Parallel Execution of Test Runs for Database Application Systems

Florian Haftmanh

L-TV-T AG
D-85774 Unterdhring
{firsthame.lastname@i-TV-T.de

Abstract

In a recent paper [8], it was shown how tests for
database application systems can be executed ef-
ficiently. The challenge was to control the state
of the database during testing and to order the test
runs in such a way that expensresetoperations
that bring the database into the right state need to
be executed as seldom as possible. This work ex-
tends that work so that test runs can be executed
in parallel. The goal is to achieve linear speed-
up and/or exploit the available resources as well
as possible. This problem is challenging because
parallel testing can involve interference between
the execution of concurrent test runs.

Introduction

Donald Kossmani?

Eric Lo?

2ETH Zurich
CH-8092 Zurich
{firstname.lastnamjeé®inf.ethz.ch

of the application must be controlled because the result of a
function call strongly depends on the state of the database.
For example, a test that checks the reporting component
of an order management application must always be exe-
cuted against the same test database in order to make sure
that the report shows the same orders every time this test
is executed. Controlling the state of the test database is a
challenging task, if many tests (possibly thousands) need
to be executed and if some of these tests involve updates
to the database (e.g., tests that test the insertion of a new
order). The work presented in [8] devised a framework to
control the state of a test database and gave strategies and
heuristics to execute tests in the most efficient way. That
work solved the problem for a serialized world in which
only one test run is executed at a time. The purpose of this
work is to extend that work so that tests can be executed
concurrently on a single or several machines.

1 Executing test runs in parallel is obviously very impor-
Testing is the most expensive phase of the software devetant if many test runs need to be executed. The goal is to ex-
opment cycle. Large software vendors like Microsoft spendbloit the available resources as well as possible. If several
50 percent of their development cost on testing. As anothemachines are available, the goal is to achieve linear speed-
example, SAP has currently a product release cycle of 18p; that is, the running time of executing all tests decreases
months of which six months are used only to execute testdinearly with the number of machines. In order to achieve
Typically, some tests must be carried out with every checkzthis speed-up, it is important to balance the load on all ma-
in of new code. Larger-scale integration tests that covechines — just as in all parallel applications [5]. At the same
the whole application must be carried out every night or atime, however, it is also important to control the state of the
least once a week. As a result, there is a huge demand test database(s) and to execute the test runs in such a way
automate and optimize testing. that the number of database reset operations is minimized
In the software engineering community, a great deal of- just as for non-parallel testing in [8]. As a result, par-
frameworks have been proposed in order to manage and inallel testing involves solving a two-dimensional optimiza-
plement tests. The most popular framework used in praction problem: (a)partitioning: deciding which test runs to
tice is JUnit [2] for testing Java applications. All that work execute on which machine; and (@dering: deciding in
is not directly applicable to test database applications owhich order to execute the test runs on each machine. In
more generallystatefulapplications. As discussed in a re- order to solve this optimization problem, this work makes
cent paper [8], testing database applications has special réie following contributions:

quirements: While testing a database application, the state « A dynamic scheduling approach is presented that al-

lows a test run scheduler to carry out load balanc-

ing and at the same time control the state of the test
database(s) and minimize the number of reset opera-
tions.

Permission to copy without fee all or part of this material is granted pro-

vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment. e Two alternative architecturesShared-Nothing(SN)

Proceedings of the 31st VLDB Conference, andShared-Databas¢SDB) are presented. As in par-
Trondheim, Norway, 2005 allel query processing [16], SN scales better to a large

589

number of machines. SN executes test runs concur-
rently on different machines and database instance&

so that the execution of concurrent test runs does n equest:The execution of a function of the application.
. .Oi’he result of the function depends on the parameters of
interfere. SDB executes test runs concurrently on dif-

) . the function call (encapsulated in the request) and the state
ferent threads using the same database instance an) ;

. of the test database at the time the request is executed. A
thus, the concurrent test runs interfere. SDB, however

is important if the test resources of an organization ar fequest can have side effects; i.e., change the state of the

limited to one or only a few machines because it fullye[est database.

exploits these resources. In practice, often a combinafest Run:A sequence of requests that are always executed
tion of both architectures works best. in the same order. For instance, a test run tests a specific
) ~ business process that is composed of several actions (login,
e For both architectures, SN and SDB, alternativeyiew product catalog, place order, specify payment, etc.).
scheduling strategies are presented in order to detefrhe test run is the unit in which failures are reported. It is
mine which test runs are to be executed on which magssumed that the test database is in $taathe beginning
chine/thread and in which order. or the execution of a test run. During the execution of a test

. . run the state may change due to the execution of requests
e The trade-offs of the scheduling strategies are stud\—Nith side-effects.y g d

ied experimentally using real test cases from a sup-
plier relationship management (SRM) application andFailed Test RunA test run for which at least one request
comprehensive simulations. does not return the expected result. A failed test run indi-
cates a bug in the application program.
The rem_alnder of th's. paper is organized as fo”QWS' cheduleA sequence of test runs and resets. The test runs
Section 2 gives an overview of the results presented in [8

b . ! nd reset operations are carried out one at a time; there is
ecause those results form the basis for this work. Furtherr—]0 concurrency in the framework of [8]

more, Section 2 extends the framework of [8], presents the '
dynamic scheduling approach, and describes the SN a . . .
SDB architectures for concurrent and parallel testing. Segﬁ2 Centralized Scheduling Strategies

tion 3 presents alternative scheduling strategies for paralfhe goal of a scheduling strategy is to find a schedule of
lel testing in the SN architecture. Section 4, in turn, de-test runs and resets that minimizes the running time. At
scribes alternative scheduling strategies for parallel testinghe same time, it must be guaranteed that there are no false
in the SDB architecture. Section 5 contains the results ohegatives; false negatives arise, for example, if no resets are
performance experiments that compare the trade-offs anexecuted and a test run is executed and the test database is
effectiveness of the proposed techniques for both architeaot in stateD at the beginning due to the prior execution of
tures. Section 6 gives a brief overview of related work.test runs with requests that have side-effects. Aaap-
Section 7 describes conclusions and possible avenues fproach to avoid false negatives is to carry out a reset before

future work. the execution of each test run. Unfortunately, this approach
has very poor performance (testing can take weeks instead
2 Database Regression Tests of hours), as shown in [8]. Again, re-iterating the findings

_ _ . _ _ of [8], the following techniques were proposed to find good
This section gives a brief overview of the framework pre-schedules in a centralized setting (i.e., if the test runs are
sented in [8]. After that, this framework is extended for theexecuted one at a time):

parallel execution of tests. Optimistic++: The Optimistic++ strategy executes the test
runs in a random order. The key idea is to apply resets
2.1 Regression Test Framework lazily. If a test run fails (i.e., a request returns an unex-

pected result), then there are two possible explanations for
this failure: (a) the application program has a bug, or (b) the
test database was in a wrong state due to the earlier execu-
Test Databasé®: The state of an application at the begin- tion of other test runs. In qrder to make sure that only bugs
ning of each test. In general, this state can involve severdi® reported, the Optimistic++ strategy proceeds as follows
database instances, network connections, message queu8dhis event:

etc.

