
Hubble: An Advanced Dynamic Folder Technology for XML

Ning Li Joshua Hui Hui-I Hsiao Kevin S. Beyer

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120
USA

{ningli, jhui, hhsiao, kbeyer}@almaden.ibm.com

Abstract
A significant amount of information is stored in
computer systems today, but people are strug-
gling to manage their documents such that the in-
formation is easily found. XML is a de-facto
standard for content publishing and data ex-
change. The proliferation of XML documents
has created new challenges and opportunities for
managing document collections. Existing tech-
nologies for automatically organizing document
collections are either imprecise or based on only
simple criteria. Since XML documents are self
describing, it is now possible to automatically
categorize XML documents precisely, according
to their content. With the availability of the stan-
dard XML query languages, e.g. XQuery, much
more powerful folder technologies are now fea-
sible. To address this new challenge and exploit
this new opportunity, this paper proposes a new
and powerful dynamic folder mechanism, called
Hubble. Hubble fully exploits the rich data
model and semantic information embedded in the
XML documents to build folder hierarchies dy-
namically and to categorize XML collections
precisely. Besides supporting basic folder opera-
tions, Hubble also provides advanced features
such as multi-path navigation and folder traversal
across multiple document collections. Our per-
formance study shows that Hubble is both effi-
cient and scalable. Thus, it is an ideal technology
for automating the process of organizing and
categorizing XML documents.

1 Introduction
With the vast amount of information stored in the com-
puter systems today, people are struggling to organize
their documents such that the information can be easily
found. There are several known technologies for organiz-
ing documents and web pages. The most familiar is the
hierarchical folders of file-systems and email clients
 [4] [6] [14]. Documents organized in folder hierarchies are
conveniently managed and viewed. One major limitation
of the conventional folder technologies is that they nor-
mally require human effort to place and maintain docu-
ments in the hierarchy. When a new document arrives or
is updated, users need to determine the category or folder
based on the content of the document. For example, say
the claim processing department of a car insurance com-
pany categorizes a claim by its status; depending on the
processing stage of the claim, it is placed in the “new”,
“in-process”, or “completed” category. Once an agent
starts to process a claim, they need to explicitly move the
claim from the “new” category to the “in-process” cate-
gory. This process is not only tedious but also error-prone.
Moreover, there is a limitation on how many documents a
person can handle manually. For a web server with tens of
thousands of pages, it is unconceivable that any web ad-
ministrator can manually manage them effectively. Like-
wise, a computer system user will not be able to effec-
tively manage and search tens of thousands files in the
system, which is common nowadays.

Auto folder and dynamic folder technologies [4] [14]
have been developed to provide relief from manually
managing a large file collection. With these technologies,
files are placed into a folder automatically based either on
a set of keyword definitions or on simple search criteria,
such as attribute-value pairs. While these technologies
work fine for simple files, they do not take full advantage
of the rich semantic information embedded in a document.

Besides folder technologies, there are new breeds of
technologies for organizing documents and web pages,
including automatic classification into taxonomies or
ontologies [13]. These technologies operate on document

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

541

content directly and provide various degree of automation
for placing documents into different categories. Some
allow users to create sophisticated rules to specify certain
words and phrases which are used to place a document in
a specific category. Others use a "training set" from an
existing taxonomy to categorize new documents based on
statistical similarities. While these technologies are useful
in their own right, they can never understand a document
precisely and thus will always require human effort to
make sure that documents are not miscategorized.

Information consistency, integrity, and precision are
essential requirements for business critical applications.
As documents and business forms play an increasingly
important role in enterprise business applications, precise
categorization of forms and documents has also become a
critical requirement. Ideally, one would like to have a
fully automated mechanism that can group or categorize
documents and web pages precisely.

XML has become the de-facto standard for content
publishing and data exchange. An increasing number of
authoring and publishing tools have embraced the XML
standard. The proliferation of XML documents has cre-
ated new challenges and opportunities for managing large
XML collections. Since XML documents are self describ-
ing, it is now possible to automatically categorize XML
documents precisely, according to their content. With the
availability of standard XML query languages such as
XQuery [5], and commercial XML databases such as IBM
DB2 [11] and Tamino [19], much more powerful folder
technologies are now feasible.

To address those new challenges and exploit new op-
portunities, this paper proposes a new and powerful dy-
namic folder mechanism called Hubble. Hubble fully
exploits the rich data model and semantic information
embedded in the XML documents to automatically and
precisely categorize XML documents using advanced
technologies such as parameterized queries, variable bind-
ings, dereferencing, and external parameters.

The remainder of the paper is organized as follows.
Section 2 describes the related work. In Section 3, we
give a formal definition of our dynamic folder mecha-
nism. Section 4 presents the algorithms for processing
common operations in Hubble, and Sections 5 covers of
the more advanced folder operations. Section 6 shows the
result of a performance study and we conclude the paper
in Section 7.

2 Related Work
Several mechanisms have been proposed to address the
manageability and consistency problems found in the
conventional folder and directory systems. They provide
various degrees of automation in document placement and
folder generation, which improves the manageability of
the folder hierarchy and the accuracy of the classification,
while maintaining the basic folder interface.

Auto folders provide automatic document placement
for managing any new document or message. An example
can be seen in most email systems [14] [4] [17]. The
placement criteria are often described by a set of rules that
are triggered and evaluated by the system when an impor-
tant event occurs, such as the arrival of a message. The
result of the evaluation will determine in which folder the
document resides. Similar techniques can also be found in
content management systems [9], which manage unstruc-
tured data with meta data information. However, such
systems in general only deal with newly generated docu-
ments, which can lead to inconsistency between the con-
tent and folders when the content is changed. There are no
specific criteria or semantics associated with the folders.
If a user modifies or renames a folder to capture a differ-
ent topic, the user will have to change the rules associated
with the folder. In addition, all documents in the current
folder need to be re-evaluated through the rule engine to
reroute them to the appropriate folders, which is very
time-consuming for large collections.

