
Consistency for Web Services Applications

Paul Greenfield, Dean Kuo, Surya Nepal
CSIRO ICT Centre

Locked Bag 17
North Ryde, NSW 1670

Australia
firstname.lastname@csiro.au

Alan Fekete
School of Information Technologies

University of Sydney
NSW 2006
Australia

fekete@it.usyd.edu.au

Abstract

A key challenge facing the designers of service-
oriented applications is ensuring that the
autonomous services that make up these
distributed applications always finish in
consistent states despite application-level failures
and other exceptional events. This paper
addresses this problem by first describing the
relationship between internal service states,
messages and application protocols and then
shows how this relationship transforms the
problem of ensuring consistent outcomes into a
correctness problem that can be addressed with
established protocol verification tools.

1. Introduction
Web Services and service-oriented architectures are being
promoted as the best way to build the next generation of
Internet-scale distributed applications. These applications
are made by gluing together opaque and autonomous
services, possibly supplied by business partners and third
party service providers, into loosely-coupled virtual
applications that can span organisational boundaries and
connect large-scale business processes.

Services are just applications that expose some of their
functionality to other applications in a particularly simple
and restricted way. Services are autonomous, opaque (and
probably stateful) applications that communicate with
each other solely by exchanging asynchronous messages.
This services model is extremely simple but,
unfortunately, this simplicity does not mean that large-
scale service-based applications will prove to be easy to

develop in practice or sufficiently reliable when they are
deployed. Building robust large-scale stateful distributed
systems will still prove to be hard for all the well-known
reasons, but the wide-spread adoption of service-oriented
architectures means that more programmers (and probably
less skilful ones) will get to face these challenges with
very little technology support or rigorous programming
patterns and guidance without further fundamental
research.

Some of the most critical problems faced by
developers of service-oriented systems come from the
independent and stateful nature of services and the
potential for concurrency. The main focus of our work has
been the consistency problem: ensuring that the set of
autonomous services making up one of these applications
always finish in consistent states despite failures, races
and other such exceptional events. This problem can be
solved through the use of traditional transaction
technology but this solution depends on assumptions of
trust and timeliness that no longer apply in the new
loosely-coupled services-based world.

Rather than attempting to provide the equivalent of
traditional distributed transactions for the loosely-coupled
Web Services world, our approach has been focussed on
the more modest goal of supporting the development of
tools, programming models and protocols for the
detection and avoidance of consistency faults, either at
design time or at run-time.

The key to our work has been establishing a
relationship between internal service states, messages and
application-level protocols. This insight lets us transform
the problem of ensuring consistent outcomes into a
protocol problem, opening up the possibility of using
proven techniques from the world of protocol verification
as the basis for tools that can improve the robustness of
service-based distributed applications.

These design-time protocol-based checking tools can
detect the presence of consistency errors in a design, but
they do not prevent inconsistent outcomes that result from
implementation flaws. We are working on using the same
message-based definitions of correctness and consistency
as the basis for protocols that can dynamically check for

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1199

consistency failures at the termination of service-based
applications, without requiring an overall coordinator or a
global view of the entire application.

We have also been looking into the consequences of
the lack of isolation in this services-based world, and our
initial research indicates that this problem can also be
resolved to some extent by taking a similar approach
based on protocols and patterns.

2. Some Challenges
This paper uses a simple two-party eProcurement
application as a source of examples. The application
consists of two stateful services, Customer and Merchant,
and these implement three activities: placing an order,
payment and delivery. Fig. 1 shows the normal message
flow between the customer and the merchant in this
application.

Fig. 1. Normal message flow in eProcurement

The application shown in Fig. 1 is conceptually simple
to build when nothing can go wrong. The difficulties
come from having to ensure that all the participating
services always reach consistent outcomes despite
application-level exceptions, asynchronous events and the
effects of concurrency.

