
Parallel Execution of Test Runs for Database Application Systems

Florian Haftmann1 Donald Kossmann1,2 Eric Lo2

1i-TV-T AG
D-85774 Unterf̋ohring

{firstname.lastname}@i-TV-T.de

2ETH Zurich
CH-8092 Zurich

{firstname.lastname}@inf.ethz.ch

Abstract

In a recent paper [8], it was shown how tests for
database application systems can be executed ef-
ficiently. The challenge was to control the state
of the database during testing and to order the test
runs in such a way that expensiveresetoperations
that bring the database into the right state need to
be executed as seldom as possible. This work ex-
tends that work so that test runs can be executed
in parallel. The goal is to achieve linear speed-
up and/or exploit the available resources as well
as possible. This problem is challenging because
parallel testing can involve interference between
the execution of concurrent test runs.

1 Introduction

Testing is the most expensive phase of the software devel-
opment cycle. Large software vendors like Microsoft spend
50 percent of their development cost on testing. As another
example, SAP has currently a product release cycle of 18
months of which six months are used only to execute tests.
Typically, some tests must be carried out with every check-
in of new code. Larger-scale integration tests that cover
the whole application must be carried out every night or at
least once a week. As a result, there is a huge demand to
automate and optimize testing.

In the software engineering community, a great deal of
frameworks have been proposed in order to manage and im-
plement tests. The most popular framework used in prac-
tice is JUnit [2] for testing Java applications. All that work
is not directly applicable to test database applications or
more generallystatefulapplications. As discussed in a re-
cent paper [8], testing database applications has special re-
quirements: While testing a database application, the state

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

of the application must be controlled because the result of a
function call strongly depends on the state of the database.
For example, a test that checks the reporting component
of an order management application must always be exe-
cuted against the same test database in order to make sure
that the report shows the same orders every time this test
is executed. Controlling the state of the test database is a
challenging task, if many tests (possibly thousands) need
to be executed and if some of these tests involve updates
to the database (e.g., tests that test the insertion of a new
order). The work presented in [8] devised a framework to
control the state of a test database and gave strategies and
heuristics to execute tests in the most efficient way. That
work solved the problem for a serialized world in which
only one test run is executed at a time. The purpose of this
work is to extend that work so that tests can be executed
concurrently on a single or several machines.

Executing test runs in parallel is obviously very impor-
tant if many test runs need to be executed. The goal is to ex-
ploit the available resources as well as possible. If several
machines are available, the goal is to achieve linear speed-
up; that is, the running time of executing all tests decreases
linearly with the number of machines. In order to achieve
this speed-up, it is important to balance the load on all ma-
chines – just as in all parallel applications [5]. At the same
time, however, it is also important to control the state of the
test database(s) and to execute the test runs in such a way
that the number of database reset operations is minimized
– just as for non-parallel testing in [8]. As a result, par-
allel testing involves solving a two-dimensional optimiza-
tion problem: (a)partitioning: deciding which test runs to
execute on which machine; and (b)ordering: deciding in
which order to execute the test runs on each machine. In
order to solve this optimization problem, this work makes
the following contributions:

• A dynamic scheduling approach is presented that al-
lows a test run scheduler to carry out load balanc-
ing and at the same time control the state of the test
database(s) and minimize the number of reset opera-
tions.

• Two alternative architectures,Shared-Nothing(SN)
andShared-Database(SDB) are presented. As in par-
allel query processing [16], SN scales better to a large

589



number of machines. SN executes test runs concur-
rently on different machines and database instances
so that the execution of concurrent test runs does not
interfere. SDB executes test runs concurrently on dif-
ferent threads using the same database instance and,
thus, the concurrent test runs interfere. SDB, however,
is important if the test resources of an organization are
limited to one or only a few machines because it fully
exploits these resources. In practice, often a combina-
tion of both architectures works best.

• For both architectures, SN and SDB, alternative
scheduling strategies are presented in order to deter-
mine which test runs are to be executed on which ma-
chine/thread and in which order.

• The trade-offs of the scheduling strategies are stud-
ied experimentally using real test cases from a sup-
plier relationship management (SRM) application and
comprehensive simulations.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the results presented in [8]
because those results form the basis for this work. Further-
more, Section 2 extends the framework of [8], presents the
dynamic scheduling approach, and describes the SN and
SDB architectures for concurrent and parallel testing. Sec-
tion 3 presents alternative scheduling strategies for paral-
lel testing in the SN architecture. Section 4, in turn, de-
scribes alternative scheduling strategies for parallel testing
in the SDB architecture. Section 5 contains the results of
performance experiments that compare the trade-offs and
effectiveness of the proposed techniques for both architec-
tures. Section 6 gives a brief overview of related work.
Section 7 describes conclusions and possible avenues for
future work.

2 Database Regression Tests

This section gives a brief overview of the framework pre-
sented in [8]. After that, this framework is extended for the
parallel execution of tests.

2.1 Regression Test Framework

Re-iterating the definitions of [8], testing a database appli-
cation involves the following components:

Test DatabaseD: The state of an application at the begin-
ning of each test. In general, this state can involve several
database instances, network connections, message queues,
etc.

ResetR: An operation that brings the application back into
stateD. This operation is potentially needed after the exe-
cution of a test that updated the database. As discussed in
[8], there are alternative ways to implementR. For the pur-
pose of this work, we will use the same method as used in
[8] which takes about two minutes for a 180 Megabytes test
database on conventional hardware and a standard RDBMS
(Section 5).

Request:The execution of a function of the application.
The result of the function depends on the parameters of
the function call (encapsulated in the request) and the state
of the test database at the time the request is executed. A
request can have side effects; i.e., change the state of the
test database.

Test Run:A sequence of requests that are always executed
in the same order. For instance, a test run tests a specific
business process that is composed of several actions (login,
view product catalog, place order, specify payment, etc.).
The test run is the unit in which failures are reported. It is
assumed that the test database is in stateD at the beginning
or the execution of a test run. During the execution of a test
run the state may change due to the execution of requests
with side-effects.

Failed Test Run:A test run for which at least one request
does not return the expected result. A failed test run indi-
cates a bug in the application program.

Schedule:A sequence of test runs and resets. The test runs
and reset operations are carried out one at a time; there is
no concurrency in the framework of [8].