To eliminate the shortfall from the above approach,
the virtual folder concept was proposed. It differs from
the auto folders in the sense that there is no static relation-
ship maintained between the documents and folders. Each
folder is now associated with a classification criteria,
which is often a user-defined query. Only when the folder
is selected or retrieved, will the associated query be exe-
cuted to retrieve the documents. Such a mechanism is
described in [3], and is often seen in many email systems
 [4] [14] and content management systems [9] [8]. The vir-
tual folder concept is similar to views in a relational data-
base system. It eliminates the problems in maintaining the
static relationship; when the content is changed, it is
automatically shown in the correct folder when the query
associated with the folder is executed. Such flexibility
allows users to change the folder criteria easily without
affecting the documents. But it also introduces a new
problem in maintaining the folder criteria. For example, if
a person has folders classifying the publications by year,
when entering a new year, they have to create a new
folder with the new year as the criteria. It would be better
if folder criteria can be defined as a function of the con-
tent.

 [6] addresses such issues by providing a template-
based folder creation, termed dynamic folders. This is an
example of the folder criteria: “create folder un-
der /Publication by year named
Year$val”. It creates folders under the Publication
folder where the name of the folder is determined by the
year of the publication, e.g. Year2004. For virtual folders,
there is no difference between the folder hierarchies at
design time and at runtime; but for dynamic folders, the
runtime folders are now dynamically generated and driven
by the data. However, [6] only addresses metadata in a
single dimension, such as name-value pairs. It does not
consider a hierarchical data model such as XML, which
the criteria of a folder can depend on the context of any

542

ancestor folder. The existing folder systems that are
XML-aware [1] provide very limited capabilities for ex-
ploiting the flexibility of the hierarchical data model in
XML, mainly the path addressability of the element
names or the attribute names of an XML document. For
example, with the XML claim data in Figure 1, the status
of the claim is identified by “/Claim/Status”, instead of a
plain the attribute name “Status”. However, XQuery pro-
vides many new features (such as external parameter
binding) to query data in XML, which opens new oppor-
tunities for advanced folder operations.

Our new dynamic folder mechanism addresses the
weakness of [1] [6] and explores the capability of XML
and XQuery to provide advanced folder operations. The
detail of our mechanism will be covered in the following
sections.

Figure 1 An XML document describing a claim

3 The Hubble Dynamic Folder System
Most of the existing folder systems assume a flat data
model, such as attribute-value pairs. The status of a claim
described in Section 1 is such an example in which the
Status attribute can have the value “new”, “in-process” or
“completed”. XML has become widely adopted for both
the metadata describing binary data such as an image, and
for the data itself such as an insurance claim. Since a set
of attribute-value pairs can easily be viewed as a simple
XML document, the rest of the paper assumes that the
documents of interest are either in XML format or in any
format but with associated metadata in XML format. In
the former case, folder criteria are defined on the file con-
tent directly while in the latter case, they are defined
based on the associated metadata.

A simple enhancement of the path addressability in [1]
is far from sufficient to deal with the hierarchical nature
of the XML data model. For example, if a user specifies
/Claim/Vehicle and there is more than one vehicle in the
claim, a folder system based on [1] will not be able to
easily tell which vehicle the user is referring to. More
powerful folder technologies are required to master the
flexibility and richness of the XML data model.

3.1 The Dynamic Folder Model

With Hubble, there are two types of folders: design-time
folders and runtime folders. A design-time folder hierar-
chy is a tree of user-defined folder criteria. A design-time
folder df is characterized by a pair (dn, dq):
• dn is the name of the design-time folder.
• dq is the definition of the design-time folder, which is

specified in XQuery. We assume the query result is a
sequence of atomic values.

Two functions are supported on a design-time folder df:
• parentDf(df) returns the parent design-time folder of

df.
• childDfs(df) returns the set of child design-time fold-

ers of df.

Figure 2 A design-time folder hierarchy

<Claim>
 <Status>in-process</Status>
 <CustomerID>JoeSmith</CustomerID>
 <PolicyID>aaaaa-aaaaa</PolicyID>
 <ClaimID>aaaaa1</ClaimID>
 <Driver>
 <FirstName>Joe</FirstName>
 <LastName>Smith</LastName>
 <DriverLic>D11001100</DriverLic>
 </Driver>
 <Vehicle>
 <VIN>J1100110011</VIN>
 <Make>Honda</Make>
 <Model>Accord</Model>
 <Year>2001</Year>
 <LicPlate>AAA111</LicPlate>
 </Vehicle>
 <Vehicle>
 <VIN>V1123144009</VIN>
 <Make>Ford</Make>
 <Model>Focus</Model>
 <Year>1999</Year>
 <LicPlate>ABC123</LicPlate>
 </Vehicle>
 <Incident>
 <Date>10-15-02</Date>
 <Street>555 5th Ave.</Street>
 <City>San Jose</City>
 <State>CA</State>
 <ZIPCode>95123</ZIPCode>
 </Incident>
 <Adjustment>
 <Adjuster>
 <FirstName>Mary</FirstName>
 <LastName>Green</LastName>
 <AdjustDate>11-01-02</AdjustDate>
 </Adjuster>
 <Damage>

 <DamageType>NonSevere</DamageType>
 <DamageCode>2</DamageCode>
 <Deductable>500</Deductable>
 <BaseValue>10000</BaseValue>
 <Odometer>30000</Odometer>
 </Damage>
 …
 </Adjustment>
</Claim>

/

Status

Make Type

Code
Definition:
(Status,/Claim/Status)
(Make, /Claim//Vehicle/Make)
(Type, /Claim//Damage/Type)
(Code, /Claim//Damage/Code)

543

As shown in Figure 2, a design-time folder hierarchy
represents a sketch of how a user wants to organize a col-
lection of documents so that it can be efficiently searched
and viewed.

After a design-time folder hierarchy is created, a user
binds it to a collection of XML documents. While brows-
ing, runtime folders are automatically created and a run-
time folder hierarchy is automatically formed according to
the design-time folder definitions as well as the content of
the XML documents. Similar to a conventional folder, a
runtime folder contains XML documents in addition to
child runtime folders. A runtime folder rf is characterized
by a pair (df, rv):
• df is the design-time folder that the runtime folder

corresponds to.
• rv is the runtime value of rf that is defined in df or

dynamically generated by applying df to the docu-
ments.