Our work has focussed on three major problems that
could be encountered by such applications:

• No Termination. A distributed application may fail to

terminate in some cases because of deadlocks,
starvation and other such problems. For example, the
application will deadlock if it can reach the state where
the merchant is waiting for payment before delivering
the ordered goods while the customer is waiting for the
goods to arrive before paying for them.

• Unprocessed Messages. The termination of the
participating services needs to be coordinated to ensure
that no messages are left unprocessed after all of the
participants have finished. For example, the customer
may send its payment before the due date and then
terminate. This payment message could be delayed in

transit and not arrive at the merchant until after the due
date has expired. As the merchant has not received the
payment by the due date, it will send a late fee message
to the customer, but this message can never be
processed as the customer has already terminated.

• Inconsistent outcomes. The set of services making up
the application must always finish in globally
consistent states. For example, if the merchant’s state
records that they have received payment and delivered
the goods, the customer’s state must reflect the
merchant’s state and record that they have paid the
invoice and received the goods they ordered.

Determining whether or not an application finishes in

a consistent state can be quite difficult for service-
oriented applications. We could evaluate a set of global
consistency constraint expressions whenever the
application terminates but this would require both access
to the internal states of all the services, and a central
coordinator to perform the consistency check. The opaque
and peer-to-peer nature of service-oriented systems means
that we cannot take this path and need to find an
alternative solution.

Asynchronous messaging also greatly adds to the
difficulty of always reaching consistent outcomes as it can
introduce race conditions. A service can send multiple
messages before receiving any responses and these
messages may be notifications of application-level
exceptions. The asynchronous nature of these messages
means each service does not know what messages are
currently in transit and potentially conflicting messages
can pass by each other on the network.

3. Services and Transactions
The problems of ensuring consistency have natural
solutions in the realm of on-line transaction processing,
based on the key abstraction of ACID transactions [16].
This approach works well for short-duration applications
that execute within a single trust domain. However, it is
inappropriate for service-oriented systems with distributed
applications that are loosely coupled across organisational
boundaries, as implementations of ACID transactions rely
on locking resources to achieve isolation and atomicity.

Over the past decade, numerous advanced transaction
models have been proposed to address the problem of
providing some of the benefits of ACID transactions for
long-running and loosely-coupled systems [12, 14]. Sagas
it is one notable example, which uses compensators to
semantically undo completed operations, so reverting the
system back to its original state when the application
encounters a failure. This model has been accepted in
several of the standards proposed for service-oriented
computing, such as BPEL4WS [4] and WSCI [7]. The
drawback of this model is that the application may not
want revert to the original state in response to an
exceptional event; rather it may want to handle the

1200

problem and continue making forward progress. The
limitations of Sagas are described in one of our earlier
papers [15].

Recently service-based transaction frameworks such
as WS-Coordination and related standards [1, 10], BTP
[5] and WS-CAF[5] have been proposed to address the
transactional problem in service-oriented distributed
systems. WS-Coordination defines two types of
transaction protocols: WS-AtomicTransaction [1] and
WS-BusinessActivity [3]. WS-AtomicTransaction maps
the traditional ACID semantics to the coordination
framework and can only be used in a trusted domain. WS-
BusinessActivity defines a set of patterns for distributed
activity termination and is not meant to solve the problem
of consistency and isolation in service-oriented system.
BTP and WS-CAF also provide a set of patterns and
protocols, but do not deal directly with the problem of
consistency and isolation, leaving these issues to be
resolved by programmers and developers.

4. Contracts, Protocols and Consistency
A service-based application is built by combining a

number of autonomous, possibly stateful, services.
Whenever one of these distributed applications finishes,
all of these participating services must agree on the
outcome and they must finish in one of an agreed set of
consistent distributed final states.

This agreed set of allowable states could be defined
using global integrity constraints over the internal state of
the participating services. An application would then be in
a consistent state at termination if all the participating
services are finished and these consistency constraints are
satisfied. Using internal state in this way, however,
violates the ‘services are opaque’ principle of service-
oriented architectures and instead, in our work, we restrict
our consistency constraint expressions and only allow
them to refer to the messaging history of the application.