2.2 Centralized Scheduling Strategies

The goal of a scheduling strategy is to find a schedule of
test runs and resets that minimizes the running time. At
the same time, it must be guaranteed that there are no false
negatives; false negatives arise, for example, if no resets are
executed and a test run is executed and the test database is
not in stateD at the beginning due to the prior execution of
test runs with requests that have side-effects. A naı̈ve ap-
proach to avoid false negatives is to carry out a reset before
the execution of each test run. Unfortunately, this approach
has very poor performance (testing can take weeks instead
of hours), as shown in [8]. Again, re-iterating the findings
of [8], the following techniques were proposed to find good
schedules in a centralized setting (i.e., if the test runs are
executed one at a time):
Optimistic++: The Optimistic++ strategy executes the test
runs in a random order. The key idea is to apply resets
lazily. If a test run fails (i.e., a request returns an unex-
pected result), then there are two possible explanations for
this failure: (a) the application program has a bug, or (b) the
test database was in a wrong state due to the earlier execu-
tion of other test runs. In order to make sure that only bugs
are reported, the Optimistic++ strategy proceeds as follows
in this event:

• Reset the test database (i.e., executeR).

• Re-execute the test run that failed.

If the test run fails again, then the test run is reported so
that engineers can look for a potential bug in the applica-
tion program. If not, then the first failure was obviously
due to the test database being in the wrong state. In this

590



case, the test run is not reported and Optimistic++ remem-
bers the test runs that were executed before this test run and
records aconflict in a conflict database1. Formally, a con-
flict is denoted as〈Ti〉 → T , with 〈Ti〉 a sequence of test
runs andT a test run. A conflict〈Ti〉 → T indicates that
if 〈Ti〉 is executed, then the database must be reset before
T can be executed. For example, one of the test runs in
〈Ti〉 could insert a purchase order andT could be a test run
that tests a report that counts all purchase orders. Based
on the collected conflicts in the conflict database, the Op-
timistic++ strategy tries to avoid running a test run twice,
in all subsequent tests. For instance, if all or a superset of
the test runs in〈Ti〉 have been executed, then Optimistic++
will automatically reset the test database (i.e., executeR)
before the execution ofT , thereby avoiding a failure ofT
due to a wrong state of the test database.

The Optimistic++ strategy (and all the following strate-
gies which extend Optimistic++) is susceptible to a phe-
nomenon calledfalse positives; i.e., a test run does not fail
although it should fail. As discussed in [8], however, this
phenomenon is rare in practice. Also, this risk is affordable
because in return it is possible to execute a large number
(thousands) of test runs which would otherwise not be pos-
sible.

Slice: Slice extends the Optimistic++ strategy. Rather than
executing the test runs in a random order, the Slice heuris-
tics use the conflict information in order to find a schedule
in which as few resets as possible are necessary. For ex-
ample, if test runT1 tests the insertion of a purchase order
into the database andT2 tests a report that counts the num-
ber of purchase orders, thenT2 should be executedbefore
T1. The conflict information is gathered in the same way
as for the Optimistic++ strategy. If there is a conflict be-
tween test runs〈Ti〉 andT , then Slice executesT before
〈Ti〉. At the same time, however, Slice does not change the
order in which the test runs in〈Ti〉 are executed because
those test runs can be executed in that order without requir-
ing a database reset. Such a sequence of test runs is called
aslice.

The Slice heuristics can best be described by an exam-
ple with five test runsT1, . . . , T5 (taken from [8]). At the
beginning, no conflict information is available, so that the
five test runs are executed in a random order. Let us assume
that this execution results in the following schedule (R de-
notes the database reset operation,Ti denotes the execution
of test runTi):

R T1 T2 T3 R T3 T4 T5 R T5

From this schedule, we can derive the two conflicts:
〈T1T2〉 → T3 and〈T3T4〉 → T5. Correspondingly, there
are three slices:〈T1T2〉, 〈T3T4〉, and〈T5〉. Based on the
conflicting information in the conflict database and the col-
lected slices, Slice executesT3 before〈T1T2〉 andT5 before
〈T3T4〉 in the next iteration. In other words, Slice executes

1Readers interested on the implementation details of the conflict
database are referred to [8].

the test runs in the following order:T5T3T4T1T2. Let us
assume that this execution results in the following sched-
ule:

R T5 T3 T4 T1 T2 R T2

In addition to the already known two conflicts, the
following conflict is added to the conflict database:
〈T5T3T4T1〉 → T2. The slices after this iteration are:
〈T5T3T4T1〉 and 〈T2〉. As a result, the next time the test
runs are executed, the Slice heuristics try the following or-
der:T2T5T3T4T1.

The Slice heuristics reorder the test runs with every it-
eration until reordering does not help anymore either be-
cause the schedule is perfect (no resets after the initial re-
set) or because of cycles in the conflict data (e.g.,〈T1〉 →
T2, 〈T2〉 → T3, 〈T3〉 → T1). The details can be found in
[8].

It should be noted that the Slice heuristics are not per-
fect. There are situations in which the Slice heuristics pro-
duce sub-optimal schedules. So far, no polynomial algo-
rithm has been found that finds an optimal schedule (mini-
mum number of reset) given a set of test runs and conflicts.
Although it has not been proven yet, the problem is be-
lieved to beNP hard.

Graph-based heuristics:Graph-based heuristics are alter-
natives to the Slice heuristics. They were shown to perform
overall as well as the Slice heuristics for a serial execution
of test runs in [8]. The idea is to model conflicts as a di-
rected graph in which the nodes are test runs and the edges
Tj → Tk are conflicts indicating thatTj might update the
test database in such a way that a reset (R) is necessary
with probability w in order to executeTk after Tj

2. The
edges are weighted by this probabilityw. Based on this
weighted directed graph, a graph reduction algorithm can
be applied in order to find a good order to execute the test
runs. The best known heuristics for the graph reduction
were calledMaxWeightedDiffin [8].

The details of graph-based heuristics and the
MaxWeightedDiff strategy, in particular, are presented
in [8]. The details of extending the MaxWeightedDiff
strategy for parallel testing can be found in [9]. Due to
space constraints, we cannot describe these details in this
paper and only give a sketch of the main ideas.

2.3 Parallel Testing

As mentioned in the introduction, parallel testing is a two
dimensional scheduling problem. In addition to deciding in
which order to execute the test runs, a scheduling strategy
must partition the test runs. Depending on the architecture,
Shared-Database or Shared-Nothing (see below), a parallel
execution can increase the number of resets due to interfer-
ence (Shared-Database) or decrease the number of resets
(Shared-Nothing) by executing test runs that are in conflict
concurrently. As a result, conflict information ought to be
taken into account in order to decide on which machine to

2Similar to the Slice heuristics, conflicts are detected and collected
along the testing in graph-based heuristics.