Three functions are supported on a runtime folder rf:
• parentRf(rf) returns the parent runtime folder of rf.
• childRfs(rf) returns the set of child runtime folders of

rf.
• childDocs(rf) returns the set of XML documents con-

tained in rf.

Figure 3 shows the runtime folder hierarchy automati-
cally generated by evaluating the design-time folders in
Figure 2 on the XML document in Figure 1. Since only
one document is bound, the document is contained in all
the runtime folders in Figure 3. If the document is up-
dated, e.g., the status is changed to “completed”, the
folder “Status.in-process” in Figure 3 will be automati-
cally changed to “Status.completed”.

Figure 3 A runtime folder hierarchy

Here is how childDocs(rf) is recursively determined,
where rf is a pair (df, rv):
1. Assume:

a. dq is the query definition of df.
b. prf is the result of parentRf(rf).
c. docs is the result of childDocs(prf).

2. Execute dq on each document in docs. If the result of
dq contains rv, the document is in the result of child-
Docs(rf). Otherwise it is not.

The root folder contains all the documents. According
to this definition, the documents in a runtime folder are a
subset of the documents in its parent runtime folder. We
will remove this restriction in Section 5.2.

The following describes childRfs(rf), where rf is a pair
(df, rv):
1. Assume docs is the result of childDocs(rf).
2. For each df’ with (dn’, dq’) in childDfs(df).
3. Execute dq’ on docs, which results in a sequence of

atomic values vs’. Each df’ with a distinct value rv’
from vs’ forms a child runtime folder of rf.

In our system, the name of the runtime folder is the
concatenation of the design-time folder name and the run-
time value separated by a “.”.

In practice, the number of distinct values rv’ in
childRfs(rf) can be large. For example, the price of vehi-
cles can all be different from one another. If a design-time
folder is defined on the vehicle price, this will result in
almost one runtime folder created for each vehicle. Obvi-
ously this will not be useful to a user. In Hubble, a max
number M of such distinct values can be specified at the
system, hierarchy, or folder level. At run time, if the
folder has more than M distinct values, the system will
group them into m buckets, where m is less than or equal
to M. Each bucket is associated with a non-overlapping
range [min, max) and maps to a runtime folder. Docu-
ments with values falling in a bucket will show up in the
corresponding runtime folder. Several existing techniques
 [12] can be used to determine the value of m and the
ranges. How it is done is beyond the scope of this paper.

3.2 The Variable Binding Mechanism

Figure 4 A runtime folder with incorrect folder definition

In Figure 2, the design-time folder Make categorizes the
claims by the make of the vehicles. At run time, two run-
time folders are generated from it: Make.Ford and
Make.Honda. Within Make, if a user wants to further
categorize the claims by the model of the vehicles, they
can add a design-time folder named Model as a child of
Make. The question is: what should be the definition for
Model? Figure 4 shows the runtime folder hierarchy if

Make.
Ford

Status.
in-process

/

Type.
NonSevere

Code.
2

Make.
Honda

Model.
Focus

Model.
Accord

Model.
Accord

Model.
Focus

Status.
in-process

/

Make.
Ford

Type.
NonSevere

Code.
2

Make.
Honda

544

“/Claim//Vehicle/Model” is the query for the Model de-
sign-time folder.

Make.Ford has both Model.Focus and Model.Accord
as its child runtime folders, where it should only have
Model.Focus. The same is true for Make.Honda. This is
because there are two vehicles in the claim. Make.Ford
contains documents which have a Ford. Make.Ford wants
to categorize its documents according to the model of the
Ford vehicle. But with the above query definition for the
Model design-time folder, the claims are categorized ac-
cording to the model of any vehicle in the claim.

The hierarchical nature of the XML data model makes
it easy to group related information. For example, when
there is more than one vehicle, the make and the model of
a vehicle are grouped in a Vehicle element as shown in
Figure 1. In Hubble, we use a variable binding mecha-
nism to exploit the XML grouping feature. In the defini-
tion of a design-time folder df, a user can create variable
bindings in addition to the query definition. A variable
binding is of a pair ($var, vq):
• var is the name of the variable.
• vq is an XQuery query.

The variable is bound to each value in the result se-
quence with the same semantics as the “for” clause in
XQuery. The variables are visible to the definition of df
and its descendant design-time folders, which mean they
can use the variables in their definitions.

With the variable binding mechanism, one can define
a variable binding ($veh, /Claim//Vehicle) in the
Make design-time folder, and change the query of Make
to $veh/Make and that of Model to $veh/Model. By bind-
ing $veh to a Vehicle element, $veh/Make and
$veh/Model now refer to the make and the model of the
same vehicle. Consequently, Model.Focus is the only
child runtime folder of Make.Ford, as shown in Figure 5.

Figure 5 A runtime folder using variable binding

With variable bindings, the query of a design-time
folder definition cannot be executed directly on the XML
documents while obtaining the result of childDocs(rf) or
childRfs(rf). Instead, a For-Where-Return query will be
constructed to include the proper variable binding seman-
tics. The detailed algorithms of the query composition are

presented in Section 4. As an example, the query to iden-
tify the child runtime folders of Make.Ford is “for $veh
in /Claim//Vehicle where $veh/Make = “Ford”

return $veh/Model”.

3.3 The External Parameter Feature

Since XQuery is employed as the folder and variable
definition language, many XQuery features can be util-
ized in our dynamic folder system. For example, XQuery
supports external variable definitions, which allows val-
ues to be provided by the external environment. In this
paper, we call this type of variable definition, an external
parameter definition, to differentiate it from a variable
binding.

An external parameter definition specializes a runtime
folder hierarchy to the external environment. For instance,
say the query definition of the design-time folder Status is
modified to /Claim[.//Adjuster[FirstName =

$firstname and LastName = $lastname]]/Status. If
the name of an adjuster is bound to $firstname and
$lastname when the adjuster logs on to the system, then
the runtime folder hierarchy presented to the adjuster will
only contain the claims on which they have been working.
Similarly, the role or the credential of a user is commonly
used to personalize a runtime folder hierarchy at any
level. At run time, the values of the external parameters
are added to the evaluation context before the derived
query is evaluated for the runtime folder creation or the
document containment.