Re-iterating the definitions of [8], testing a database appli
cation involves the following components:

e Reset the test database (i.e., exe®ite

ResefR: An operation that brings the application back into
stateD. This operation is potentially needed after the exe-
cution of a test that updated the database. As discussed [fithe test run fails again, then the test run is reported so

[8], there are alternative ways to impleméait For the pur- that engineers can look for a potential bug in the applica-
pose of this work, we will use the same method as used ifion program. If not, then the first failure was obviously

[8] which takes about two minutes for a 180 Megabytes testye to the test database being in the wrong state. In this
database on conventional hardware and a standard RDBMS

(Section 5).

e Re-execute the test run that failed.

590

case, the test run is not reported and Optimistic++ rememthe test runs in the following ordeffs757,T,T>. Let us
bers the test runs that were executed before this test run ardsume that this execution results in the following sched-
records aconflictin a conflict databade Formally, a con- ule:

flict is denoted as7;) — T, with (T;) a sequence of test RTs T3 Ty Ty To R Ty

runs andI” a test run. A conflic{7;) — T indicates that

if (T;) is executed, then the database must be reset befo
T can be executed. For example, one of the test runs i

T;) could insert a purchase order dfatould be a test run .
{T) P 6(3"5T3T4T1> and(T»). As a result, the next time the test

that tests a report that counts all purchase orders. Bas . ' .
on the collected conflicts in the conflict database, the OpfUNS are executed, the Slice heuristics try the following or-

timistic++ strategy tries to avoid running a test run twice,derT:hTﬂéFT‘*th' - der th ith .

in all subsequent tests. For instance, if all or a superset of '€ >IC€ euristics reorder the test runs with every it-
the test runs if7}) have been executed, then Optimistic++ Eration until reordering does not help anymore either be-
will automatically reset the test database (i.e., exe@te cause the schedule is perfect (no resets after the initial re

; i : t) or because of cycles in the conflict data (€. —
before the execution df, thereby avoiding a failure df S€ . :
due to a wrong state of the test database. T3, (T3) — T3,(I5) — T1). The details can be found in

The Optimistic++ strategy (and all the following strate- [8]. : .
gies which extend Optimistic++) is susceptible to a phe- It should be noted that the Slice heuristics are not per-
nomenon calledalse positivesi.e., a test run does not fail fect. There are situations in which the Slice heurlsycs pro-
although it should fail. As discussed in [8], however, this 4UCe Sub-optimal schedules. So far, no polynomial algo-

phenomenon is rare in practice. Also, this risk is affordabl/thm has been found th‘?‘t finds an optimal schedule (rn_|n|-
because in return it is possible to execute a large numb um number of reset) given a set of test runs and conflicts.

: : Ithough it has not been proven yet, the problem is be-
th ds) of test hich Id oth th =
gib?;san s) of test runs which would otherwise not be po feved 10 be\"P hard.

llowing conflict is added to the conflict database:

A addition to the already known two conflicts, the
T5T13T,11) — T,. The slices after this iteration are:

Slice: Slice extends the Optimistic++ strategy. Rather tharC! aPh-based heuristics: Graph-based heuristics are alter-
executing the test runs in a random order, the Slice heurisr-]at'ves to the Slice heur_lstlcs. The_y were ShOW” to perfo_rm
tics use the conflict information in order to’ find a SCheduIeoveraII as well as the Slice heuristics for a serial execution
in which as few resets as possible are necessary. For le testruns in [8]. The idea is to model conflicts as a di-
ample, if test rurf; tests the insertion of a purchase orderrecuad graph in Wh.'Ch t_he.nOQes are test runs and the edges
into the database arig tests a report that counts the num- Iy = 1) are C(.)nﬂ'CtS indicating tha; m|ght update the

ber of purchase orders, th@h should be executelefore test database in such a way that a regef i necessary

o g e : ith probability w in order to executd’, after 7;2. The
T:. The conflict information is gathered in the same wayWI ; . o J ;
as for the Optimistic++ strategy. If there is a conflict be- edges are weighted by this probability Based on this

tween test run<T}) and 7, then Slice execute® before weighted directed graph, a graph reduction algorithm can

(T;). At the same time, however, Slice does not change tth applied in order to find a good order to execute the test
order in which the test runs ifT;) are executed because runs. The best known he_urlstlcs for the graph reduction
those test runs can be executed in that order without requiP’—V ere calledMaxWeightedDitin [8].

inglla database reset. Such a sequence of test runs is Ca”ﬁ}/fjay\]/\e/iei g?]?éaé:;iﬁ Osftra%gsh_ibnaspe;ﬂCﬁ?aurnsgfes p(rglensdenttehc(ie
aslice : y

The Slice heuristics can best be described by an examn [8]. The details of c_extendlng the MaxWe|ghtedD|ff
ple with five test rungly, ..., Ts (taken from [8]). At the Strategy for parallel testing can be found in [9]. Due to

beginning, no conflict information is available, so that the SPace constraints, we cannot describe these details in this

five test runs are executed in a random order. Let us assun& e’ and only give a sketch of the main ideas.

that this execution results in the following scheduRede-

notes the database reset operatigrdenotes the execution 2.3 Parallel Testing

of test runTy;): As mentioned in the introduction, parallel testing is a two
dimensional scheduling problem. In addition to deciding in
RTy T T3 RT3 Ty 15 R 15 which order to execute the test runs, a scheduling strategy

]) ~must partition the test runs. Depending on the architecture,
From this schedule, we can derive the two conflicts:shared-Database or Shared-Nothing (see below), a parallel
(I1T) — Ts and(I5Ty) — Ts. Correspondingly, there execution can increase the number of resets due to interfer-
are three slices(T1T3), (I5T4), and(Ts). Based onthe ence (Shared-Database) or decrease the number of resets
confhctlr_]g mforr_nat|on in the conflict database and the CO"(Shared—Nothing) by executing test runs that are in conflict
lected slices, Slice executésbefore(T T;) andT; before concurrently. As a result, conflict information ought to be
(T5T}) in the next iteration. In other words, Slice executestaken into account in order to decide on which machine to

1Readers interested on the implementation details of the conflict 2Similar to the Slice heuristics, conflicts are detected and collected
database are referred to [8]. along the testing in graph-based heuristics.