591



Application

Database

Machine 1

Application

Database

Machine N

T12

T4

...

T5

T31

...

Figure 1: Shared-Nothing (SN) Architecture

Application

Database

T12

T4

...

T5

T31

...

...

Thread 1 Thread N

Figure 2: Shared-Database (SDB) Architecture

execute which test run. Furthermore, it is important to bal-
ance the load on all machines so that the resources are used
as well as possible. Load balancing can be carried out with-
out conflict information; load balancing should be carried
out taking the current load of machines and the estimated
length of test runs into account.

2.3.1 Shared-Nothing vs. Shared-Database

Figures 1 and 2 show the two scenarios considered in this
work for the concurrent execution of test runs. In the
Shared-Nothing architecture (SN) shown in Figure 1 there
areN separate and independent installations of the applica-
tion and its underlying database. In Figure 1, each of these
installations is on a separate machine, but it is also possible
that several installations are on a single machine or that a
single installation spans several machines (e.g., the appli-
cation tier could be distributed on a cluster of machines).
What is important for this architecture is that the instal-
lations do not share state and, thus, do not interfere. For
presentation purposes, we use the termmachinein order to
denote an installation of the application in the remainder of
this paper. Furthermore, on each installation only one test
run is executed at a time.

The Shared-Database architecture (SDB) is shown in
Figure 2. In this architecture, there is only one installa-
tion of the application and its underlying database and test
runs are executed concurrently on this instance. In Figure
2, the installation of the application and the database is on
a single machine; again, however, the installation could be
distributed on several machines. The important observation
is that concurrent test runs interfere in this scenario because
they read and update the same database.

... T4 T31 T5 T12

Conflicts

Scheduler

T17

Reset?

T8

Reset?

T7

T9 T25T13

History
M1

MN

...

Application

Database

Machine/Thread 1

Application

Machine/Thread N

Database

Figure 3: Scheduler for Parallel Testing

The trade-offs between the SN and SDB architectures
are straightforward. Obviously, the SN architecture scales
better to a large number of machines. Also, scheduling for
the SN architecture is easier. On the other hand, the SN ar-
chitecture wastes resources because the resources of each
installation are not fully utilized by a single thread of test
runs; e.g., if multi-processor machines are used. Further-
more, some organizations simply cannot afford more than
one test installation: each installation requires extra system
administration work and possibly software license fees are
required for each installation. As a result, a combination
of both architectures (multiple installations and concurrent
test thread for each installation) are useful in practice, and
thus, we will explore both architectures as part of this work.

2.3.2 Scheduling Parallel Tests

For both architectures (SN and SDB), we propose the
model presented in Figure 3 in order to schedule test runs
for concurrent execution. The scheduler has an input queue
of test runs. How to order the test runs in this input queue
depends on the scheduling strategy (Sections 3 and 4). At
the beginning, the scheduler takes the first test run from its
input queue and submits it for execution to Machine 1 in
the SN architecture or to Thread 1 in the SDB architecture.
(Figure 3 shows machines in the SN architecture, but the
same principles apply to feeding test threads in the SDB
architecture.) Furthermore, the scheduler submits the sec-
ond test run to the second machine/thread and so on until
all N machines/threads are busy.

When a machine (or thread), sayMi, has completed the
execution of a test run, sayTk, Mi notifies the scheduler
that it is ready to execute a new test run. The scheduler
keeps a history of all test runs that have been executed on
Mi and correspondingly placesTk into its history forMi.
Furthermore, the scheduler selects the next test run to be
executed onMi from its input queue. In most cases, the
scheduler selects the first test run from its input queue, but
there are occasions in which it is beneficial not to select the
first test run from the queue. In SN, for example, if it is
known thatT12 andT17 are in conflict in Figure 3, then it
might be beneficial not to executeT12 onM1 afterT17 has

592



been executed onM1 and instead executeT5 on M1 and
wait until another machine becomes available forT12. In
order to decide which test run to execute next, the scheduler
takes the conflict database, the history, and the order in the
input queue into account. Alternative policies how such
optimizations are applied for SN and SDB are described in
Sections 3 and 4.

When a machine/thread informs the scheduler that it
has completed the execution of a test run, it also indicates
whether it had to reset the database in order to execute the
test run. Recall from the description of the Optimistic++
strategy in Section 2.2 that the database is reset whenever
a test run fails in order to make sure that this failure is not
due to the test database being in the wrong state. If a reset
has been carried out byMi in order to executeTk, then the
scheduler updates its history information and the conflict
database in the following ways for the SN architecture:

• Conflict Database:A conflict HMi
→ Tk is inserted

into the conflict database. HereHMi represents the
sequence of test runs recorded in the history of the
scheduler forMi. This conflict follows directly from
the definition of a conflict and the fact that a reset was
necessary in order to executeTk after the execution of
the test runs inHMi

.

• History: The history forMi is flushed; i.e.,HMi
:=

Tk. The updates of all test runs that were executed on
Mi beforeTk are undone due to the reset so that these
test runs need not be recorded in the history anymore.

For the SDB architecture, the conflict database and his-
tory are updated in the following way if the database has
been reset:

• Conflict Database:A conflict
⋃

i=1,...,N HMi → Tk

is inserted into the conflict database.3

• History: The history for all machines is flushed; i.e.,
HMj

:= ∅ for j = {1, . . . , N} \ {i} andHMi
:= Tk.

The rules for the SDB architecture are the same as for the
SN architecture; the difference is that they affect all threads
rather than just a single machine.

2.3.3 Summary

Obviously, parallel testing can significantly reduce the run-
ning time of executing a set of test runs. In the SN architec-
ture, it can be expected that the speed-up is linear because
there is no interference and if all test runs have roughly
the same length (if not, bin packing must be applied to en-
sure load balancing). In fact, super-linear speed-up is possi-
ble because conflicting test runs can be executed on differ-
ent machines so that the total number of resets is reduced.
In the SDB architecture, linear speed-up is only possible
for small levels of concurrency and if database resets are
rare. A database reset blocks all activity. Nevertheless, if a

3An ordered union is carried out by merging the test runs according to
their timestamps.

scheduling strategy makes sure that conflicting test runs are
not executed concurrently, then significant speed-ups can
be achieved in this architecture, too, because hardware re-
sources (disks, multiple CPUs and co-processors) are better
exploited.

In order to implement parallel testing, the framework of
[8] is applicable, but needs to be extended. First, the notion
of conflict needs to be refined (as discussed in the previ-
ous section). More importantly, the scheduling strategies
must be extended in order to decide on which machine or
in which thread to execute a test run. How to extend the
scheduling strategies for the SN and SDB architectures is
the subject of the next two sections.

