 2 and 3 in XGOV, and by a factor 
of about 3 for IMDB. Against TPUT, KLEE-4 is better by 
a factor of up to 6 in GOV and by up to more than an 
order of magnitude in XGOV, and by similar factors for 
IMDB. KLEE-3 and X-TPUT performed comparably. X-
TPUT outperforms KLEE-3 by better than 20% in GOV, 
while KLEE-3 wins by more than 15% in XGOV. 
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Figure 6, 7: Bandwidth for GOV and IMDB 

It is interesting to note that X-TPUT in these 
benchmarks outperforms TPUT. Since index lists are very 
skewed, the score threshold of topKscore/m points to a 
depth in the index lists which is not surpassed by a large 
number of docIDs.  

Figure 8: Bandwidth for XGOV 

Thus, unlike the synthetic benchmarks reported, there 
is a large mass of information that TPUT must retrieve in 
the third phase, which explains the better performance of 
X-TPUT. However, note from Figures 6, 7, and 8 that as 
the number of terms/peers increases, both TPUT and X-
TPUT start performing worse (with KLEE-3 consistently 
surpassing X-TPUT, for example).  

Finally, again, DTA is in general performing very 
poorly except for very small numbers of terms.  
Response Times. The same trends are noted for response 
times. Both KLEE algorithms significantly outperform 
TPUT and DTA. X-TPUT approaches the response times 
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of KLEE for smaller-term queries, (eg in GOV) but as the 
number of terms increases it becomes worse by a factor of 
about 2 (e.g. in XGOV).  

The KLEE algorithms are also best in terms of fewer 
random and sequential local IOs at peers. This shows that 
KLEE incurs the lightest local peer work. 
Result Quality. Tables 4, 5 and 6 show that all 
approximate algorithms continue to provide acceptable 
result quality. Average recall values for KLEE-4 (KLEE-
3) are at 90% (90%) and 79% (83%) for GOV and XGOV 
respectively and average score errors are about 2% and 

5% of the topKscore. In light of KLEE’s strong 
performance, this is definitely acceptable. 

 
7. Conclusions 
We have presented the KLEE framework for distributed 
top-k query processing. KLEE’s salient features set it 
apart from related work in several ways. First, KLEE 
makes for the first time a strong case for approximate top-
k algorithms in widely distributed environments. Second, 
KLEE promotes flexibility. It allows the trading-off of 
result quality vs performance by: utilizing filters of 
various sizes at steps 1 and 3, sending various number of 

Table 1: Aggregated Statistics for the Overlap Benchmark with θ = 0.7, Ω=30% and c=10% 
Overlap+Zipf 
c=10%,θ= 0.7,Ω=30% 

Total # of 
Bytes 

Total 
Time in ms 

Average 
Recall 

Avg Score 
Error/topKScore 

Avg Rank 
Distance 

# Sorted  
Accesses 

# Random 
Accesses 

DTA 1,146.320 157,420 1 0 0 8,060 150 
TPUT 9,150,904 29,270 1 0 0 70,867 0 
X-TPUT 9,150,904 28,335 1 0 0 70,867 0 
KLEE 3 3,678,780 12,971 0.92 0.0003 1.45 27,801 0 
KLEE 4 1,192,704 6,546 0.91 0.0003 1.39 27,765 0 

Table 2: Aggregated Statistics for the Zipf-GOV Benchmark with θ = 0.7 and c=10% 
Zipf-GOV  
c=10%, θ=  0.7 

Total # of 
Bytes 

Total 
Time in ms 

Average 
Recall 

Avg Score 
Error/topKScore 

Avg Rank 
Distance 

# Sorted  
Accesses 

# Random 
Accesses 

DTA 17,752,769 3,532,180 1 0 0 89,241 133,338 
TPUT 53,494,903 576,713 1 0 0 1,262,745 15,998 
X-TPUT 53,011,252 404,991 0.99 0.001 0.13 1,262,745 0 
KLEE 3 49,861,342 367,931 0.97 0.002 0.87 1,182,434 0 
KLEE 4 25,057,920 160,585 0.94 0.004 1.04 1,182,434 0 

Table 3: Aggregated Statistics for the Zipf-XGOV Benchmark with θ = 0.7 and c=10% 
Zipf-XGOV 
c=10%, θ=  0.7 Total # of Bytes 