Restricting our consistency constraints expressions in
this way is based on the assertion that for a large and
significant set of service-based applications, all internal
service state that needs to be referenced in their
consistency constraint expressions will be unambiguously
reflected in specified protocol messages. For example, in
our eProcurement example, we want to be able to ensure
that both the customer and the merchant agree on whether
the ordered goods have been paid for. Our consistency
expression in this case could refer to internal payment
process state within the merchant service, but this state is
unambiguously reflected in the receipt message that the
merchant always sends to the customer to indicate the
satisfactory completion of its internal payment process.
As long as the relationship between this internal state and
the receipt message is unambiguous, then we can safely
use the occurrence of this message in an application
protocol sequence as a proxy for the corresponding
internal state in our constraint expressions.

This assertion about state being reflected in messages
links service state and consistency constraints to messages
and application protocols, and lets us define the
correctness of an application protocol and the consistency
of an application purely in terms of message sequences
and consistency constraints that refer only to messages.

Our approach to ensuring the consistency of service-
based distributed applications starts with the concepts of
contracts and application protocols. A contract is an
abstract definition of the externally observable messaging
behaviour of a single service. Contracts are an important
concept in their own right and specify the messages that a
service can send and receive, and the causal relationships
between these messages. An application protocol is the set
of all possible sequences of messages that can be
exchanged between the services participating in a
distributed application. As the messaging behaviour of a
service is defined by its contract, it follows that the
application protocol of a service-based application is the
set of all possible message sequences that are allowed by
the contracts of the participating services.

As described in the next section, we have used these
definitions of contracts and application protocol
correctness to statically prove that our service-based
example applications always finish with their participants
in globally consistent states. This work could be used as
the basis for tools that will let designers show that their
service-based systems are free of certain types of common
errors, including not always finishing in consistent global
states.

As part of this work, we needed a simple and
expressive way to specify the contracts of the services
participating in an application so that we could derive the
associated application protocol. Our method of defining a
contract uses conditions to state when a service can send
or receive specified messages. This approach is similar to
the ECA (Event-Condition-Actions) programming
languages used in active databases and agent based
systems [20]. Our contracts simply specify the messages
that can be received or sent by a service (its in and out
messages) and associate a condition with each message
that defines precisely when it is allowed to be sent or
received. These conditions are Boolean expressions over
the messaging history of the service. Some of these
messages are labelled as final messages to signify that a
service’s participation in a distributed application has
completed once they have been sent or received. This
approach to defining contracts is independent of our work
on consistency and application protocol correctness, and
can be used as a general way to define Web Services
contracts. It has been used in the SOAP Services
Description Language’s (SSDL) [8] rules protocol
framework [13] to define service contracts.

There are already a number of standards that address
the problem of specifying the messaging behaviour of a
service, including WSDL [8], BPEL4WS [4] and WSCI
[7], and there are also proposals based on process algebras

1201

such as CCS [18], CSP [11] and π-calculus [19]. We
considered these alternative ways of defining contracts as
part of this work and found that they either did not have
sufficient expressiveness or they become very tedious to
use for all but the simplest such message sequences,
particularly when asynchronous messages were allowed.

One example that illustrates the complexity that can
arise even in seemingly simple contracts is handling
customer-initiated cancellation. Our eProcurement
application lets customers send a cancellation request at
any time once they have sent a quote request. This means
that the merchant’s contract must written to specify that a
cancellation request can be received after each possible
incoming and outgoing message once a quote request has
been received. The permitted responses then depend on
whether the cancellation request was received before or
after the purchase order was received. It is possible to
specify this type of messaging behaviour using
BPEL4WS, CSP, CCP or π-calculus but the service
descriptions quickly become verbose and tediously
repetitive.