4 Basic Operations in Hubble
There are three basic operations that a user performs on a
runtime folder hierarchy; the first two are already men-
tioned in Section 3:
• childDocs(rf), which identifies the set of documents

in a runtime folder rf
• childRfs(rf), which identifies the set of child runtime

folders in a runtime folder rf
• inRfs(doc), which identifies the set of runtime folders

that contain the document doc

If we consider a dynamic folder hierarchy as a way to
categorize documents according to their content, the last
operation is to find the categories that a document belongs
to. A single efficient query can be composed and executed
to obtain the result of each of these operations. The fol-
lowing subsections detail the algorithms.

4.1 Retrieving Documents in a Runtime Folder

Section 3 briefly describes a naïve way to identify the set
of documents in a runtime folder. There, the set of docu-
ments in the parent runtime folder is identified first. So
for a runtime folder with a path of length N, N queries
need to be composed and executed. However, the opera-
tion can be carried out much more efficiently by generat-

Make.
Ford

Status.
in-process

/

Type.
NonSevere

Code.
2

Make.
Honda

Model.
Focus

Model.
Accord

545

ing and executing a single query. Figure 6 presents the
algorithm.

Figure 6 Algorithm for retrieving documents in a folder

Here is a query example generated to obtain the
document ids of childDocs(“/Status.completed
/Make.Honda/Model.Accord”):
for $doc in context()
for $veh in $doc/Claim//Vehicle
where $doc/Claim/Status = “completed”
 and $veh/Make = “Honda”
 and $veh/Model = “Accord”
return docid($doc)

The outermost for clause binds the context, which is
the set of all documents in the dynamic folder hierarchy.
Hubble can also efficiently support user queries on the
documents in a runtime folder. For example, child-
Docs(“/Status.completed/Make.Honda
/Model.Accord”)/Claim[Incident/Date >= “01-01-

2004”]/PolicyID translates to:
for $doc in context()
for $veh in $doc/Claim//Vehicle
where $doc/Claim/Status = “completed”
 and $veh/Make = “Honda”
 and $veh/Model = “Accord”
return $doc/Claim[Incident/Date >=
 “01-01-2004”]/PolicyID

Only the return clause is different. A simple static
analysis can be applied to eliminate dead or redundant
code (e.g., a variable that is defined but not used, or two
variables bound to the same expression).

4.2 Retrieving Subfolders in a Runtime Folder

Similarly, the result of the childRfs(rf) operation can also
be obtained more efficiently by generating and executing
a single query. The algorithm is shown in Figure 7.

Figure 7 Algorithm for retrieving subfolders

The algorithm has two main parts: lines 1 to 7 are the
same as in Figure 6, and lines 8 to 14 mainly set the re-
turn clause. The result is the names of the child runtime
folders of the target runtime folder. The same static analy-
sis described above can be applied. The following shows
the query generated for childRfs(“/Status. completed”):
for $doc in context()
where $doc/Claim/Status = "completed"
return (for $veh in $doc/Claim//Vehicle,
 $var1 in $veh/Make
 return concat("Make.", $var1),
 (for $var2 in $doc/Claim//Damage/Type
 return concat("Type.", $var2))

4.3 Identifying Runtime Folders Containing a
Document

The algorithm in Figure 8 composes a single query to
identify the runtime folders that contain a particular
document. It is a recursive algorithm that should be called
with the root of the corresponding design-time folder hi-
erarchy.

Line 5 binds a variable $rnd to the query of the design-
time folder and adds it to the for clause. Lines 6 sets $fnd
to the name of a runtime folder that contains the docu-
ment by concatenating the design-time folder name with
the value of $rnd. Line 7 adds the path of the runtime
folder to the return expression by concatenating the folder
names on the path. Lines 8 to 10 recursively calls the
function to construct queries for each of the children of
the design-time folder and to add them to the return ex-

getSubfoldersInFolder(target runtime folder: trf)
1 initialize a For clause, a Where clause and a

Return clause
2 foreach runtime folder rf on the path from the

root runtime folder to trf
3 get the corresponding design-time folder df of
 rf
4 appendVariableBindings(df) to the For clause
5 get the query definition dq of df
6 get the RT value rv of rf
7 append to the Where clause the equality check

of dq and rv (conjunctive)

8 foreach child design-time folder df of the cor-
responding design-time folder of trf

9 appendVariableBindings(df) to the For clause
10 get the folder name dn of df
11 get the query definition dq of df
12 append to the Return clause a sub For-Return

expression with:
13 the For clause in the form of “$rni in dq”

(rni: a unique variable name)
14 and the concatenation of dn and the value of

$rn (with “.” as the separator) as the Return
clause

15 compose a query using the For clause, the Where

clause and the Return clause
16 execute the query on the collection bound to

the folder hierarchy
17 the result are the names of the child runtime

folders of the target runtime folder

getDocumentsInFolder(target runtime folder: trf)
1 initialize a For clause, a Where clause and a
Return clause

2 foreach runtime folder rf on the path from the
root runtime folder to trf

3 get the corresponding design-time folder df
 of rf
4 appendVariableBindings(df) to the For clause
5 get the query definition dq of df
6 get the runtime value rv of rf
7 append to the Where clause the equality check

of dq and rv (conjunctive)
8 set the Return clause to return the id of the
document in the context

9 compose a query using the For clause, the Where
clause and the Return clause

10execute the query on the collection bound to
the folder hierarchy

11the result are the id’s of the documents in the
target runtime folder

appendVariableBindings(target design-time folder)
1 foreach variable binding vb of the target de-

sign-time folder
2 get the variable name vn of vb
3 get the query definition vq of vb
4 append to the For clause in the form of “$vn
 in vq”

546

pression. After the complete query is composed, it is exe-
cuted on the target document. The result is the paths of
the folders that contain the document. Figure 9 shows an
example with doc() as the target document given the run-
time folders generated by the design-time folder hierarchy
in Figure 5.

