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Abstract 

A key challenge facing the designers of service-
oriented applications is ensuring that the 
autonomous services that make up these 
distributed applications always finish in 
consistent states despite application-level failures 
and other exceptional events. This paper 
addresses this problem by first describing the 
relationship between internal service states, 
messages and application protocols and then 
shows how this relationship transforms the 
problem of ensuring consistent outcomes into a 
correctness problem that can be addressed with 
established protocol verification tools.  

1. Introduction 
Web Services and service-oriented architectures are being 
promoted as the best way to build the next generation of 
Internet-scale distributed applications. These applications 
are made by gluing together opaque and autonomous 
services, possibly supplied by business partners and third 
party service providers, into loosely-coupled virtual 
applications that can span organisational boundaries and 
connect large-scale business processes.  

Services are just applications that expose some of their 
functionality to other applications in a particularly simple 
and restricted way. Services are autonomous, opaque (and 
probably stateful) applications that communicate with 
each other solely by exchanging asynchronous messages. 
This services model is extremely simple but, 
unfortunately, this simplicity does not mean that large-
scale service-based applications will prove to be easy to 

develop in practice or sufficiently reliable when they are 
deployed. Building robust large-scale stateful distributed 
systems will still prove to be hard for all the well-known 
reasons, but the wide-spread adoption of service-oriented 
architectures means that more programmers (and probably 
less skilful ones) will get to face these challenges with 
very little technology support or rigorous programming 
patterns and guidance without further fundamental 
research. 

Some of the most critical problems faced by 
developers of service-oriented systems come from the 
independent and stateful nature of services and the 
potential for concurrency. The main focus of our work has 
been the consistency problem: ensuring that the set of 
autonomous services making up one of these applications 
always finish in consistent states despite failures, races 
and other such exceptional events. This problem can be 
solved through the use of traditional transaction 
technology but this solution depends on assumptions of 
trust and timeliness that no longer apply in the new 
loosely-coupled services-based world. 

Rather than attempting to provide the equivalent of 
traditional distributed transactions for the loosely-coupled 
Web Services world, our approach has been focussed on 
the more modest goal of supporting the development of 
tools, programming models and protocols for the 
detection and avoidance of consistency faults, either at 
design time or at run-time.  

The key to our work has been establishing a 
relationship between internal service states, messages and 
application-level protocols. This insight lets us transform 
the problem of ensuring consistent outcomes into a 
protocol problem, opening up the possibility of using 
proven techniques from the world of protocol verification 
as the basis for tools that can improve the robustness of 
service-based distributed applications.  

These design-time protocol-based checking tools can 
detect the presence of consistency errors in a design, but 
they do not prevent inconsistent outcomes that result from 
implementation flaws. We are working on using the same 
message-based definitions of correctness and consistency 
as the basis for protocols that can dynamically check for 
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consistency failures at the termination of service-based 
applications, without requiring an overall coordinator or a 
global view of the entire application.  

We have also been looking into the consequences of 
the lack of isolation in this services-based world, and our 
initial research indicates that this problem can also be 
resolved to some extent by taking a similar approach 
based on protocols and patterns.  

2. Some Challenges 
This paper uses a simple two-party eProcurement 
application as a source of examples. The application 
consists of two stateful services, Customer and Merchant, 
and these implement three activities: placing an order, 
payment and delivery. Fig. 1 shows the normal message 
flow between the customer and the merchant in this 
application.  

 

 

Fig. 1. Normal message flow in eProcurement 

The application shown in Fig. 1 is conceptually simple 
to build when nothing can go wrong. The difficulties 
come from having to ensure that all the participating 
services always reach consistent outcomes despite 
application-level exceptions, asynchronous events and the 
effects of concurrency.  

Our work has focussed on three major problems that 
could be encountered by such applications:  

 
• No Termination. A distributed application may fail to 

terminate in some cases because of deadlocks, 
starvation and other such problems. For example, the 
application will deadlock if it can reach the state where 
the merchant is waiting for payment before delivering 
the ordered goods while the customer is waiting for the 
goods to arrive before paying for them.  