591

History Application
Ml T7

" Reset?
My To[T 24T 14 /
Application Application T

_ " _ "

Machine 1 Machine N

!

Machine/Thread 1

Application

Figure 1: Shared-Nothing (SN) Architecture

Thread1 Thread N Machine/Thread N

Figure 3: Scheduler for Parallel Testing

The trade-offs between the SN and SDB architectures

are straightforward. Obviously, the SN architecture scales
Application better to a large number of machines. Also, scheduling for
the SN architecture is easier. On the other hand, the SN ar-
[— .
chitecture wastes resources because the resources of each
installation are not fully utilized by a single thread of test

runs; e.g., if multi-processor machines are used. Further-
more, some organizations simply cannot afford more than
one test installation: each installation requires extra system
execute which test run. Furthermore, it is important to bal-2dministration work and possibly software license fees are
ance the load on all machines so that the resources are ustgfiuired for each installation. As a result, a combination

as well as possible. Load balancing can be carried out withf Poth architectures (multiple installations and concurrent

out conflict information; load balancing should be carried (€St thread for each installation) are useful in practice, and
out taking the current load of machines and the estimate&1us. we will explore both architectures as part of this work.

length of test runs into account.

Figure 2: Shared-Database (SDB) Architecture

2.3.2 Scheduling Parallel Tests

2.3.1 Shared-Nothing vs. Shared-Database For both architectures (SN and SDB), we propose the
Figures 1 and 2 show the two scenarios considered in thismodel presented in Figure 3 in order to schedule test runs
work for the concurrent execution of test runs. In thefor concurrent execution. The scheduler has an input queue
Shared-Nothing architecture (SN) shown in Figure 1 thereof test runs. How to order the test runs in this input queue
areN separate and independent installations of the applicadepends on the scheduling strategy (Sections 3 and 4). At
tion and its underlying database. In Figure 1, each of thesthe beginning, the scheduler takes the first test run from its
installations is on a separate machine, but it is also possibliaput queue and submits it for execution to Machine 1 in
that several installations are on a single machine or that the SN architecture or to Thread 1 in the SDB architecture.
single installation spans several machines (e.g., the appl{Figure 3 shows machines in the SN architecture, but the
cation tier could be distributed on a cluster of machines)same principles apply to feeding test threads in the SDB
What is important for this architecture is that the instal-architecture.) Furthermore, the scheduler submits the sec-
lations do not share state and, thus, do not interfere. Foond test run to the second machine/thread and so on until
presentation purposes, we use the terathingn orderto all V- machines/threads are busy.
denote an installation of the application in the remainder of When a machine (or thread), sa¥;, has completed the
this paper. Furthermore, on each installation only one testéxecution of a test run, sag,, M; notifies the scheduler
run is executed at a time. that it is ready to execute a new test run. The scheduler
The Shared-Database architecture (SDB) is shown ifkeeps a history of all test runs that have been executed on
Figure 2. In this architecture, there is only one installa-M; and correspondingly placds. into its history for M.
tion of the application and its underlying database and testurthermore, the scheduler selects the next test run to be
runs are executed concurrently on this instance. In Figurexecuted onV/; from its input queue. In most cases, the
2, the installation of the application and the database is oscheduler selects the first test run from its input queue, but
a single machine; again, however, the installation could behere are occasions in which it is beneficial not to select the
distributed on several machines. The important observatiofirst test run from the queue. In SN, for example, if it is
is that concurrent test runs interfere in this scenario becaudanown thatTi, and77 are in conflict in Figure 3, then it
they read and update the same database. might be beneficial not to execuig, on M, afterT;; has

592

been executed off; and instead executé on M; and scheduling strategy makes sure that conflicting test runs are

wait until another machine becomes availablefgs. In not executed concurrently, then significant speed-ups can

order to decide which test run to execute next, the scheduldre achieved in this architecture, too, because hardware re-

takes the conflict database, the history, and the order in theources (disks, multiple CPUs and co-processors) are better

input queue into account. Alternative policies how suchexploited.

optimizations are applied for SN and SDB are described in In order to implement parallel testing, the framework of

Sections 3 and 4. [8]is applicable, but needs to be extended. First, the notion
When a machine/thread informs the scheduler that iof conflict needs to be refined (as discussed in the previ-

has completed the execution of a test run, it also indicatesus section). More importantly, the scheduling strategies

whether it had to reset the database in order to execute thaust be extended in order to decide on which machine or

test run. Recall from the description of the Optimistic++ in which thread to execute a test run. How to extend the

strategy in Section 2.2 that the database is reset whenevecheduling strategies for the SN and SDB architectures is

a test run fails in order to make sure that this failure is notthe subject of the next two sections.

due to the test database being in the wrong state. If a reset

has been carried out by/; in order to executd}, thenthe 3 Scheduling Test Runs for SN

scheduler updates its history information and the conflict

database in the following ways for the SN architecture: This section presents how the centralized scheduling strate-
gies of Section 2.2 can be extended for the Shared-Nothing

e Conflict DatabaseA conflict Hy;, — T} is inserted architecture. As shown in Figure 3 and described in Sec-
into the conflict database. Hel€,,, represents the tion 2.3, there are two decisions that need to be made in
sequence of test runs recorded in the history of theorder to schedule test runs for parallel execution:
scheduler ford;. This conflict follows directly from i) _
the definition of a conflict and the fact that a resetwas ® Determine the order of test runs in the scheduler’s in-
necessary in order to execufg after the execution of put queue of test runs.

the test runs iy, e Define a criterion in which situations the scheduler

e History: The history forl; is flushed; i.e.Hy;, = will not select the first test run of its input queue for
Ty.. The updates of all test runs that were executed on ~ €xecution.
M; beforeT}, are undone due to the reset so that '[heser

test runs need not be recorded in the history anymore he remainder of this section describes how the Opti-
yany mistic++, Slice, and MaxWeightedDiff heuristics from [8]

For the SDB architecture, the conflict database and hisare extended to make these two decisions for the Shared-
tory are updated in the following way if the database hagd\othing architecture (SN).

been reset:
3.1 Parallel Optimistic++
e Conflict DatabaseA conflict J,_, y Hum

is inserted into the conflict database.