5. Static Consistency Checking
We have used these definitions of contracts and
consistency to show that it is possible to develop design-
time tools that can successfully check that service-based
applications always terminate with their participating
services in consistent states. This proof-of-concept starts
from the formal definition of the contracts of the
participating services and then uses a model checker
(SPIN [17]) to test whether these contracts are compatible
and that the resulting application protocol meets our
specified correctness criteria, including consistency. The
contracts are modelled using SPIN’s Process Meta-
Language (PROMELA) and the correctness properties are
specified in Linear Temporal Logic (LTL).

The model checker tests for three formal correctness
properties for application protocols that correspond to the
common problems discussed in Section 2. These
properties are:

1. That all messages sent or received by a service
comply with the conditions defined in its contract.
No messages are allowed to be left unprocessed after
a distributed application has finished.

2. That the application protocol eventually terminates.
We assume that the application protocol contains no
unbounded loops and that each service will
eventually send or receive a final message. This
property ensures that the application protocol will
not deadlock and that all the participating services
will eventually terminate.

3. That services finish in consistent states and so agree
on the final outcome of the distributed application
We define consistency through the use of global
consistency constraints that are expressed in terms of
the messaging state of the application (what

messages have or not been sent and received by the
participating services). As an example of one of
these consistency constraints, after a successful
purchase both the merchant and customer should
agree that goods have been delivered and payment
has been received. In terms of messages, the
merchant will have sent a receipt and received a
goods received acknowledgement; and the customer
will have received a receipt and sent a goods
received acknowledgement. There can be other
consistency constraints that must hold as well as this
one, and there can be any number of alternative
constraints that define other acceptable outcomes.

This last property is the one that lets us use tools

originally intended for checking protocol correctness to
verify that all message sequences belonging to a given
application protocol finish with their participating
services in globally consistent states.

At this time, our model checking work uses a set of
global consistency constraints when checking that an
application protocol meets this consistency-based
correctness property. We are already considering defining
local consistency constraints as part of a service’s contract
and then deriving the required global consistency
constraints from these local constraints. Further
investigation of this possibility is being planned as future
work.

6. Designing for Consistency
We have successfully specified and verified a number of
asynchronous two-party distributed applications using the
SPIN-based approach just described. We initially found
that defining error-free contracts and application protocols
was harder than expected, and we repeatedly had
problems with race conditions and unprocessed messages
at termination. We found that two important guidelines
helped us produce error-free designs.

The first, and most critical, design guideline is that
any internal service state that is needed to determine
whether a distributed application has reached a consistent
outcome must always and unambiguously be reflected in
protocol messages. We believe that this requirement just
reflects traditional business processes and protocol design.
For example, when the merchant service reaches the point
where it regards the goods as having been successfully
paid for, it must send a suitable message to indicate that it
has reached this state – a receipt message in our example.
The merchant service is not allowed to reach the ‘paid’
state without sending out such a message, and once this
state has been reached the merchant service cannot
change it without sending out another message to signal
the ‘paid’ state has changed.

Our second guideline is to use the WS-
BusinessActivity standard [3] to terminate each sub-
protocol and protocol. Every application protocol and

1202

sub-protocol must eventually terminate and WS-
BusinessActivity provides a very general framework for
coordinating the termination of stateful pair-wise
interactions. We found that adopting WS-
BusinessActivity allowed us to avoid certain classes of
problems in protocol design such as deadlocks and not
reaching agreed outcomes.

We found it important to think of WS-
BusinessActivity as a set of related protocol elements, or
a toolkit for terminating pair-wise stateful interactions,
rather than as a single monolithic protocol. Not all
possible paths defined in the WS-BusinessActivity
specification need to be used in any one application
protocol [10] and the system designer is free to use only
those paths that are appropriate for their purposes. We
initially found that it was very difficult to define correct
application protocols, even for what seemed like
relatively simple examples, as race situations were not
being properly handled. However, once we adopted WS-
BusinessActivity, and gained some experience, the task of
designing correct contracts and application protocols
became much easier.

7. Further Work
The work discussed so far does not guarantee that a
service-based distributed application can never finish with
its participating services in inconsistent states, but it can
let a developer check that their application does not
contain consistency-related errors resulting from
incompatibilities between service contracts.