Figure 8 Algorithm for identifying folders containing a given

document

Figure 9 Translated query to retrieve runtime sub-folders

Various index structures are normally developed in
XML database systems to improve the query perform-
ance. A dynamic folder system can collect the statistics on
the frequency of folder access. This information can help
in deciding which indexes to create. For example, assume
that the /Status.completed/Make.Ford is frequently ac-
cessed and the XML query engine supports a simple path
index. With the query definitions in the previous exam-
ples, path indexes should be created on /Claim/Status
and /Claim//Vehicle/Make to improve performance.
When the XML query engine supports more complex path
index, a single path index on /Claim[

Status=“completed”]//Vehicle/Make, for example, will
give an even larger performance improvement. If some
runtime folders are frequently accessed but rarely up-

dated, materialized views on those folders can be created
to further improve performance [2].

5 Advanced Operations Supported in Hubble
Two advanced operations are supported in Hubble: The
first one enables users to navigate or browse runtime
folder hierarchy along multiple folder paths. The second
one allows folder operations to be applied to more than
one document collection.

5.1 Multi-Path Navigation

Conventional navigation on a folder hierarchy allows us-
ers to follow a single path of folders and examine docu-
ments one folder at a time. However, users may be inter-
ested in the common set of documents along multiple
paths. For instance, given the runtime folder hierarchy in
Figure 5, a user might want to look at the documents that
are contained in both /Status.in-process/Make.Honda and
/Status.in-process/Type.NonSevere. Then the user may
further navigate into the child folders /Status.in-
process/Make.Honda/Model.Accord and /Status.in-
process/Type.NonSevere/Code.2, respectively, and inspect
the documents that are in both runtime folders. We call
this type of navigation, multi-path navigation. During
multi-path navigation, users can define set operations over
multiple folders. The set operations supported in Hubble
comprise any combination of intersection, union, or dif-
ference. Intersection is used in the example above.

There are two sensible semantics for a set operation on
multiple runtime folders: the instance-based semantics,
and the definition-based semantics. We describe them in
the following sub-sections.

5.1.1 Instance-Based Semantics

The instance-based semantics defines a multi-path opera-
tion as a set operation on the documents contained in the
runtime folders. Assume:

• RFmm and RFnn are the runtime folders on which the
set operation is performed

• Smm and Snn are the sets of documents contained in
RFmm and RFnn, respectively:

Then the instance-based semantics results in the fol-
lowing translations:

Intersection of RFmm and RFnn: Smm intersect Snn
Union of RFmm and RFnn: Smm union Snn
Difference of RFmm and RFnn: Smm difference Snn

Naïvely, the set operations on multiple runtime folders
with the instance-based semantics can be implemented as:
(a) identify the set of documents in each runtime folder by
composing and executing a query using the algorithm in
Section 4.1, and (b) take the intersection, union, or differ-
ence of the result sets of the documents generated in step
(a).

for $var1 in doc()/Claim/Status
let $vn1 := concat(“/Status.”, $var1)
return $vn1,
(for $veh in doc()/Claim/Vehicle,
 $var2 in $veh/Make
 let $vn2 := concat(“/Make.”, $var2)
 return concat($vn1, $vn2),

(for $var3 in $veh/Model
let $vn3 := concat(“/Model.”, $var3)
return concat($vn1, $vn2, $vn3))),

(for $var2 in doc()/Claim//Damage/Type
let $vn2 := concat(“/Type.”, $var2)
return concat($vn1, $vn2),
(for $var3 in doc()/Claim//Damage/Code
let $vn3 := concat(“/Code.”, $var3)
return concat($vn1, $vn2, $vn3)))

getFoldersForDocument(target design-time folder:
tdf)

1 initialize a For clause, a Let clause and a
Return clause

2 appendVariableBindings(tdf) to the For clause
3 get the folder name dn of tdf
4 get the query definition dq of tdf
5 append to the For clause in the form of “$rnd in
dq” (rnd: a unique variable name)

6 append to the Let clause $fnd bound to the con-
catenation of dn and the value of $rn (with “.”
as the separator) (fnd: a unique variable name
and d the depth of tdf)

7 append to the Return clause the concatenation
of $fni’s with i from 1 to d (with “/” as the
separator)

8 foreach child design-time folder df of tdf
9 call getFoldersForDocument(df)
10 append the result query (a For-Let-Return

expression) to the Return clause
11compose a query using the For clause, the Where
clause and the Return clause

547

Alternatively, the multiple queries can be combined
into a single query using XQuery set operators. The fol-
lowing is a query sketch for the instance-based semantics.
Assume:
• RFm1, …, RFmi, …, RFmm and RFn1, …, RFnj, …,

RFnn are the paths from the root runtime folder to
RFmm and RFnn, respectively

• RFmi is of the form (DFmi, RVmi) and RFnj of (DFnj,
RVnj)

• DFmi is of the form (DNmi, DQmi, VBSmi) (VBSmi
are variable bindings), and similarly for DFnj

Here is the query sketch:
for VBSm1, …, VBSmm
where DQm1 = RVm1 and … and DQmm = RVmm
return docid()
intersect / union / except
for VBSn1, …, VBSnn
where DQn1 = RVn1 and … and DQnn = RVnn
return docid()

5.1.2 Definition-Based Semantics

The definition-based semantics defines a multi-path op-
eration as a set operation on the design-time folder defini-
tions. Since the semantics is definition-based, we use a
query sketch to represent the semantics.