. = Tk

The Optimistic++ policy takes a very simplistic parallel
scheduling approach:

e History: The history for all machines is flushed; i.e.,

Hyy, =0 forj = {1,...,N}\ {i} andHyy, == T. e The test runs are put into the scheduler’s input queue

in random order.
The rules for the SDB architecture are the same as for the
SN architecture; the difference is that they affect all threads
rather than just a single machine.

e The scheduler always selects the first test run from its
input queue when a machine becomes available.

Note, however, that the parallel Optimistic++ strategy for
SN does maintain a history and conflict information as pre-
Obviously, parallel testing can significantly reduce the run-sented in Section 2.3. The parallel Optimistic++ strategy
ning time of executing a set of test runs. In the SN architecuses this information to issue a database reset before a test
ture, it can be expected that the speed-up is linear becaugen is executed for the first time on a machine, if this test
there is no interference and if all test runs have roughlyrun is known to be in conflict with a sub-set of the test runs
the same length (if not, bin packing must be applied to enin the history of that machine. This way, the parallel Opti-
sure load balancing). In fact, super-linear speed-up is possmistic++ strategy avoids unnecessarily executing a test run
ble because conflicting test runs can be executed on diffefwice as a result of the test database of that machine being
ent machines so that the total number of resets is reduced the wrong state.

In the SDB architecture, linear speed-up is only possible

for small levels of concurrency and if database resets aré.2 Parallel Slice Heuristics

rare. A database reset blocks all activity. Nevertheless, if g,o key idea of the parallel Slice heuristics for SN is to

3An ordered union is carried out by merging the test runs according toschedule Who_le slices rather f[har_‘ individual test runs. Re-
their timestamps. call from Section 2.2 that a slice is a sequence of test runs

2.3.3 Summary

593

that can be executed without a database reset; i.e., there ard (T5) so that those two slices are not reordered either.
no conflicts within a slice. A slice is defined as a sequenceé\s a consequence, the order in which the test runs are put
of test runs that was executed successfully between two rento the scheduler’s input queue for the third iteration is the
sets. In the SN architecture, naturally, the test runs of aame as in the second iteration (after a round-robin merge).
slice should be executed sequentially on the same machine. Even though the order of test runs in the input queue did
not change, the dynamic behavior of the scheduler is differ-
Example: Again, the parallel Slice algorithm can best be ent due to the additional conflicts recorded in the conflict
described using an example. At the beginning, the paraldatabase. At the beginnin@j is scheduled for execution
lel Slice heuristics behave exactly like the parallel Opti-on A7, and 7y is scheduled for execution al,. At this
mistic++ heuristics; that is, the order of test runs in thepoint, the state of the input queue is as follows (again, us-

scheduler's input queue is random and whenever a machingg (s) in order to depict beginnings and endings of slices
is available, the next test run is selected. Let us assume thajr presentation purposes):

this results in the following schedule in a scenario with two
machines: T7Ts(s)T1To(s)T5(s)

My :R Ty To T3 R T: .
! Loz s 3 When M, completes the execution @f, then the follow-

My :R Ts Ts R Ts T7 Ty ing rules are applied in order to find the next test run to be
As a result, four slices can be identifiedT T»), (T3), €xecuted onV:

(Ts), and(TsT7Tx). Accordingly, the following conflicts o 7. and 7y are not selected because they are part of

are detected(T, ;) — Ts and(T5) — T;. Using the cen- a slice that is currently executed on another machine,
tralized Slice heuristics (Section 2.2 and [8]), the test runs M,.

executed onV/; and the test runs executed 04, are re-
ordered separately. As a result, we obtain two re-orderings, e T} is not selected because there is a confli¢t) —
one for each machinéq) denotes the delimiters of slices): Ty andT3 is in the history ofi/; .

Oy : (8)T3(s) Ty Ta{s) e T, is not selected because it is part of the same slice
asT}, andT; has a conflict.
02 : <S>T6T7T3<S>T5<S>
These two (partial) orders of test runs are merged to one
(total) order of all test runs which serves as the order for
the input queue of the scheduler in the next iteration. ThisAs a consequencds is executed onV/;. This is in the
merge is carried out in a round-robin fashion. That is, thespirit of the Slice heuristics (keeping slices intact) and at

e T; is selected because it does not violate any of the
three rules above.

total order is: the same time gives the biggest hope to minimize the total
number of database resets.
($)T3(s)TeT7Ts(s)T1T2(s)T5(s) Now what happens next whe¥l; completes the execu-

tion of T5? At this point, there are no more candidate test
Fns for M, left. Rather than lettind/; go idle, the Slice
heuristics simply selects the first test run from the sched-
uler’s input queue in this event; i.&x in this example.

In summary, there are four ideas in the design of the
parallel Slice heuristics: (a) The order of test runs in the
scheduler’s input queue is determined by applying the cen-
[al Slice heuristics to each machine individually and then
%noerging the partial orders (using a round-robin approach).
; ; L)) The scheduler executes all test runs of the same slice
e e s Toaoncrogn he same machne. (o) The scheduer chnaicaly uses

the next iteration:

Given this input queue, the scheduler operates as describ
in Section 2.3.73 is executed on Machine 1 affd is ex-
ecuted on Machine 2. If a third machine were available in
this iteration of testing, then the scheduler wondit select
T7 becausdl; should be executed on Machine 2; instead,
the scheduler would sele@t. Likewise, if there are only
two machines and Machine 1 has completed the executio
of T3, then the scheduler would seléft for execution on

the history and conflict information in order to make sure
that conflicting slices are executed on different machines

M:RTs Ty, RT, Ty as much as possible. (d) Utilizing all available machine re-
sources has higher priority than minimizing the number of
My :R Tg T7 T Ts R Ts database resets. In other words, if no suitable test run is

As a result, there are still the same four slices as in the firsftOund in the !nput queue, the schedule.r selects th? first test
iteration. Two conflicts are added to the conflict databasé!" from the Input queue, thereby causing an addition reset,
(in addition to the two conflicts detected in the first itera- rather than letting the machine go idle.

tion): (13) — Ty and(1T>13) — T5. At this point, there . . .
isa céclig conflict be<twee|<iT3>> and(7T,T3) so that no re- 3.3 Parallel MaxWeightedDiff Heuristics

ordering is attempted for these two traces (see [8] for deThe parallel MaxWeightedDiff heuristics work as follows:
tails). Likewise, there is a cyclic conflict betwegR; 7, Ts) The conflict graph is constructed in the same way as in

594

the regular MaxWeightedDiff heuristics for a serial exe- Again, the best way to describe the Slice heuristics for SDB
cution [8]. Likewise, the order of test runs in the sched-is by the means of an example.