3 Scheduling Test Runs for SN
This section presents how the centralized scheduling strate-
gies of Section 2.2 can be extended for the Shared-Nothing
architecture. As shown in Figure 3 and described in Sec-
tion 2.3, there are two decisions that need to be made in
order to schedule test runs for parallel execution:

• Determine the order of test runs in the scheduler’s in-
put queue of test runs.

• Define a criterion in which situations the scheduler
will not select the first test run of its input queue for
execution.

The remainder of this section describes how the Opti-
mistic++, Slice, and MaxWeightedDiff heuristics from [8]
are extended to make these two decisions for the Shared-
Nothing architecture (SN).

3.1 Parallel Optimistic++

The Optimistic++ policy takes a very simplistic parallel
scheduling approach:

• The test runs are put into the scheduler’s input queue
in random order.

• The scheduler always selects the first test run from its
input queue when a machine becomes available.

Note, however, that the parallel Optimistic++ strategy for
SN does maintain a history and conflict information as pre-
sented in Section 2.3. The parallel Optimistic++ strategy
uses this information to issue a database reset before a test
run is executed for the first time on a machine, if this test
run is known to be in conflict with a sub-set of the test runs
in the history of that machine. This way, the parallel Opti-
mistic++ strategy avoids unnecessarily executing a test run
twice as a result of the test database of that machine being
in the wrong state.

3.2 Parallel Slice Heuristics

The key idea of the parallel Slice heuristics for SN is to
schedule whole slices rather than individual test runs. Re-
call from Section 2.2 that a slice is a sequence of test runs

593



that can be executed without a database reset; i.e., there are
no conflicts within a slice. A slice is defined as a sequence
of test runs that was executed successfully between two re-
sets. In the SN architecture, naturally, the test runs of a
slice should be executed sequentially on the same machine.

Example: Again, the parallel Slice algorithm can best be
described using an example. At the beginning, the paral-
lel Slice heuristics behave exactly like the parallel Opti-
mistic++ heuristics; that is, the order of test runs in the
scheduler’s input queue is random and whenever a machine
is available, the next test run is selected. Let us assume that
this results in the following schedule in a scenario with two
machines:

M1 : R T1 T2 T3 R T3

M2 : R T5 T6 R T6 T7 T8

As a result, four slices can be identified:〈T1T2〉, 〈T3〉,
〈T5〉, and〈T6T7T8〉. Accordingly, the following conflicts
are detected:〈T1T2〉 → T3 and〈T5〉 → T6. Using the cen-
tralized Slice heuristics (Section 2.2 and [8]), the test runs
executed onM1 and the test runs executed onM2 are re-
ordered separately. As a result, we obtain two re-orderings,
one for each machine (〈s〉 denotes the delimiters of slices):

O1 : 〈s〉T3〈s〉T1T2〈s〉

O2 : 〈s〉T6T7T8〈s〉T5〈s〉
These two (partial) orders of test runs are merged to one
(total) order of all test runs which serves as the order for
the input queue of the scheduler in the next iteration. This
merge is carried out in a round-robin fashion. That is, the
total order is:

〈s〉T3〈s〉T6T7T8〈s〉T1T2〈s〉T5〈s〉

Given this input queue, the scheduler operates as described
in Section 2.3.T3 is executed on Machine 1 andT6 is ex-
ecuted on Machine 2. If a third machine were available in
this iteration of testing, then the scheduler wouldnot select
T7 becauseT7 should be executed on Machine 2; instead,
the scheduler would selectT1. Likewise, if there are only
two machines and Machine 1 has completed the execution
of T3, then the scheduler would selectT1 for execution on
Machine 1. Let us assume that indeed only two machines
are available in this iteration and that the scheduler pro-
duces the following schedules on these two machines in
the next iteration:

M1 : R T3 T1 R T1 T2

M2 : R T6 T7 T8 T5 R T5

As a result, there are still the same four slices as in the first
iteration. Two conflicts are added to the conflict database
(in addition to the two conflicts detected in the first itera-
tion): 〈T3〉 → T1 and〈T6T7T8〉 → T5. At this point, there
is a cyclic conflict between〈T3〉 and〈T1T2〉 so that no re-
ordering is attempted for these two traces (see [8] for de-
tails). Likewise, there is a cyclic conflict between〈T6T7T8〉

and〈T5〉 so that those two slices are not reordered either.
As a consequence, the order in which the test runs are put
into the scheduler’s input queue for the third iteration is the
same as in the second iteration (after a round-robin merge).

Even though the order of test runs in the input queue did
not change, the dynamic behavior of the scheduler is differ-
ent due to the additional conflicts recorded in the conflict
database. At the beginning,T3 is scheduled for execution
on M1 andT6 is scheduled for execution onM2. At this
point, the state of the input queue is as follows (again, us-
ing 〈s〉 in order to depict beginnings and endings of slices
for presentation purposes):

T7T8〈s〉T1T2〈s〉T5〈s〉

WhenM1 completes the execution ofT3, then the follow-
ing rules are applied in order to find the next test run to be
executed onM1:

• T7 and T8 are not selected because they are part of
a slice that is currently executed on another machine,
M2.

• T1 is not selected because there is a conflict〈T3〉 →
T1 andT3 is in the history ofM1.

• T2 is not selected because it is part of the same slice
asT1, andT1 has a conflict.

• T5 is selected because it does not violate any of the
three rules above.

As a consequence,T5 is executed onM1. This is in the
spirit of the Slice heuristics (keeping slices intact) and at
the same time gives the biggest hope to minimize the total
number of database resets.

Now what happens next whenM1 completes the execu-
tion of T5? At this point, there are no more candidate test
runs forM1 left. Rather than lettingM1 go idle, the Slice
heuristics simply selects the first test run from the sched-
uler’s input queue in this event; i.e.,T7 in this example.

In summary, there are four ideas in the design of the
parallel Slice heuristics: (a) The order of test runs in the
scheduler’s input queue is determined by applying the cen-
tral Slice heuristics to each machine individually and then
merging the partial orders (using a round-robin approach).
(b) The scheduler executes all test runs of the same slice
on the same machine. (c) The scheduler dynamically uses
the history and conflict information in order to make sure
that conflicting slices are executed on different machines
as much as possible. (d) Utilizing all available machine re-
sources has higher priority than minimizing the number of
database resets. In other words, if no suitable test run is
found in the input queue, the scheduler selects the first test
run from the input queue, thereby causing an addition reset,
rather than letting the machine go idle.