Assume that the definitions for DFm and DFn are the
same as the ones for the query sketch of the instance-
based semantics. In addition, assume that:
• DF1 to DFc are the common ancestor design-time

folders for DFmm and DFnn

Then the query sketch representing the definition-
based semantics is as follows:

for VBS1, …, VBSc
where (DQ1 = RVm1 and … and DQc = RVmc)
 and (DQ1 = RVn1 and … and DQc = RVnc)
return (for VBSmc+1, …, VBSmm
 where DQmc+1 = RVmc+1 and … and DQmm = RVmm
 return docid()
 intersect / union / except
 for VBSnc+1, …, VBSnn
 where DQnc+1 = RVnc+1 and … and DQnn = RVnn
 return docid())

In this semantics, the common ancestor design-time
folders are identified and their variable binding definitions
are shared in the query for producing the result of the set
operation. For better performance, the XQuery set opera-
tions in the query can be rewritten as logical operations
(with an appropriate renaming of the variables in
VBSmc+1, …, VBSmm and VBSnc+1, …, VBSnn if they are
not unique):
for VBS1, …, VBSc, VBSmc+1, …, VBSmm, VBSnc+1, …,
VBSnn
where (DQ1 = RVm1 and … and DQc = RVmc)
 and (DQ1 = RVn1 and … and DQc = RVnc)
 and ((DQmc+1 = RVmc+1 and … and DQmm = RVmm)
 and / or / and not
 (DQnc+1 = RVnc+1 and … and DQnn = RVnn))
return docid()

5.1.3 Relationship of the Two Semantics

The result of a set operation under the above two seman-
tics will be the same unless a variable binding defined in
DF1, …, DFc is used anywhere in both DFmc+1, …, DFmm
and DFnc+1, …, DFnn. The following example illustrates
the difference between the two semantics.

Say we add a child design-time folder Year to the
Make design-time folder, with the query definition
$veh/Year. A claim C involves two vehicles, a 2001
Honda Accord and a 2003 Honda Civic. Suppose a user is
interested in the intersection of the two runtime folders:
/Status.completed/Make.Honda/Model.Accord, and
/Status.completed/Make.Honda/Year.2003 . Claim C will
be in the result of the intersection under the instance-
based semantics, but not under the definition-based se-
mantics. This is because the variable $veh used in the
definition of Model could be bound to different vehicle
than the variable $veh used in the definition of Year under
the instance-based semantics, while they must refer to the
same vehicle under the definition-based semantics. The
following are the translated queries under the two seman-
tics. The XQuery set operations in both queries are rewrit-
ten as logical operations for the predicates, with redundant
predicates removed. In the case of instance-based seman-
tics, variables are renamed when necessary.
The translated query for instance-based semantics:
for $doc in context(),
 $veh1 in $doc/Claim//Vehicle,
 $veh2 in $doc/Claim//Vehicle
where $doc/Claim/Status = “completed”
 and $veh1/Make = “Honda”
 and $veh1/Model = “Accord”
 and $veh2/Make = “Honda”
 and $veh2/Year = 2003
return $doc/docid()

The translated query for definition-based semantics:
for $doc in context(),
 $veh in /Claim//Vehicle
where $doc/Claim/Status = “completed”
 and $veh/Make = “Honda”
 and $veh/Model = “Accord”
 and $veh/Year = 2003
return docid()

5.2 Advanced Operations on Multi-Collections

In our previous examples, the runtime folders in which a
document is contained are entirely determined by the con-
tent in the document itself. However, other documents
may hold related information that will help in categoriza-
tion. Furthermore, users may want to browse into related
documents which are themselves well categorized. This
means that the documents contained in a child runtime
folder are not required to be a subset of the ones contained
in its parent. In the following subsections, we describe
how these features are implemented.

548

5.2.1 Folder Definitions Referencing XML in Other
Collections

Our use of XQuery enables us to define a folder hierarchy
based not only on the content of each document in the
collection, but also based on the content of other related
documents. For instance, say more details of a vehicle in a
claim, such as the condition of the vehicle, are stored in a
collection named “Vehicle”. A user can categorize the
claims by the conditions of the vehicles involved. The
design-time folder Condition is defined as follows, as-
suming $veh already defined as before:
Condition: collection(“Vehicle”)/Vehicle[VIN =
$veh/VIN]/Condition

At run time, the claims are grouped by the condition
of each vehicle involved, although the condition informa-
tion is recorded in the documents in the “Vehicle” collec-
tion, not in the claims.

5.2.2 Folder Traversal to Documents in Different
Collections

The dynamic folder hierarchy described so far is always
associated with one collection, i.e. the documents in one
dynamic folder hierarchy are all coming from the same
physical collection. In many applications, the documents
would contain references to documents in another collec-
tion. For example, in a human resource (HR) database, an
employee document has references to his manager’s as
well as his healthcare information documents.

Therefore, a dynamic folder system should allow users
to browse related documents in different collections fol-
lowing reference links. This requires some extensions to
the existing definition of a design-time folder. The new
definition of a design-time folder df is defined by a 4-
tuple (dn, dq, coll, join-condition) (assume the variable
bindings are defined as part of dq). As before, dn is the
name, and dq is the query. The new elements are defined
as follows:

• coll is the associated collection of documents, which
consists of the name of the collection and a binding
variable that is used to bind to each document in this
collection.

• join-condition is the join condition which describes
how to correlate the documents in the source collec-
tion to documents in the newly associated collection.
The variable bound to the documents in the new col-
lection as well as the binding variables defined in this
or the ancestor design-time folders can all be used to
specify the join-condition.

For a design-time folder which stays within the same
collection, join-condition will be empty. If coll is not
specified, it will inherit the collection from the parent
design-time folder. The idea is demonstrated through the
following example.

Assume there are two collections; one contains the
claims and the other contains the vehicle specifications.
The dynamic folder hierarchy for the claims will be based
on the one given in Figure 2, which describes the claim
hierarchy based on make and damage types. Each claim
document also has a reference to the corresponding vehi-
cle specification using the VIN element under each Vehi-
cle element. The path to locate the vehicle id is
/Claim//Vehicle/VIN. Similarly, each document in the
vehicle specification collection also contains a VIN ele-
ment, located by the path /VehicleSpec/VIN. Figure 10
shows the modified design-time folder hierarchy.

Figure 10 A design-time folder with definition across multi-

ple collections

Now, under the corresponding runtime folder for the
Make folder, there will be a set of folders grouping the
vehicles based on the number of cylinders. Figure 11 de-
scribes the corresponding runtime folder hierarchy.

Figure 11 A runtime folder hierarchy containing folders

across multi-collections.