uler’s input queue is determined just as for the centralized In this example, there are seven test runs executed con-
MaxWeightedDiff heuristics. When the execution of a testcurrently in two threads on one machine. At the beginning,
run has completed on, say, machilg, then the scheduler the test runs are executed in a random order. Let us assume
selects the first test run from its input queue, if the cumu-that the following schedule is generated: (A database re-
lated weights of test runs in the history df,, to that test set terminates the execution of test runs in both threads in
run is lower than a certain threshold. Otherwise, this crite-SDB. How to schedule such resets is described in Section
rion is tested for the second test run, third test run and so4.4.)

until a suitable test run is found. If no such test run exists, Thread 1: Ty T R T, Ts R

then the first test run is selected. As athreshold,weuselin Thread2: T Tg T, T3 Ty

all experiments reported in this paper because this settintn this exampleT5 is the first test run that fails because
was very good in all situations. An example and details ofthe database was in a wrong state Tor At this point,

the algorithm are given in [9] and cannot be presented dué is not clear whether an update requesflin 75 or Tg

to space constraints. or a combination of update requests carried out as part
of these test runs caused the failure ®f. Consider-
4 Scheduling Test Runs for SDB ing the time stamps whe#,, 75, andTs were started, a

conflict (T1T5Ts) — T> is recorded. The first slice is

Just as for the SN architecture, the key questions that need 7,7, because these test runs could be executed con-
to be answered for the Shared-Database architecture (SDB)rrently/sequentially without a failure.

are in which order the test runs are inserted into the sched- The second test run that fails%§. The corresponding

uler's queue and in which situations the scheduler selects,nyiict is (TT4T3) — Ts. Accordingly, there are two
the f|r_st test run from this queue. Furthermqre, there is 301 slices{T>T+T3) and(Tx). Based on these slices and
question of how to schedule the reset operation and how t@snriicts, the order in which the test runs are inserted into

detect failures in the presence of concurrent test runs. Ige scheduler's input queue for the next iteration of testing
all, making the right scheduling decision is more importantis o5 follows (again showing the slice delimiters for presen-
for SDB than for SN. Due to the inference of concurrent;iiqn purposes):

test runs, it is important to make sure that conflicting test

runs do not run concurrently in addition to making sure that ()T () ToT5 T3 (s) Ty T5 T ()

conflicting test runs are not executed subsequently. The re-

mainder of this section shows how the Optimistic++, Slice,thege test runs are then scheduled in this order; that is

and Max\WeightedDiff strategies can be applied to the SDBpe scheduler always selects the next test run from its input

architecture. Furthermore, alternative implementations foﬁueue after the execution of a test run has been completed

the database reset operation are discussed. _and a test thread becomes available. There is no dynamic
Throughout this section, it is assumed that the multi-re_scheduling based on histories and the conflict informa-

programming levelN, (i.e., the number of available test jgp.

threads) is constant. How to dynamically adjdstased In summary, the parallel Slice heuristics for SDB work

on, say, the load of the machine and its resources is ONgqcording to the following two principles. One, the order-

important avenue for future work. ing of test runs for the scheduler’s input queue is carried out
o based on slices and conflict information in exactly the same
4.1 Parallel Optimistic++ way as for the Slice heuristics in a centralized setting (Sec-

The parallel Optimistic++ strategy for SDB works in ex- tion 2.2and [8]). The only difference is that imestamps are
actly the same way as the parallel Optimistic++ Strategwsed to define a total order on concurrent test runs. Two,
for SN (Section 3.1). That is, the test runs are put into thdh€ scheduler always selects the first test run from its in-
scheduler’s input queue in random order and the scheduldut queue and does not apply any more complex heuristics
always selects the first test run from its input queue wheri@ dynamically reorder the test runs based on history and
a test run has been completed (i.e., when a test thread beonflict information.

comes available). The Optimistic++ strategy for SDB and

SN differ in the way that conflicts are recorded (Section4.3 Parallel MaxWeightedDiff

2. i hedul ion 4.4). . . -
3) and reset operations are scheduled (Section 4.4) The parallel MaxWeightedDiff heuristics for SDB works

. in a very similar way as the centralized MaxWeightedDiff
42 Parallel Slice heuristics. That is, the test runs are ordered in the sched-
In the SN architecture, one of the key ideas was to executaler’s input queue in the same way as described in [8] for
test runs from the same slice sequentially on the same ma serial execution of test runs. Furthermore, the scheduler
chine. In the SDB architecture, the idea is to execute tesalways selects the first test run from its input queue when
runs from the same slice concurrently on different threads test thread becomes available. Again, an example and
because these test runs are known not to be in conflictetails of the approach can be found in [9].

595

4.4 Scheduling Database Resets this approach is that no parallelism is lost. The disad-
vantage is that if the test run fails again, that test run
must be executed yet another time until it is successful
or fails in a single-threaded environment.

Another question that is specific to the SDB architecture
is how to schedule a database reset when a test run fails,
potentially due to a wrong state of the test database. The
question is what happens to the test runs that are executed g yix: Many other strategies are conceivable. For in-
in concurrent threads? This question does not arise in the stance, it is possible to restart with a lower degree of
SN architecture because a reset caused by a failure of a parallelism and/or in single-threaded mode after an-
test run on one machine does not impact the concurrent giher failure.

execution of test runs on other machines.

Conceptually, scheduling a reset in the SDB architecAgain, the choice between these alternatives depends on
ture is related to the problem of scheduling a check pointhe number of conflicts and the probability that a test run
for database recovery in a database engine [6]. There afeils after a restart due to other concurrent test runs. We
several options: plan to study these effects in detail as part of future work.
For the purpose of this work, we chose #irgle-threaded
approach because this approach is robust and minimizes the
ount of wasted work due to re-executing failed test runs.

e lazy: Concurrent test runs that have started are com
pleted, but no new test runs are started as soon as
test run fails and a database reset becomes necessary.

e eager: Concurrent test runs are aborted and theS Performance Experiments and Results

database reset is carried out immediately. After theT

database has been reset, all test runs that have no{1iS sgction presents the resultg of performance exp_eri-
completed must be restartéd ments in order to study the effectiveness of the alternative

scheduling strategies for the SN and SDB architectures.

e deferred:The database reset is deferred and the failed he following sets of experiments were made:
test run is re-scheduled to be executed at the end. In
other words, the first reset is carried out after every test
run has been tried once. After that, a database reset
is carried out and the test runs that failed in the first
round are re-scheduled (using Optimistic++, Slice, or o simulation with synthetic test runs in SDB.
MaxWeightedDiff heuristics).