• Unprocessed Messages. The termination of the 
participating services needs to be coordinated to ensure 
that no messages are left unprocessed after all of the 
participants have finished. For example, the customer 
may send its payment before the due date and then 
terminate. This payment message could be delayed in 

transit and not arrive at the merchant until after the due 
date has expired. As the merchant has not received the 
payment by the due date, it will send a late fee message 
to the customer, but this message can never be 
processed as the customer has already terminated. 

• Inconsistent outcomes. The set of services making up 
the application must always finish in globally 
consistent states. For example, if the merchant’s state 
records that they have received payment and delivered 
the goods, the customer’s state must reflect the 
merchant’s state and record that they have paid the 
invoice and received the goods they ordered.  

 
Determining whether or not an application finishes in 

a consistent state can be quite difficult for service-
oriented applications. We could evaluate a set of global 
consistency constraint expressions whenever the 
application terminates but this would require both access 
to the internal states of all the services, and a central 
coordinator to perform the consistency check. The opaque 
and peer-to-peer nature of service-oriented systems means 
that we cannot take this path and need to find an 
alternative solution.  

Asynchronous messaging also greatly adds to the 
difficulty of always reaching consistent outcomes as it can 
introduce race conditions. A service can send multiple 
messages before receiving any responses and these 
messages may be notifications of application-level 
exceptions. The asynchronous nature of these messages 
means each service does not know what messages are 
currently in transit and potentially conflicting messages 
can pass by each other on the network.  

3. Services and Transactions 
The problems of ensuring consistency have natural 
solutions in the realm of on-line transaction processing, 
based on the key abstraction of ACID transactions [16]. 
This approach works well for short-duration applications 
that execute within a single trust domain. However, it is 
inappropriate for service-oriented systems with distributed 
applications that are loosely coupled across organisational 
boundaries, as implementations of ACID transactions rely 
on locking resources to achieve isolation and atomicity. 

Over the past decade, numerous advanced transaction 
models have been proposed to address the problem of 
providing some of the benefits of ACID transactions for 
long-running and loosely-coupled systems [12, 14]. Sagas 
it is one notable example, which uses compensators to 
semantically undo completed operations, so reverting the 
system back to its original state when the application 
encounters a failure. This model has been accepted in 
several of the standards proposed for service-oriented 
computing, such as BPEL4WS [4] and WSCI [7]. The 
drawback of this model is that the application may not 
want revert to the original state in response to an 
exceptional event; rather it may want to handle the 
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problem and continue making forward progress. The 
limitations of Sagas are described in one of our earlier 
papers [15]. 

Recently service-based transaction frameworks such 
as WS-Coordination and related standards [1, 10], BTP 
[5] and WS-CAF[5] have been proposed to address the 
transactional problem in service-oriented distributed 
systems. WS-Coordination defines two types of 
transaction protocols: WS-AtomicTransaction [1] and 
WS-BusinessActivity [3]. WS-AtomicTransaction maps 
the traditional ACID semantics to the coordination 
framework and can only be used in a trusted domain. WS-
BusinessActivity defines a set of patterns for distributed 
activity termination and is not meant to solve the problem 
of consistency and isolation in service-oriented system. 
BTP and WS-CAF also provide a set of patterns and 
protocols, but do not deal directly with the problem of 
consistency and isolation, leaving these issues to be 
resolved by programmers and developers.  

4. Contracts, Protocols and Consistency 
A service-based application is built by combining a 

number of autonomous, possibly stateful, services. 
Whenever one of these distributed applications finishes, 
all of these participating services must agree on the 
outcome and they must finish in one of an agreed set of 
consistent distributed final states.  