We have also developed a protocol for dynamic
consistency checking that can be run at the termination of
a service-based application. This protocol is based on the
way that the reflection and transfer of critical state within
messages links the local consistency expressions for each
of the participating services and should let us verify
global consistency at termination without needing global
consistency expressions and an overall coordinator to
evaluate them. The correctness of this protocol is based
on formal work we have underway to show that we can
derive global consistency constraints from local
consistency constraints that are defined as part of an
extended contract. This extension also completes our
work on contracts and removes the need for global
consistency constraints during verification.

The other major problem facing developers of loosely-
coupled service-based applications is the lack of isolation
and the subsequent risk that concurrent applications will
interfere with each other. Our initial research indicates
that this problem can also be resolved to some extent by
taking a similar approach based on protocols and patterns
such as reservations.

The work presented in this paper also needs to be
generalised for distributed applications consisting of an
arbitrary number of services. The discussions in this paper
deal with only two services and WS-BusinessActivity is

also just a pair-wise termination protocol. We are
currently investigating whether composition and
delegation mean that practical multi-party service-based
applications can always be regarded as two-party for the
purposes proving their correctness. The correctness
properties and the methods for specifying a contract
remain the same for multi-service applications, however
specifying correct application protocols may be difficult if
we need to coordinate termination between many
services, not just two.

8. References
1. WS-Coordination. http://msdn.microsoft.com/library/en-

us/dnglobspec/html/WS-Coordination.pdf
2. WS-AtomicTransaction.

http://msdn.microsoft.com/library/en-
us/dnglobspec/html/WS-AtomicTransaction.pdf

3. WS-BusinessActivity.
http://msdn.microsoft.com/library/en-
us/dnglobspec/html/WS-BusinessActivity.pdf

4. BPEL4WS. http://www-128.ibm.com/developerworks/
library/ws-bpel/

5. BTP. http://www.oasis-open.org/business-transaction/
6. WS-CAF.

http://developers.sun.com/techtopics/webservices/wscaf/
7. Web Service Choreography Interface (WSCI) 1.0.

http://www.w3.org/TR/wsci/
8. Web Services Description Language (WSDL) 1.1.

http://www.w3.org/TR/wsdl
9. SOAP Service Description Languages (SSDL).

www.ssdl.org
10. F. Cabrera, G. Copeland, J. Johnson and D. Langworthy.

Coordinating Web Services Activities with WS-
Coordination, WS-AtomicTransaction and WS-
BusinessActivity.
http://msdn.microsoft.com/library/default.asp?url=/library/
en- us/dnwebsrv/html/wsacoord.asp

11. Communicating Sequential Processes, C.A.R. Hoare,
Prentice-Hall 1985.

12. A. Elmagarmid, editor. Database Transaction Models for
advanced Applications. Morgan Kaufmann, 1992.

13. Kuo, D., Greenfield, P., Parastatidis, S., Webber, J. Rules
SSDL Protocol Framework V1.0.
http://ssdl.org/docs/v1.0/html/Rules

14. H. Garcia-Molina and K. Salem. Sagas. In Proceedings of
the ACM SIGMOD, pages 249-259. ACM Press, 1987.

15. P. Greenfield, A. Fekete, J. Jang and D. Kuo.
Compensation is Not Enough. In proceedings of the 7th
International Enterprise Distributed Object Computing
Conference (EDOC) 2003.

16. Jim Gray, Andreas Reuter. Transaction Processing:
Concepts and Techniques, Morgan Kaufmann 1992.

17. G. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley.

18. R. Milner. Communication and Concurrency, Prentice-
Hall International, Englewood Cliffs, 1989.

19. R. Milner. Communicating and mobile systems: the π-
calculus. Cambridge University Press 1999.

20. J. Widom and S. Ceri. Active Database Systems: Trigger
and Rules for Advanced Database Processing. Morgan
Kaufmann, 1995.

1203