3.3 Parallel MaxWeightedDiff Heuristics

The parallel MaxWeightedDiff heuristics work as follows:
The conflict graph is constructed in the same way as in

594



the regular MaxWeightedDiff heuristics for a serial exe-
cution [8]. Likewise, the order of test runs in the sched-
uler’s input queue is determined just as for the centralized
MaxWeightedDiff heuristics. When the execution of a test
run has completed on, say, machineMx, then the scheduler
selects the first test run from its input queue, if the cumu-
lated weights of test runs in the history ofMx to that test
run is lower than a certain threshold. Otherwise, this crite-
rion is tested for the second test run, third test run and so,
until a suitable test run is found. If no such test run exists,
then the first test run is selected. As a threshold, we use 1 in
all experiments reported in this paper because this setting
was very good in all situations. An example and details of
the algorithm are given in [9] and cannot be presented due
to space constraints.

4 Scheduling Test Runs for SDB

Just as for the SN architecture, the key questions that need
to be answered for the Shared-Database architecture (SDB)
are in which order the test runs are inserted into the sched-
uler’s queue and in which situations the scheduler selects
the first test run from this queue. Furthermore, there is a
question of how to schedule the reset operation and how to
detect failures in the presence of concurrent test runs. In
all, making the right scheduling decision is more important
for SDB than for SN. Due to the inference of concurrent
test runs, it is important to make sure that conflicting test
runs do not run concurrently in addition to making sure that
conflicting test runs are not executed subsequently. The re-
mainder of this section shows how the Optimistic++, Slice,
and MaxWeightedDiff strategies can be applied to the SDB
architecture. Furthermore, alternative implementations for
the database reset operation are discussed.

Throughout this section, it is assumed that the multi-
programming level,N , (i.e., the number of available test
threads) is constant. How to dynamically adjustN based
on, say, the load of the machine and its resources is one
important avenue for future work.

4.1 Parallel Optimistic++

The parallel Optimistic++ strategy for SDB works in ex-
actly the same way as the parallel Optimistic++ strategy
for SN (Section 3.1). That is, the test runs are put into the
scheduler’s input queue in random order and the scheduler
always selects the first test run from its input queue when
a test run has been completed (i.e., when a test thread be-
comes available). The Optimistic++ strategy for SDB and
SN differ in the way that conflicts are recorded (Section
2.3) and reset operations are scheduled (Section 4.4).

4.2 Parallel Slice

In the SN architecture, one of the key ideas was to execute
test runs from the same slice sequentially on the same ma-
chine. In the SDB architecture, the idea is to execute test
runs from the same slice concurrently on different threads
because these test runs are known not to be in conflict.

Again, the best way to describe the Slice heuristics for SDB
is by the means of an example.

In this example, there are seven test runs executed con-
currently in two threads on one machine. At the beginning,
the test runs are executed in a random order. Let us assume
that the following schedule is generated: (A database re-
set terminates the execution of test runs in both threads in
SDB. How to schedule such resets is described in Section
4.4.)

Thread 1: T1 T2 T2 T3

Thread 2: T5 T6
R

T7 T8
R

T8

In this example,T2 is the first test run that fails because
the database was in a wrong state forT2. At this point,
it is not clear whether an update request inT1, T5 or T6

or a combination of update requests carried out as part
of these test runs caused the failure ofT2. Consider-
ing the time stamps whenT1, T5, andT6 were started, a
conflict 〈T1T5T6〉 → T2 is recorded. The first slice is
〈T1T5T6〉 because these test runs could be executed con-
currently/sequentially without a failure.

The second test run that fails isT8. The corresponding
conflict is 〈T2T7T3〉 → T8. Accordingly, there are two
more slices:〈T2T7T3〉 and〈T8〉. Based on these slices and
conflicts, the order in which the test runs are inserted into
the scheduler’s input queue for the next iteration of testing
is as follows (again showing the slice delimiters for presen-
tation purposes):

〈s〉T8〈s〉T2T7T3〈s〉T1T5T6〈s〉

These test runs are then scheduled in this order; that is,
the scheduler always selects the next test run from its input
queue after the execution of a test run has been completed
and a test thread becomes available. There is no dynamic
re-scheduling based on histories and the conflict informa-
tion.

In summary, the parallel Slice heuristics for SDB work
according to the following two principles. One, the order-
ing of test runs for the scheduler’s input queue is carried out
based on slices and conflict information in exactly the same
way as for the Slice heuristics in a centralized setting (Sec-
tion 2.2 and [8]). The only difference is that timestamps are
used to define a total order on concurrent test runs. Two,
the scheduler always selects the first test run from its in-
put queue and does not apply any more complex heuristics
to dynamically reorder the test runs based on history and
conflict information.

4.3 Parallel MaxWeightedDiff

The parallel MaxWeightedDiff heuristics for SDB works
in a very similar way as the centralized MaxWeightedDiff
heuristics. That is, the test runs are ordered in the sched-
uler’s input queue in the same way as described in [8] for
a serial execution of test runs. Furthermore, the scheduler
always selects the first test run from its input queue when
a test thread becomes available. Again, an example and
details of the approach can be found in [9].

595



4.4 Scheduling Database Resets

Another question that is specific to the SDB architecture
is how to schedule a database reset when a test run fails,
potentially due to a wrong state of the test database. The
question is what happens to the test runs that are executed
in concurrent threads? This question does not arise in the
SN architecture because a reset caused by a failure of a
test run on one machine does not impact the concurrent
execution of test runs on other machines.

Conceptually, scheduling a reset in the SDB architec-
ture is related to the problem of scheduling a check point
for database recovery in a database engine [6]. There are
several options:

• lazy: Concurrent test runs that have started are com-
pleted, but no new test runs are started as soon as a
test run fails and a database reset becomes necessary.

• eager: Concurrent test runs are aborted and the
database reset is carried out immediately. After the
database has been reset, all test runs that have not
completed must be restarted.

• deferred:The database reset is deferred and the failed
test run is re-scheduled to be executed at the end. In
other words, the first reset is carried out after every test
run has been tried once. After that, a database reset
is carried out and the test runs that failed in the first
round are re-scheduled (using Optimistic++, Slice, or
MaxWeightedDiff heuristics).

The trade-offs between these three alternatives are fairly
complex and the choice for the best approach depends on
the number of conflicts between test runs. We plan to ex-
plore these trade-offs as part of future work. For the pur-
pose of this work, we chose thelazystrategy because it is
very robust and minimizes the amount of wasted work by
failed test runs.