/

Status

Make Type

Code

Definition:
(Status, {null, $srcdoc/Claim/Status},
 {$srcdoc, Claim}, null)
(Make, {($veh in $srcdoc/Claim//Vehicle),
 $veh/Make},
 null, null)
(Type, {null, $srcdoc/Claim//Damage/Type},
 null, null)
(Code, {null, $srcdoc/Claim//Damage/Code},
 null, null)
(Cylinder, {null,
 $tgtdoc/VehicleSpec/Engine/Cylinder},
 {$tgtdoc, VehicleSpec},
 $veh/VIN = $tgtdoc/VehicleSpec/VIN)

Cylinder

Status.
in-process

/

Type.
NonSevere

Code.
2

Make.
Honda

Cylinder.
4

Cylinder.
6

Cylinder.
4

Cylinder.
6

Make.
Ford

549

Figure 12 A modified algorithm for getting documents in a

runtime folder

Figure 12 presents the algorithm to generate the query
that retrieves the documents for a given design-time
folder definition. It is similar to the one given in Figure 6,
with additional statements from line 8 to 11.

The query which locates the documents under the
/Status.in-process/Make.Ford/Cylinder.4 folder is:
for $srcdoc in collection(“Claim”),
 $veh in $srcdoc//Vehicle,
 $tgtdoc in collection(“VehicleSpec”)
where $srcdoc/Claim/Status = “in-process”
 and $veh/Make = “Ford”
 and $veh/VIN = $tgtdoc/VehicleSpec/VIN
 and $tgtdoc/VehicleSpec/Engine/Cylinder=“4”
return $tgtdoc/docid()

For any design-time folder df, a user can reference an
existing design-time folder hierarchy as the design-time
folder sub-tree rooted at df, rather than explicitly define
its query definition and its descendant design-time fold-
ers. For example, if there is already a design-time folder
hierarchy dfh defined on the collection VehicleSpec
which categorizes the vehicles by their cylinders, the user
can specify dfh as the self and descendant design-time
folder definitions of Cylinder, with the appropriate join-
condition.

6 Performance Experiment
In this section, we present some performance results of
our dynamic folder mechanism. We first describe the ex-
perimental setup, and then give an analysis of the experi-
mental results.

6.1 Data Sets and Experimental Setup

The data sets we used are based on the “catalog” data of
XBench benchmark [20]. Since the basic unit of retrieval
in a folder system is a document, we store each item as a
separate document instead of having all the items in a
single catalog document. Each document is roughly
10KB in size.

All experiments are conducted on a 1.4GHz PowerPC
machine with 16GB main memory running AIX 5.2. The
folder system is built on top of a research prototype called
System RX [16], which is a native XML server based on
DB2 UDB technology. The system supports an XML col-
umn type natively in a relational model, and provides both
SQL/XML and XQuery to query the XML column. The
default configuration of System RX is used for our ex-
periments.

A collection in our folder system is mapped to a rela-
tional table, with the following schema:
 <collname> (docid, docname, doc, property)

Both doc and property are XML columns. The
XML document is stored in the doc column. Any associ-
ated metadata is stored in the property column. Indexes
are created on both XML and non-XML columns. Figure
13 shows the design-time folder definitions used in the
experiment.

Figure 13 The folder definition used in the performance test

getDocumentsInFolder(target runtime folder: trf)
1 initialize a For clause, a Where clause and a

Return clause
2 foreach runtime folder rf on the path from the
root runtime folder to trf

3 get the corresponding design-time folder df
 of rf
4 appendVariableBindings(df) to the For clause
5 get the query definition dq of df
6 get the RT value rv of rf
7 append to the Where clause the equality check

of dq and rv (conjunctive)

8 if the associated collection, aColl, of df is

different from the one of its parent folder,
9 get the variable name tvn of aColl
10 append to the For clause in the form of

“$tvn in collection(aColl)”
11 append the corresponding join-condition to

the Where clause

12set the Return clause to return the id of the
document in the context

13compose a query using the For clause, the Where
clause and the Return clause

14execute the query on the collection bound to
the folder hierarchy

15the result are the id’s of the documents in the
target runtime folder

/

Publisher

Author
Definition:
(/, {($src in $coll/item), $coll},
 {$coll, Catalog}, null)
(Country, {($author in $src/authors/author),
 $author/contact_information/mailing
 _address/name_of_country})
(Affiliation, {null, $author/affiliation})
(Author, {null, $author/name/last_name})
(Publisher, {null, $src/publisher/name})
(Subject, {null, $src/subject})
(Price, {null,
 $src/pricing/suggested_retail_price})**

NOTE:
• ** Since the domain on the Price value is infi-
nite, we enhance this definition by partitioning
the documents into buckets with different price
ranges, e.g. [0,50), [50, ∞).

• Since the folder hierarchy stays within the same
collection, the join condition and collection for
all the folder definitions, except the root, are
empty.

Subject Affiliation

Price

Country

550

6.2 Experimental Results

Our experiment investigated the effect of two variables:
the size of the collection and the size of the result set.

6.2.1 Varying the Collection Size

In this part, the operations include listing documents in a
folder as well as performing multi-path navigations. Table
1 lists the description of each operation and the number of
documents returned. The collection ranged from 62.5K to
1M documents. Each operation returns the same number
of documents, regardless of the collection size.