e simulation with synthetic test runs in SN;

e execution of real test runs in SDB;

The real test runs were taken from an SRM application us-

The trade-offs between these three alternatives are fairlij the test installation of an industrial customer of that ap-
complex and the choice for the best approach depends Qfjication. Carrying out experiments with several installa-
the number of conflicts between test runs. We plan to eX4ions of the application (SN) was not possible in this en-
plore these trade-offs as part of future work. For the pury;ronment because the customer did not have the available
pose of this work, we chose thazy strategy because itis resources to do such experiments. The synthetic test runs
very robust and minimizes the amount of wasted work byere generated with the purpose to study the performance

failed test runs. o _ ofthe strategies for a large number of test runs with varying
Another related question is how to restart the executionsaracteristics (e.g., number of conflicts).

of test runs after a database reset. Again, there are several
options: 5.1 Experimental Environment
e single-threaded:Execute the failed test run again in Synthetic Test Runs: The synthetic test runs were gener-
iSOlation; i.e., without Starting any other test runs ConN-ated using a dummy database app“cation in order to have
currently. The advantage of this approach is that if thecontrol over the length of the test runs (running time when
test run fails again, it is guaranteed that this failure isexecuted in isolation) and the conflicts between test runs.
due to a potential bug in the application and not due toraple 1 summarizes the characteristics of these synthetic
the database being in a wrong state at the time of thgest runs. In all experiments, 10,000 synthetic test runs
failure due to the execution of update requests by conwere used. The length of a test run was chosen randomly
current test runé.The disadvantage is that parallelism in the range of 0 minutes (just one request) to three minutes
is lost. (450 requests) using a uniform distribution. These settings
were inspired by the real test cases (Table 2). The number
of conflicts between the test runs was varied from 10,000
(low) to five millions (high) and a uniform distribution was
4A test run isnot a transaction and can span several database transdsed in order to randomly generate conflicts between test
actions. Typically, every request or a small number of requests are imyyns when the test runs were synthesized as in [8]. We also
plemented by the application as a single database transaction in order E’xperimented with a Zipf distribution in which there was
achieve recoverability of long running business transactions. As a result, . . T .
test runs (which represent such long running business transactions) do sé§€W in the conflict distribution and some test runs were in
updates carried out by other, concurrent test runs. conflict with many other test runs, but we do not show the

e multi-threaded: Execute the failed test run concur-
rently with other test runs. Clearly, the advantage of

596

number of test runs 10,000
length of test runs | 0 min - 3 min (avg. 1.5 min)
number of conflicts| 10,000 (low) - 5 mio (high) Execution of Experiments: We studied the Optimistic++,
conflict distribution uniform Slice, and MaxWeightedDiff heuristics as described in Sec-
tions 3 and 4. The full details of all algorithms (in particular
Table 1: Synthetic Test Runs the MaxWeightedDiff heuristics) can be found in [9]. In all
experiments, the conflict database was initially empty. We
number of test runs 61 ran a total of thirty iterations, thereby incrementally build-
length of test runs | 0 min - 3 min (avg. 1.5 min) ing up conflict information and improving the scheduling
number of conflicts unknown decisions. This section reports on the average running time
conflict distribution unknown and average number of resets of the last ten iterations.
We also measured the CPU overhead of the scheduler in
Table 2: Real Test Runs order to make scheduling decisions. This overhead, how-

ever, was negligible (only a few seconds) in all experiments
so that we do not report these results in this paper. We also
carried out experiments that study how quickly the alter-
native strategies learn the relevant conflict information in
order to produce good schedules. These results are pre-
Real Test Runs: The real test runs were taken from a sented in [9] and are omitted in this paper for brevity. The
real database application (BTell by i-TV-T AG) using the gbservations are almost the same for the parallel strategies
test installation of one of the customers of that applicationgs for their centralized counterparts which were studied
(Unilever). BTell is a Java application with approximately jn [8]: Slice converged very fast (within a few iterations)
3000 classes and a relational database schema with apprognd MaxWeightedDiff more slowly (approximately 10 it-
ima.tely 500 tables. These BTell test runs were generatEGrations1 depending on the number of Conﬂicts)_ Both im-

manually by test engineers who administrate the applicaproved significantly (50 percent speed-up) from the first to
tion for Unilever. These test runs were also used in the exthe |ast iteration.

periments of [8]. The characteristics of this set of test runs

is given in Table 2. There are 61 test runs and the lengtly 2 Shared-Nothing Simulation

characteristics are the same as for the synthetic test runs.)) . ,
The conflict distribution could not be determined because-OW Conflict: Recall that the goal is to achieve linear

doing so would involve expensive analysis of the BTell ap-SPe€d-up for a large number of machines in an SN archi-
plication code. tecture. Table 3 shows the running times (in hours) and

number of resets for synthetic test runs with a low number

)) . . of conflicts (10,000) between the test runs. The following
Simulation of SN: In order to carry out experiments with ;pservations can be made:

the SN architecture, we used an event-based simulator pirs; all three strategies achieve a linear speed-up with

that simulated the execution of the synthetic test runs ang growing number of machines. The running time is almost
of database reset operations. A database reset operatigg iimes as high if only one machine is available than if 50
costed two minutes and the execution times of the test rung,achines are available. The Slice heuristics even showed
were determined by their length (between 0 and 3 minutes, g per-linear speed-up if 50 machines were available for
Table 1). Up to 50 machines could be simulated this waymaking sure that conflicting test runs ran on different ma-
The details of the simulator can be found in [9]. chines as much as possible. Although not shown in this
experiment, this scalability would easily go beyond 50 ma-
Hardware for SDB: For the experiments with real test chines up to the point at which load balancing and bin pack-
runs in the SDB architecture, we used a machine with twang of test runs with different lengths actually matters or the
3.2 GHz Pentium 4 processors and 4 GB of main memorgcheduler itself becomes a bottleneck.
running Linux. The BTell application and database (IBM Second, all three strategies have roughly the same run-
DB2) were installed on this machine. Executing a resening times. They only differ in the number of resets (Slice
costed two minutes on this machine. is the best strategy in this respect). However, for the low
conflict synthetic test runs, the number of resets is fairly

Simulation of SDB: In order to carry out experiments with low for all three strategies and executing resets does not

synthetic test runs in the SDB architecture, we again usefinpact thg running tim_e significantly. (Note that resets are
a simulator. The simulator modeled a cluster of machine§X€cuted in parallel with test runs and other resets in SN.)

that each run an instance of the application and a central~ nly if 50 mgchlnes are a_va|lable, Slice qutperforms the
ized database server. In other words, a scalable three-tié’rther strategies for producing schedules with an extremely
architecture such as that of SAP [10] is modeled. In thissma" number of resets.

experiment, the hardware resources are not the bottleneck;

instead, the interference of the execution of concurrent tes!ﬁ'%'ggtscg::r'!gg oT?bletr? tﬁgogvi thhgr'éizglttsr ?]fsthetﬁ);pﬁ.”'h
runs is the limiting factor. Again, the details of this simula- ! ut wi Y : uns wi '9

tor are described in [9].

results here for brevity: the results with the Zipf distribu-
tion were almost identical with the results for the uniform
distribution.