Another related question is how to restart the execution
of test runs after a database reset. Again, there are several
options:

• single-threaded:Execute the failed test run again in
isolation; i.e., without starting any other test runs con-
currently. The advantage of this approach is that if the
test run fails again, it is guaranteed that this failure is
due to a potential bug in the application and not due to
the database being in a wrong state at the time of the
failure due to the execution of update requests by con-
current test runs.4 The disadvantage is that parallelism
is lost.

• multi-threaded: Execute the failed test run concur-
rently with other test runs. Clearly, the advantage of

4A test run isnot a transaction and can span several database trans-
actions. Typically, every request or a small number of requests are im-
plemented by the application as a single database transaction in order to
achieve recoverability of long running business transactions. As a result,
test runs (which represent such long running business transactions) do see
updates carried out by other, concurrent test runs.

this approach is that no parallelism is lost. The disad-
vantage is that if the test run fails again, that test run
must be executed yet another time until it is successful
or fails in a single-threaded environment.

• mix: Many other strategies are conceivable. For in-
stance, it is possible to restart with a lower degree of
parallelism and/or in single-threaded mode after an-
other failure.

Again, the choice between these alternatives depends on
the number of conflicts and the probability that a test run
fails after a restart due to other concurrent test runs. We
plan to study these effects in detail as part of future work.
For the purpose of this work, we chose thesingle-threaded
approach because this approach is robust and minimizes the
amount of wasted work due to re-executing failed test runs.

5 Performance Experiments and Results

This section presents the results of performance experi-
ments in order to study the effectiveness of the alternative
scheduling strategies for the SN and SDB architectures.
The following sets of experiments were made:

• simulation with synthetic test runs in SN;

• execution of real test runs in SDB;

• simulation with synthetic test runs in SDB.

The real test runs were taken from an SRM application us-
ing the test installation of an industrial customer of that ap-
plication. Carrying out experiments with several installa-
tions of the application (SN) was not possible in this en-
vironment because the customer did not have the available
resources to do such experiments. The synthetic test runs
were generated with the purpose to study the performance
of the strategies for a large number of test runs with varying
characteristics (e.g., number of conflicts).

5.1 Experimental Environment

Synthetic Test Runs:The synthetic test runs were gener-
ated using a dummy database application in order to have
control over the length of the test runs (running time when
executed in isolation) and the conflicts between test runs.
Table 1 summarizes the characteristics of these synthetic
test runs. In all experiments, 10,000 synthetic test runs
were used. The length of a test run was chosen randomly
in the range of 0 minutes (just one request) to three minutes
(450 requests) using a uniform distribution. These settings
were inspired by the real test cases (Table 2). The number
of conflicts between the test runs was varied from 10,000
(low) to five millions (high) and a uniform distribution was
used in order to randomly generate conflicts between test
runs when the test runs were synthesized as in [8]. We also
experimented with a Zipf distribution in which there was
skew in the conflict distribution and some test runs were in
conflict with many other test runs, but we do not show the

596



number of test runs 10,000
length of test runs 0 min - 3 min (avg. 1.5 min)
number of conflicts 10,000 (low) - 5 mio (high)
conflict distribution uniform

Table 1: Synthetic Test Runs

number of test runs 61
length of test runs 0 min - 3 min (avg. 1.5 min)
number of conflicts unknown
conflict distribution unknown

Table 2: Real Test Runs

results here for brevity: the results with the Zipf distribu-
tion were almost identical with the results for the uniform
distribution.

Real Test Runs: The real test runs were taken from a
real database application (BTell by i-TV-T AG) using the
test installation of one of the customers of that application
(Unilever). BTell is a Java application with approximately
3000 classes and a relational database schema with approx-
imately 500 tables. These BTell test runs were generated
manually by test engineers who administrate the applica-
tion for Unilever. These test runs were also used in the ex-
periments of [8]. The characteristics of this set of test runs
is given in Table 2. There are 61 test runs and the length
characteristics are the same as for the synthetic test runs.
The conflict distribution could not be determined because
doing so would involve expensive analysis of the BTell ap-
plication code.

Simulation of SN: In order to carry out experiments with
the SN architecture, we used an event-based simulator
that simulated the execution of the synthetic test runs and
of database reset operations. A database reset operation
costed two minutes and the execution times of the test runs
were determined by their length (between 0 and 3 minutes,
Table 1). Up to 50 machines could be simulated this way.
The details of the simulator can be found in [9].

Hardware for SDB: For the experiments with real test
runs in the SDB architecture, we used a machine with two
3.2 GHz Pentium 4 processors and 4 GB of main memory
running Linux. The BTell application and database (IBM
DB2) were installed on this machine. Executing a reset
costed two minutes on this machine.

Simulation of SDB: In order to carry out experiments with
synthetic test runs in the SDB architecture, we again used
a simulator. The simulator modeled a cluster of machines
that each run an instance of the application and a central-
ized database server. In other words, a scalable three-tier
architecture such as that of SAP [10] is modeled. In this
experiment, the hardware resources are not the bottleneck;
instead, the interference of the execution of concurrent test
runs is the limiting factor. Again, the details of this simula-
tor are described in [9].

Execution of Experiments: We studied the Optimistic++,
Slice, and MaxWeightedDiff heuristics as described in Sec-
tions 3 and 4. The full details of all algorithms (in particular
the MaxWeightedDiff heuristics) can be found in [9]. In all
experiments, the conflict database was initially empty. We
ran a total of thirty iterations, thereby incrementally build-
ing up conflict information and improving the scheduling
decisions. This section reports on the average running time
and average number of resets of the last ten iterations.

We also measured the CPU overhead of the scheduler in
order to make scheduling decisions. This overhead, how-
ever, was negligible (only a few seconds) in all experiments
so that we do not report these results in this paper. We also
carried out experiments that study how quickly the alter-
native strategies learn the relevant conflict information in
order to produce good schedules. These results are pre-
sented in [9] and are omitted in this paper for brevity. The
observations are almost the same for the parallel strategies
as for their centralized counterparts which were studied
in [8]: Slice converged very fast (within a few iterations)
and MaxWeightedDiff more slowly (approximately 10 it-
erations, depending on the number of conflicts). Both im-
proved significantly (50 percent speed-up) from the first to
the last iteration.