Total 
Time in ms 

Average 
Recall 

Avg Score 
Error/topKScore 

Avg Rank 
Distance 

# Sorted  
Accesses 

# Random 
Accesses 

DTA 617,009,260 39,582,682 1 0 0 443,040 2,486,650 
TPUT 377,928,880 1,599,581 1 0 0 5,057,570 6,465 
X-TPUT 377,097,644 1,521,220 0.98 0.002 0.36 5,057,570 0 
KLEE 3 287,294,812 1,189,891 0.91 0.012 1.70 3,908,467 0 
KLEE 4 165,077,807 375,077 0.92 0.011 1.43 3,924,437 0 

Table 4: Aggregated Statistics for the GOV Benchmark with c=10% 
GOV 
c=10% 

Total # of 
Bytes 

Total 
Time in ms 

Average 
Recall 

Avg Score 
Error/topKScore 

Avg Rank 
Distance 

# Sorted  
Accesses 

# Random 
Accesses 

DTA 1,172,446 190,259 1 0 0 6,043 8,229 
TPUT 1,505,290 185,049 1 0 0 13,180 13,754 
X-TPUT 597,991 31,432 0.89 0.026 1.21 13,180 0 
KLEE 3 722,664 28,319 0.90 0.018 1.16 11,652 0 
KLEE 4 440,868 39,564 0.90 0.022 1.27 11,652 0 

Table 5: Aggregated Statistics for the XGOV Benchmark with c=10% 

XGOV c=10% Total # of Bytes 
Total 

Time in ms 
Average 
Recall 

Avg Score 
Error/topKScore 

Avg Rank 
Distance 

# Sorted  
Accesses 

# Random 
Accesses 

DTA 92,587,264 3,740,677 1 0 0 40,940 289,468 
TPUT 70,044,884 2,346,882 1 0 0 235,809 213,906 
X-TPUT 19,236,084 96,153 0.91 0.027 1.12 235,809 0 
KLEE 3 16,690,912 88,271 0.83 0.046 2.91 203,174 0 
KLEE 4 7,920,774 56,609 0.79 0.052 3.25 203,174 0 

Table 6: Aggregated Statistics for the IMDB Benchmark with c=10% 

IMDB c=10% Total # of Bytes 
Total 

Time in ms 
Average 
Recall 

Avg Score 
Error/topKScore 

Avg Rank 
Distance 

# Sorted  
Accesses 

# Random 
Accesses 

DTA 3,182,737 581,226 1 0 0 16,110 28,836 
TPUT 16,152,355 1,148,847 1 0 0 282,013 9,708 
X-TPUT 8,406,897 92,137 0.73 0.026 3.85 282,013 0 
KLEE 3 8,592,431 92,745 0.70 0.026 4.14 276,795 0 
KLEE 4 2,845,225 33,616 0.69 0.027 4.33 276,795 0 
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filters in the 1st step, using high, average or low scores of 
histogram cells for the missing scores in the 1st step, 
utilizing the cell score upper or lower bounds when 
determining the interesting columns of CLFM, etc. KLEE 
even allows the trade-off between bandwidth vs the 
number of communication phases.  

Our comprehensive experiments show that KLEE 
achieves great performance gains in network bandwidth, 
query response times, and local peer load, and high 
quality results.  We also developed, implemented, and 
tested extensions of competing algorithms, which in some 
cases were found to be better performers than their base 
algorithm.  Again, KLEE was a clear winner. The most 
appealing performance feature of KLEE is that it 
introduces the aforementioned great performance benefits 
consistently, without sensitivity to the key input 
characteristics (such as score distributions, number of 
terms/peers, and term correlations).  

8. References 
[Ag03] S. Agrawal et al.: Automated Ranking of 
Database Query Results. CIDR 2003 
[AKM01] V.N. Anh et al.: Vector-Space Ranking with 
Effective Early Termination. SIGIR 2001 
[Ba05] W.-T. Balke, et al.: Progressive Distributed Top k 
Retrieval in Peer-to-Peer Networks. ICDE 2005 
[BO03] B. Babcock, C. Olston: Distributed Top-K 
Monitoring. SIGMOD Conference 2003 
[Ba03] M. Bawa, et al.: Make it fresh, make it quick: 
searching a network of personal webservers. WWW 2003 
[Bey99] K.S. Beyer, et al.: When Is ''Nearest Neighbor'' 
Meaningful? ICDT 1999 
[Bl70] B.H. Bloom: Space/Time Trade-offs in Hash 
Coding with Allowable Errors. Comm. of the ACM, 1970 
[BBK01] C. Böhm, S. Berchtold, D.A. Keim: Searching 
in high-dimensional spaces: Index structures for 
improving the performance of multimedia databases. 
ACM Comput. Surv. 33(3), 2001 
[BCG02] N. Bruno, S. Chaudhuri, L. Gravano: Top-k 
selection queries over relational databases: Mapping 
strategies and performance evaluation. TODS 27(2), 2002 
[BGM02] N. Bruno, L. Gravano, A. Marian: Evaluating 
Top-k Queries over Web-Accessible Databases. ICDE 
2002 
[CW04] P. Cao, Z. Wang: Efficient Top-K Query 
Calculation in Distributed Networks. PODC 2004 
[CH02] K.C.-C. Chang, S.-W. Hwang: Minimal probing: 
supporting expensive predicates for top-k queries. 
SIGMOD 2002 
[CGM04] S. Chaudhuri, L. Gravano, A. Marian: 
Optimizing Top-K Selection Queries over Multimedia 
Repositories, TKDE 16(8), 2004.  
[Ch04] S. Chaudhuri, et al.: Probabilistic Ranking of 
Database Query Results. VLDB 2004 
[CP02] P. Ciaccia, M. Patella: Searching in metric spaces 
with user-defined and approximate distances. TODS 2002 
[deV02] A.P. deVries, N. Mamoulis, N. Nes, M.L. 
Kersten: Efficient k-NN Search on Vertically 
Decomposed Data, SIGMOD 2002. 