Table 1 Operations in the first part of the experiment

Oper-
ation

Description No. of
Docs

1 List documents in a runtime folder
/Country.Netherlands
/Affiliation.”U. of Florida”
/Author.Herlihy

38

2 Multi-path navigation
/Country.Netherlands
/Affiliation.”Broward Community
College”/Author.Nobel
intersect
/Publisher.”Lonely Planet Books”

291

3 Multi-path navigation
/Country.Netherlands
/Affiliation.”Benedict College”
/Author.Puterman
intersect
/Publisher.”MIT Press”
/Subject.BIOGRAPHIES

54

4 Multi-path navigation
/Country.Netherlands
/Affiliation.”Benedict College”
/Author.Puterman
intersect
/Publisher.”MIT Press”
/Subject.BIOGRAPHIES
/Price.[5000, ∞)

30

0

2

4

6

8

10

12

14

62.5K 125K 250K 500K 1000K
No. of Documents

El
ap

se
d

Ti
m

e
(s

ec
)

Op 1
Op 2
Op 3
Op 4

Figure 14 Fixed result set and variable no. of documents

Figure 14 shows the result of the experiment. The re-
sult of Op1 shows that it takes about 2 sec to process one
million documents and dynamically list the 38 matching

documents in a runtime folder. The elapsed time of opera-
tions (Op’s) 1, 2 and 3 only increased slightly with the
collection size, showing that Hubble is scalable to collec-
tions with millions of documents. For operation 4, the
elapsed time increases significantly as the collection size
increases (though still linearly, notice the logarithmic x-
axis). The main reason is that the query corresponding to
operation 4 contains a range predicate (i.e. price > 5000).
At the time we conducted the experiment, System RX did
pick a table scan instead of an index scan. We believe that
once the index range scan is used, the response time of
this query should be similar to the other three.

6.2.2 Varying the Size of the Result Set

In this experiment, we fixed the collection size at one
million documents. The two operations tested are de-
scribed in Table 2. The line representing the result of Op1
in Figure 15 is shorter because there is no runtime folder
/Country.X/Affliation.Y/Author.Z returning more than
220 documents for the selected X, Y and Z.

Table 2 Operations in the second part of the experiment

Opera
tion

Description

1 List documents in a runtime folder
/Country.X/Affiliation.Y/Author.Z

2 Multi-path navigation
/Country.X
intersect
/Publisher.Y/Subject.Z

X, Y and Z are the constants used to fetch the desired
number of return documents.

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500
No. of Documents in the Result Set

El
ap

se
d

Ti
m

e
(s

ec
)

Op 1
Op 2

Figure 15 Variable result set with the same no. of documents

Figure 15 shows that the elapsed time is proportional
to the number of documents returned by each operation.
This is because the XML indexes in System RX are used
to narrow down the search space. Then the system will
process each document in the remaining candidate list to
return the exact answer. That is why the elapsed time
grows as the system needs to process more candidate

551

documents and return more result documents. In practice,
returning hundreds of documents to an end user may not
be useful. More frequently, systems return the first few
results (say, 10-100). When this is the case, the typical
response time of our system is around one second, even
for a one million document collection.

7 Conclusion
In the past few years, XML has become the de-facto stan-
dard for information publishing and exchange. A signifi-
cant number of XML documents are generated everyday,
including many Web pages. There are several known
technologies for organizing documents. The most familiar
ones include directory structures for organizing files and
categorization and classification technologies for group-
ing web pages and documents. Existing folder technolo-
gies place documents into folders either manually or
automatically but based only on simple search criteria.
The categorization and classification technologies auto-
mate the placement and grouping of documents and
pages, but they are imprecise and do not take full advan-
tage of the rich information and semantics embedded in
the XML documents. This paper proposes a flexible and
powerful dynamic folder technology, which digs deeper
into the detail of an XML document to precisely catego-
rize the documents. Besides supporting basic folder op-
erations, Hubble provides advanced document categoriza-
tion, including multi-path navigation and folder traversal
across document collections. Our performance study
shows that Hubble is an efficient and scalable technology
for automatically and dynamically organizing XML
document collections.

8 References
[1] A. Azagury, M. E. Factor, Y. S. Maarek, B. Mandler. A

novel navigation paradigm for XML repositories. JASIST
2002, Volume 53, Issue 6.

[2] A. Balmin, F. Ozcan, K. S. Beyer, R. Cochrane, H. Pira-
hesh. A Framework for Using Materialized XPath Views in
XML Query Processing. Proceedings of VLDB 2004, To-
ronto, Canada.

[3] K. Becker, S. N. Ferreira. Virtual folders: database support
for electronic messages classification. Proceedings of CO-
DAS 1996, Kyoto, Japan.

[4] Biblioscape. http://www.biblioscape.com/
[5] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J.

Robie, J. Siméon. XQuery 1.0: An XML Query Language
(W3C). http://www.w3.org/TR/xquery/

[6] J. Eder, A. Krumpholz, A. Biliris, E. Panagos. Self-
maintained Folder Hierarchies as Document Repositories.
Proceedings of Int'l Conference on Digital Libraries: Re-
search and Practice, Kyoto, Japan, November 2000.

[7] Eudora. http://www.eudora.com/
[8] Hyperwave. http://www.hyperwave.com/

[9] IBM DB2 Content Manager.
http://www.ibm.com/software/data/cm/cmgr/mp/

[10] IBM DB2 Document Manager. http://www-
306.ibm.com/software/data/cm/docmgr/

[11] IBM Universal Database V8.2.
http://www.ibm.com/software/data/db2/udb/v82/

[12] Y. Ioannidis, V. Poosala. Balancing Histogram Optimality
and Practicality for Query Result Size Estimation. Proceed-
ings of SIGMOD 1995, San Jose, California.

[13] D. Koller, M. Sahami. Hierarchically Classifying Docu-
ments Using Very Few Words. Proceedings of ICML 1997,
Nashville, Tennessee.

[14] Lotus Notes. http://www.lotus.com/notes/
[15] M. A. Olson. The Design and Implementation of the Inver-

sion File System. Proceedings of the USENIX Winter 1993
Technical Conference, Berkeley, California.

[16] H. Pirahesh et al. System RX: One Part Relational, One
Part XML. Proceedings of SIGMOD 2005, Baltimore,
Maryland.

[17] Pollock, S. A rule-based message filtering system. ACM
Transactions on Information Systems (TOIS) 1988, Volume
6, Issue 3.

[18] J. Shanmugasundaram et al. Relational Databases for Que-
rying XML Documents: Limitations and Opportunities.
Proceedings of VLDB 1999, Edinburgh, Scotland.

[19] Tamino. Software AG.
http://www2.softwareag.com/Corporate/products/tamino/de
fault.asp

[20] B. B. Yao, M. T. Özsu, N. Khandelwal. XBench Bench-
mark and Performance Testing of XML DBMSs. Proceed-
ings of ICDE 2004, Boston, Massachusetts.

552