5.2 Shared-Nothing Simulation

Low Conflict: Recall that the goal is to achieve linear
speed-up for a large number of machines in an SN archi-
tecture. Table 3 shows the running times (in hours) and
number of resets for synthetic test runs with a low number
of conflicts (10,000) between the test runs. The following
observations can be made:

First, all three strategies achieve a linear speed-up with
a growing number of machines. The running time is almost
50 times as high if only one machine is available than if 50
machines are available. The Slice heuristics even showed
a super-linear speed-up if 50 machines were available for
making sure that conflicting test runs ran on different ma-
chines as much as possible. Although not shown in this
experiment, this scalability would easily go beyond 50 ma-
chines up to the point at which load balancing and bin pack-
ing of test runs with different lengths actually matters or the
scheduler itself becomes a bottleneck.

Second, all three strategies have roughly the same run-
ning times. They only differ in the number of resets (Slice
is the best strategy in this respect). However, for the low
conflict synthetic test runs, the number of resets is fairly
low for all three strategies and executing resets does not
impact the running time significantly. (Note that resets are
executed in parallel with test runs and other resets in SN.)
Only if 50 machines are available, Slice outperforms the
other strategies for producing schedules with an extremely
small number of resets.

High Conflict: Table 4 shows the results of the experi-
ments carried out with the synthetic test runs with a high

597



1 machine 5 machines 10 machines 50 machinesApproach
Time Reset Time Reset Time Reset Time Reset

Optimistic++ 254.9 99 54.4 82 27.9 75 5.8 62
Slice 249.2 35 52.8 37 26.2 34 3.4 10
MWD 249.0 60 54.5 69 27.9 68 5.7 57

1 machine 5 machines 10 machines 50 machinesApproach
Time Reset Time Reset Time Reset Time Reset

Optimistic++ 358.0 1788 72.0 1787 35.9 1775 6.8 1753
Slice 306.4 867 63.9 1098 31.8 1038 6.4 1048
MWD 359.4 1792 72.1 1784 35.9 1780 7.6 1767

Table 3: Running Time (hours), Resets
Synthetic, Low Conflict, SN

Table 4: Running Time (hours), Resets
Synthetic, High Conflict, SN

1 thread 2 threads 5 threadsApproach
Time Reset Time Reset Time Reset

Optimistic++ 41 7.0 22 6.6 16 5.8
Slice 31 3.0 18 3.8 12 4.2
MWD 37 3.5 19 4.2 13 4.2

Table 5: Running Time (min), Resets
Real, SDB

number of conflicts on SN. Again, it can be observed that
all three strategies scale well with an increasing number
of machines. If only one machine is available, the test
runs take about 15 days; with 50 machines available, the
test runs can be carried out within one night. Furthermore,
Slice has the lowest number of resets and thus shows the
best running time in all settings; the differences in running
times, however, are moderate for the same reasons as in the
experiments with the low conflict test runs (Table 3).

5.3 Shared-Database, Real Test Runs

Table 5 shows the running times (in minutes) and numbers
of resets of the alternative strategies for the real test runs
using Unilever’s test installation of the BTell application
(SDB). The goal of the SDB architecture is to exploit the re-
sources of the available machine as well as possible. As can
be seen in Table 5, increasing the multi-programming level
up to five concurrent test threads gives significant reduc-
tions in the running time. The running time drops almost
linearly until the machine resources are saturated which is
at about five concurrent test threads. After that, increas-
ing the multi-programming level does not result in any im-
provements.

The parallel Slice heuristics are the winner with regard
to the number of resets and running time. In the best case (5
test threads), it outperforms Optimistic++ by 33 percent. It
is also slightly better than the MaxWeightedDiff heuristics,
but the margins are small.

In all, these experiments confirm that a parallel execu-
tion of test runs can be very beneficial, even if only one
machine is available and the resources for testing are lim-
ited. These experiments were carried out at a typical cus-
tomer and, therefore, we expect these experiments to be
representative for a large class of test environments. The
experiments also confirm that a good scheduling strategy
(such as Slice) is important in the SDB architecture with
an increasing multi-programming level because it tries to
avoid that conflicting test runs are executed concurrently.
We will explore this effect in more detail in the next sub-
section when we present simulation experiments on SDB
with a higher degree of concurrency.

5.4 Shared-Database Simulation

Tables 6 and 7 show the running times (in hours) and num-
ber of resets of the alternative strategies using synthetic test
runs and the simulator for the SDB architecture. Table 6
shows the results for synthetic test runs with a low number
of conflicts. Table 7 shows the results for synthetic test runs
with a high number of conflicts. Recall that the purpose of
these experiments was to study the interference of concur-
rent test runs in the SDB architecture for high degrees of
concurrency (up to 50 test threads).

If the number of conflicts is low (Table 6), then inter-
ference is not an issue. The number of resets stays con-
stant, independent of the number of test threads. Corre-
spondingly, almost linear speed-up can be achieved un-
til the database server or the network becomes saturated.
Also, since the number of conflicts is low, all three schedul-
ing strategies show almost the same performance: Slice has
the lowest number of resets, but in terms of response time,
all three strategies are almost identical.

If the number of conflicts is high (Table 7), interference
indeed becomes an issue in an SDB architecture. Compar-
ing Tables 6 and 7, it can be seen that both the number of
resets and the running times are much higher for the syn-
thetic test runs with a high number of conflicts. Also, the
running time with 50 test threads is twice as high as with
10 test threads, indicating that increasing the degree of con-
currency can hurt performance significantly if the number
of conflicts are high. Nevertheless, even for a high num-
ber of conflicts, the SDB architecture can be beneficial and
significant performance improvements can be achieved as
compared to a serial execution of test runs, if the number
of test threads is controlled.

6 Related Work

The most relevant related work is the work described in [8].
This paper extends the framework, algorithms, and exper-
imental results of [8] for a parallel (concurrent) execution
of test runs. Furthermore, products that support a parallel
test environment for stateless applications are beginning to
appear on the marketplace; e.g., TestStand [1]. In the soft-
ware engineering community, there has been a great deal
of work in the general area of testing; e.g., white box and
black box testing, analysis of the coverage of test cases,
and methodologies to plan and integrate the test phase into
the software development life cycle [15]. In order to speed
up the execution of testing, the selective execution of test
cases has gained a great deal of attention (e.g., [13]). The
idea is to execute only those test cases that are potentially
affected by a change in the application. Clearly, all that

598



1 thread 5 threads 10 threads 50 threadsApproach
Time Reset Time Reset Time Reset Time Reset

Optimistic++ 254.9 99 61.0 85 31.0 85 6.0 70
Slice 249.3 35 57.4 34 30.2 33 5.9 32
MWD 249.1 60 60.1 62 31.9 58 5.9 57

1 thread 5 threads 10 threads 50 threadsApproach
Time Reset Time Reset Time Reset Time Reset

Optimistic++ 357.9 1788 160.1 1385 157.5 1231 258.0 1425
Slice 306.4 967 120.6 793 112.1 796 259.8 1422
MWD 359.4 1792 164.6 1396 156.0 1251 204.5 1067

Table 6: Running Time (hours), Resets
Synthetic, Low Conflict, SDB

Table 7: Running Time (hours), Resets
Synthetic, High Conflict, SDB

work is orthogonal to the work presented in this paper.
In addition, the scheduling problem we tackled is also re-
lated to compiler design for multi-CPU machines or CPUs
with hyper-threading (e.g., [4]), but with totally different
assumptions (CPU needs to know and analyze the code)
and performance trade-off consideration.