[Fa99] R. Fagin: Combining Fuzzy Information from 
Multiple Systems, J. Comput. Syst. Sci. 58(1), 1999 
[FLN03] R. Fagin, J. Lotem, M. Naor: Optimal 
aggregation algorithms for middleware. J. Comput. Syst. 
Sci. 66(4), 2003. 
[Fan98] L. Fan, et al.: A Scalable Wide-Area Web Cache 
Sharing Protocol, SIGCOMM 1998 
[GKB00] U. Güntzer, W. Kießling, W.-T. Balke: 
Optimizing Multi-Feature Queries for Image Databases. 
VLDB 2000 
[GKB01] U. Güntzer, W. Kießling, W.-T. Balke: Towards 
Efficient Multi-Feature Queries in Heterogeneous 
Environments. ITCC 2001. 
[HS03] G.R. Hjaltason, H. Samet: Index-driven similarity 
search in metric spaces. TODS 28(4), 2003. 
[Hue05] R. Huebsch, et al.: The Architecture of PIER: an 
Internet-Scale Query Processor. CIDR 2005  
[Kau04] R. Kaushik, et al.: On the Integration of Structure 
Indexes and Inverted Lists. SIGMOD Conference 2004 
[Kou04] N. Koudas, et al.: Approximate NN queries on 
Streams with Guaranteed Error/performance Bounds. 
VLDB 2004: 804-815 
[LS03] X. Long, T. Suel: Optimized Query Execution in 
Large Search Engines with Global Page Ordering. VLDB 
2003 
[MGB04] A. Marian, L. Gravano, N. Bruno: Evaluating 
Top-k Queries over Web-Accessible Databases. TODS 
29(2), 2004 
[Na01] A. Natsev, et al: Supporting Incremental Join 
Queries on Ranked Inputs. VLDB 2001 
[NR99] S. Nepal, M. V. Ramakrishna: Query Processing 
Issues in Image (Multimedia) Databases. ICDE 1999 
[PZS96] M. Persin, J. Zobel, R. Sacks-Davis: Filtered 
Document Retrieval with Frequency-Sorted Indexes, 
JASIS 47(10), 1996. 
[SaLu00] D Salomoni and S. Luitz, "High Performance 
ThroughputTuning/Measurement" 
http://www.slac.stanford.edu/grp/scs/net/talk/High_Perf_
PPDG_Jul2000.ppt 
[So01] A. Soffer, et al: Static Index Pruning for 
Information Retrieval Systems. SIGIR 2001 
[Su03] T. Suel et al.: ODISSEA: A Peer-to-Peer 
Architecture for Scalable Web Search and Information 
Retrieval, WebDB 2003 
[TQDFG03] Ajay Tirumala et al.: iPerf: Testing the limits 
of your network, http://dast.nlanr.net/Projects/Iperf/  
[TWS04] M. Theobald, G. Weikum, R. Schenkel: Top-k 
Query Evaluation with Probabilistic Guarantees. VLDB 
2004 
[Yu01] C.T. Yu, et al.: Database selection for processing 
k nearest neighbors queries in distributed environments. 
JCDL 2001 
[YPM03] C.T. Yu, G. Philip, W. Meng: Distributed Top-
N Query Processing with Possibly Uncooperative Local 
Systems. VLDB 2003  
[Zi49] G. K. Zipf: Human Behavior and the Principle of 
Least Effort. Addison-Wesley Press, 1949.
 

648