597

1 machine | 5 machines [10 machines[50 machines| 1 machine | 5machines | 10 machines[50 machines|

\ \
Approach | Time | Reset| Time [Reset| Time | Reset| Time [Reset| Approach | Time | Reset| Time [Reset| Time | Reset| Time | Reset|
Optimistic++ | 254.9| 99 | 54.4 | 82 | 279| 75 | 58 | 62 Optimistic++ | 358.0| 1788 | 72.0 | 1787 | 35.0 | 1775 | 6.8 | 1753
Slice 2492| 35 | 528| 37 | 262| 34 | 34 | 10 Slice 306.4| 867 | 63.9 | 1098 | 31.8 | 1038 | 6.4 | 1048
MWD 249.0| 60 | 545| 69 | 27.9| 68 | 57 | 57 MWD 359.4| 1792 | 72.1 | 1784 | 35.9 | 1780 | 7.6 | 1767
Table 3: Running Time (hours), Resets Table 4: Running Time (hours), Resets
Synthetic, Low Conflict, SN Synthetic, High Conflict, SN
Approach | _Lthread [2fhreads | 5 fhreads | 5.4 Shared-Database Simulation

| Time | Reset| Time | Reset| Time | Reset|
Optimistic++ | 41 7.0 22 6.6 16 5.8

Slice a1 | 30| 18 | 38 | 12 | 22 Tables 6 and 7 show the running times (in hours) and num-
MWD 37 | 35| 19 | 42 | 13 | 42 ber of resets of the alternative strategies using synthetic test

) .) runs and the simulator for the SDB architecture. Table 6

Table 5: Running Time (min), Resets shows the results for synthetic test runs with a low number
Real, SDB of conflicts. Table 7 shows the results for synthetic test runs

with a high number of conflicts. Recall that the purpose of
number of conflicts on SN. Again, it can be observed thathese experiments was to study the interference of concur-
all three strategies scale well with an increasing numberent test runs in the SDB architecture for high degrees of
of machines. If only one machine is available, the testconcurrency (up to 50 test threads).
runs take about 15 da.yS; with 50 machines available, the If the number of conflicts is low (Tab]e 6), then inter-

test runs can be carried out within one nlght Furthermoreference is not an issue. The number of resets stays con-
Slice has the lowest number of resets and thus shows thgant, independent of the number of test threads. Corre-
best running time in all Settings; the differences in rUnningspondingb/, almost linear Speed_up can be achieved un-
times, however, are moderate for the same reasons as in thethe database server or the network becomes saturated.
experiments with the low conflict test runs (Table 3). Also, since the number of conflicts is low, all three schedul-
ing strategies show almost the same performance: Slice has
the lowest number of resets, but in terms of response time,
5.3 Shared-Database, Real Test Runs all three strategies are almost identical.
o o If the number of conflicts is high (Table 7), interference
Table 5 shows the running times (in minutes) and numberg,geed becomes an issue in an SDB architecture. Compar-
of resets of the alternative strategies for the real test FuNfg Tables 6 and 7, it can be seen that both the number of
using Unilever’s test installation of the BTell application yegets and the running times are much higher for the syn-
(SDB). The goal of the SDB architecture is to exploit the re-thetic test runs with a high number of conflicts. Also, the
sources of the available machine as well as possible. As caiynning time with 50 test threads is twice as high as with
be seen in Table 5, increasing the multi-programming leveh g test threads, indicating that increasing the degree of con-
up to five concurrent test threads gives significant reducgyrrency can hurt performance significantly if the number
tions in the running time. The running time drops almostof conflicts are high. Nevertheless, even for a high num-
linearly until the machine resources are saturated which iger of conflicts, the SDB architecture can be beneficial and
at about five concurrent test threads. After that, increassignificant performance improvements can be achieved as
ing the multi-programming level does not result in any im- compared to a serial execution of test runs, if the number
provements. of test threads is controlled.
The parallel Slice heuristics are the winner with regard
to the number of resets and running time. In the best case (g: Related Work
test threads), it outperforms Optimistic++ by 33 percent. It

is also slightly better than the MaxWeightedDiff heuristics, The most relevant related work is the work described in [8].
but the margins are small. This paper extends the framework, algorithms, and exper-
In all, these experiments confirm that a parallel execuimental results of [8] for a parallel (concurrent) execution
tion of test runs can be very beneficial, even if only oneof test runs. Furthermore, products that support a parallel
machine is available and the resources for testing are limtest environment for stateless applications are beginning to
ited. These experiments were carried out at a typical cusappear on the marketplace; e.g., TestStand [1]. In the soft-
tomer and, therefore, we expect these experiments to b&are engineering community, there has been a great deal
representative for a large class of test environments. Thef work in the general area of testing; e.g., white box and
experiments also confirm that a good scheduling strateghlack box testing, analysis of the coverage of test cases,
(such as Slice) is important in the SDB architecture withand methodologies to plan and integrate the test phase into
an increasing multi-programming level because it tries tahe software development life cycle [15]. In order to speed
avoid that conflicting test runs are executed concurrentlyup the execution of testing, the selective execution of test
We will explore this effect in more detail in the next sub- cases has gained a great deal of attention (e.g., [13]). The
section when we present simulation experiments on SDBdea is to execute only those test cases that are potentially
with a higher degree of concurrency. affected by a change in the application. Clearly, all that