In the database community, there is only very little work
on testing. The RAGS system [14] generates a large num-
ber of SQL queries in order to test a relational database
system. There has also been work on the generation of
test databases based on integrity constraints defined in the
database schema [12, 3]. Furthermore, there has been work
on quickly generating large databases with certain attribute
value distributions in order to test the performance and
scalability of a database system [7]. Again, all this work
is orthogonal to the work presented in this paper.

7 Conclusion

This paper studied how the parallel (concurrent) execution
of test runs can speed-up the execution of a potentially
large number of tests. To this end, a dynamic schedul-
ing approach was proposed which has several advantages
(Section 2.3). First, it extends the framework of [8] in or-
der to control the state of the database and apply expen-
sive database reset operations lazily, thereby minimizing
the number of times that expensive database reset opera-
tions need to be carried out. Second, it allows to make
dynamic decisions in order to carry out load balancing and
schedule conflicting tests in the best possible way. Based
on this general approach, three scheduling strategies were
devised that differ in the way that they order the test runs
and make dynamic scheduling decisions for concurrent test
runs.

It is pretty obvious that significant improvements with a
parallel execution of test runs can be achieved if there are
several machines available and separate installations of the
application (and database). In fact, all three strategies that
we studied showed linear speed-up for SN. In SN, testing is
an embarrassingly parallel operation. If a good scheduling
strategy is used (e.g., Slice), then even super-linear speed-
ups are possible.

A less obvious result is that a concurrent execution of
test runs can speed-up the execution of test runs on a sin-
gle installation of the application and database; even on a
single machine. This scenario was called SDB. This sce-
nario is very common in practice due to limitations in the
budget to administrate the test machines and buy multiple
software licenses for test installations. This result is less
obvious because concurrency in an SDB architecture might
incur interference between the concurrent test runs. Never-

theless, the gains that can be achieved by exploiting the
resources of a single machine (e.g., multiple processors,
disks, and co-processors) by such a multi-threaded execu-
tion are higher than the additional cost (more resets) due
to interference. Using real test runs from a commercial
database application and a real industrial-strength test en-
vironment, it could be shown that a speed-up of a factor
of three could be achieved by executing test runs concur-
rently in an SDB architecture. By the means of simulation,
it could be shown that only for a high degree of concurrency
(50 or more test threads), the performance detoriates due to
interference. Overall, for an SDB architecture, having a
good scheduling strategy (such as Slice) is more important
than for the SN architecture.

The initial results obtained in this study are encourag-
ing. Nevertheless, there is need for future work. First, it is
possible to think of more sophisticated scheduling strate-
gies (e.g., based on machine learning techniques). That
way it might be possible to get even better results. Further-
more, there is room for improvement with respect to the
scheduling of the reset operation in the SDB architecture
(Section 4.4). Another important avenue for future work
is to study a two-step scheduling approach for a combina-
tion of SN and SDB. In such a scenario, there are several
installations of the software (SN), but each installation is
exploited in the best possible way applying the strategies
for SDB. The two-step scheduling approach has aglobal
scheduler for SN and a local scheduler for SDB; both of
these schedulers share the same conflict information. Fur-
thermore, an important open question is how to dynami-
cally control the multi-programming level (number of con-
current test threads) for SDB; we plan to adopt ideas from
adaptive load control techniques to avoid lock contention
thrashing in databases [11]. Finally, we still believe that
the whole field of testing database applications is still in its
infancy. As listed in [8], there are several aspects that no-
body has ever studied; an example is testing non functional
requirements such as scalability of a database application.

References

[1] NI TestStand. http://zone.ni.com/zone/jsp/zone.jsp.

[2] K. Beck and E. Gamma. Programmers love writing tests.,
1998. http://members.pingnet.ch/gamma/junit.htm.

[3] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and
E. J. Weyuker. An AGENDA for testing relational database
applications. Software Testing, verification and reliability,
2004.

[4] M. chou Chang and F. Lai. Efficient exploitation of
instruction-level parallelism for superscalar processors by

599



the conjugate register file scheme.IEEE Trans. Comput.,
45(3):278–293, 1996.

[5] D. DeWitt and J. Gray. Parallel database systems: The future
of high performance database systems.Comm. of the ACM,
35(6):85–98, 1992.

[6] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[7] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. InSIGMOD Conference, pages 243–252, 1994.

[8] F. Haftmann, D. Kossmann, and A. Kreutz. Efficient re-
gression tests for database applications. InConference on
Innovative Data Systems Research (CIDR), pages 95–106,
2005.

[9] F. Haftmann, D. Kossmann, and E. Lo. Parallel execution of
test runs for database application systems. Technical report,
ETH Zurich, 2005.

[10] A. Kemper, D. Kossmann, and F. Matthes. SAP R/3: A
database application system (tutorial). InSIGMOD Confer-
ence, page 499, 1998.

[11] A. Mönkeberg and G. Weikum. Performance evaluation of
an adaptive and robust load control method for the avoid-
ance of data-contention thrashing. InVLDB, pages 432–443,
1992.

[12] A. Neufeld, G. Moerkotte, and P. C. Lockemann. Generating
consistent test data for a variable set of general consistency
constraints.VLDB J., 2(2):173–213, 1993.

[13] D. S. Rosenblum and E. J. Weyuker. Using coverage infor-
mation to predict the cost-effectiveness of regression testing
strategies.IEEE Trans. Softw. Eng., 23(3):146–156, 1997.

[14] D. R. Slutz. Massive stochastic testing of SQL. InVLDB,
pages 618–622, 1998.

[15] I. Sommerville. Software Engineering (5th ed.). Addison
Wesley Longman Publishing Co., Inc., 1995.

[16] M. Stonebraker. The case for shared nothing.IEEE
Database Eng. Bull., 9(1):4–9, 1986.

600