598

[1thread | G5threads | 10threads | 50 threads | [1thread | 5threads | 10threads | 50 threads |
Approach | Time | Reset| Time [Reset| Time | Reset| Time [Reset| Approach | Time | Reset| Time | Reset| Time [Reset| Time [Reset|
Optimistic++ | 254.9| 99 61.0 85 31.0 85 6.0 70 Optimistic++ | 357.9| 1788 | 160.1| 1385 | 157.5| 1231 | 258.0| 1425
Slice 249.3| 35 57.4 34 30.2 33 5.9 32 Slice 306.4| 967 | 120.6| 793 | 112.1| 796 | 259.8| 1422
MWD 249.1| 60 60.1 62 31.9 58 5.9 57 MWD 359.4| 1792 | 164.6| 1396 | 156.0| 1251 | 204.5| 1067
Table 6: Running Time (hours), Resets Table 7: Running Time (hours), Resets
Synthetic, Low Conflict, SDB Synthetic, High Conflict, SDB

work is orthogonal to the work presented in this paper.theless, the gains that can be achieved by exploiting the
In addition, the scheduling problem we tackled is also retesources of a single machine (e.g., multiple processors,
lated to compiler design for multi-CPU machines or CPUsdisks, and co-processors) by such a multi-threaded execu-
with hyper-threading (e.g., [4]), but with totally different tion are higher than the additional cost (more resets) due
assumptions (CPU needs to know and analyze the codé) interference. Using real test runs from a commercial
and performance trade-off consideration. database application and a real industrial-strength test en-
In the database community, there is only very little work vironment, it could be shown that a speed-up of a factor
on testing. The RAGS system [14] generates a large numsf three could be achieved by executing test runs concur-
ber of SQL queries in order to test a relational databaseently in an SDB architecture. By the means of simulation,
system. There has also been work on the generation afcould be shown that only for a high degree of concurrency
test databases based on integrity constraints defined in ti{0 or more test threads), the performance detoriates due to
database schema [12, 3]. Furthermore, there has been warkerference. Overall, for an SDB architecture, having a
on quickly generating large databases with certain attributgood scheduling strategy (such as Slice) is more important
value distributions in order to test the performance andhan for the SN architecture.
scalability of a database system [7]. Again, all this work The initial results obtained in this study are encourag-

is orthogonal to the work presented in this paper. ing. Nevertheless, there is need for future work. First, it is
possible to think of more sophisticated scheduling strate-
7 Conclusion gies (e.g., based on machine learning techniques). That

way it might be possible to get even better results. Further-

This paper studied how the parallel (concurrent) executiofinore, there is room for improvement with respect to the
of test runs can speed-up the execution of a potentiallgcheduling of the reset operation in the SDB architecture
large number of tests. To this end, a dynamic schedul¢Section 4.4). Another important avenue for future work
ing approach was proposed which has several advantaggsto study a two-step scheduling approach for a combina-
(Section 2.3). First, it extends the framework of [8] in or- tjon of SN and SDB. In such a scenario, there are several
der to control the state of the database and apply expefinstallations of the software (SN), but each installation is
sive database reset operations lazily, thereby minimizingxploited in the best possible way applying the strategies
the number of times that expensive database reset opergsr SDB. The two-step scheduling approach hagabal
tions need to be carried out. Second, it allows to makescheduler for SN and a local scheduler for SDB; both of
dynamic decisions in order to carry out load balancing anghese schedulers share the same conflict information. Fur-
schedule ConfliCting tests in the best pOSSible way. BaSEﬁhermore, an important open question is how to dynami-
on this general approach, three scheduling strategies wetgly control the multi-programming level (number of con-
devised that differ in the way that they order the test runsyrrent test threads) for SDB; we plan to adopt ideas from
and make dynamic scheduling decisions for concurrent tegdaptive load control techniques to avoid lock contention
runs. thrashing in databases [11]. Finally, we still believe that

Itis pretty obvious that significant improvements with a the whole field of testing database applications is still in its
parallel execution of test runs can be achieved if there arghfancy. As listed in [8], there are several aspects that no-
several machines available and separate installations of thﬁ)dy has ever Studied; an examp|e is testing non functional

application (and database). In fact, all three strategies thabquirements such as scalability of a database application.
we studied showed linear speed-up for SN. In SN, testing is

an embarrassingly parallel operation. If a good schedulin

strategy is used (e.g., Slice), then even super-linear spee xeferences

ups are possible. [1] NI TestStand. http://zone.ni.com/zone/jsp/zone.jsp.
A less obvious result is that a concurrent execution of

test runs can speed-up the execution of test runs on a sin

gle installation of the application and database; even on a

single machine. This scenario was called SDB. This sce-[3] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and

nario is very common in practice due to limitations in the E. J. Weyuker. An AGENDA for testing relational database

budget to administrate the test machines and buy multiple applications. Software Testing, verification and reliabiljty

software licenses for test installations. This result is less 2004

obvious because concurrency in an SDB architecture might[4] M. chou Chang and F. Lai. Efficient exploitation of

incur interference between the concurrent test runs. Never- instruction-level parallelism for superscalar processors by

[2] K. Beck and E. Gamma. Programmers love writing tests.,
1998. http://members.pingnet.ch/gamma/junit.htm.

599

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

the conjugate register file scheméEEE Trans. Comput.
45(3):278-293, 1996.

D. DeWittand J. Gray. Parallel database systems: The future
of high performance database syste@emm. of the ACM
35(6):85-98, 1992.

J. Gray and A. ReuterTransaction Processing: Concepts
and TechniguesMorgan Kaufmann, 1993.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. IB8IGMOD Conferencegpages 243-252, 1994.

F. Haftmann, D. Kossmann, and A. Kreutz. Efficient re-
gression tests for database applications.Ctmference on
Innovative Data Systems Research (CIDpJges 95-106,
2005.

F. Haftmann, D. Kossmann, and E. Lo. Parallel execution of
test runs for database application systems. Technical report,
ETH Zurich, 2005.

A. Kemper, D. Kossmann, and F. Matthes. SAP R/3: A
database application system (tutorial). StGMOD Confer-
ence page 499, 1998.

A. Mdnkeberg and G. Weikum. Performance evaluation of
an adaptive and robust load control method for the avoid-
ance of data-contention thrashingMhDB, pages 432—443,
1992.

A. Neufeld, G. Moerkotte, and P. C. Lockemann. Generating
consistent test data for a variable set of general consistency
constraintsVLDB J, 2(2):173-213, 1993.

D. S. Rosenblum and E. J. Weyuker. Using coverage infor-
mation to predict the cost-effectiveness of regression testing
strategieslEEE Trans. Softw. Eng23(3):146-156, 1997.

D. R. Slutz. Massive stochastic testing of SQL.\MhDB,
pages 618-622, 1998.

I. Sommerville. Software Engineering (5th ed.)Addison
Wesley Longman Publishing Co., Inc., 1995.

M. Stonebraker. The case for shared nothindEEE
Database Eng. Bull9(1):4-9, 1986.

600