This agreed set of allowable states could be defined 
using global integrity constraints over the internal state of 
the participating services. An application would then be in 
a consistent state at termination if all the participating 
services are finished and these consistency constraints are 
satisfied. Using internal state in this way, however, 
violates the ‘services are opaque’ principle of service-
oriented architectures and instead, in our work, we restrict 
our consistency constraint expressions and only allow 
them to refer to the messaging history of the application. 

Restricting our consistency constraints expressions in 
this way is based on the assertion that for a large and 
significant set of service-based applications, all internal 
service state that needs to be referenced in their 
consistency constraint expressions will be unambiguously 
reflected in specified protocol messages. For example, in 
our eProcurement example, we want to be able to ensure 
that both the customer and the merchant agree on whether 
the ordered goods have been paid for. Our consistency 
expression in this case could refer to internal payment 
process state within the merchant service, but this state is 
unambiguously reflected in the receipt message that the 
merchant always sends to the customer to indicate the 
satisfactory completion of its internal payment process. 
As long as the relationship between this internal state and 
the receipt message is unambiguous, then we can safely 
use the occurrence of this message in an application 
protocol sequence as a proxy for the corresponding 
internal state in our constraint expressions.  

This assertion about state being reflected in messages 
links service state and consistency constraints to messages 
and application protocols, and lets us define the 
correctness of an application protocol and the consistency 
of an application purely in terms of message sequences 
and consistency constraints that refer only to messages.  

Our approach to ensuring the consistency of service-
based distributed applications starts with the concepts of 
contracts and application protocols. A contract is an 
abstract definition of the externally observable messaging 
behaviour of a single service. Contracts are an important 
concept in their own right and specify the messages that a 
service can send and receive, and the causal relationships 
between these messages. An application protocol is the set 
of all possible sequences of messages that can be 
exchanged between the services participating in a 
distributed application. As the messaging behaviour of a 
service is defined by its contract, it follows that the 
application protocol of a service-based application is the 
set of all possible message sequences that are allowed by 
the contracts of the participating services. 

As described in the next section, we have used these 
definitions of contracts and application protocol 
correctness to statically prove that our service-based 
example applications always finish with their participants 
in globally consistent states. This work could be used as 
the basis for tools that will let designers show that their 
service-based systems are free of certain types of common 
errors, including not always finishing in consistent global 
states.  

As part of this work, we needed a simple and 
expressive way to specify the contracts of the services 
participating in an application so that we could derive the 
associated application protocol. Our method of defining a 
contract uses conditions to state when a service can send 
or receive specified messages. This approach is similar to 
the ECA (Event-Condition-Actions) programming 
languages used in active databases and agent based 
systems [20]. Our contracts simply specify the messages 
that can be received or sent by a service (its in and out 
messages) and associate a condition with each message 
that defines precisely when it is allowed to be sent or 
received. These conditions are Boolean expressions over 
the messaging history of the service. Some of these 
messages are labelled as final messages to signify that a 
service’s participation in a distributed application has 
completed once they have been sent or received. This 
approach to defining contracts is independent of our work 
on consistency and application protocol correctness, and 
can be used as a general way to define Web Services 
contracts. It has been used in the SOAP Services 
Description Language’s (SSDL) [8] rules protocol 
framework [13] to define service contracts. 

There are already a number of standards that address 
the problem of specifying the messaging behaviour of a 
service, including WSDL [8], BPEL4WS [4] and WSCI 
[7], and there are also proposals based on process algebras 
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such as CCS [18], CSP [11] and π-calculus [19]. We 
considered these alternative ways of defining contracts as 
part of this work and found that they either did not have 
sufficient expressiveness or they become very tedious to 
use for all but the simplest such message sequences, 
particularly when asynchronous messages were allowed.  

One example that illustrates the complexity that can 
arise even in seemingly simple contracts is handling 
customer-initiated cancellation. Our eProcurement 
application lets customers send a cancellation request at 
any time once they have sent a quote request. This means 
that the merchant’s contract must written to specify that a 
cancellation request can be received after each possible 
incoming and outgoing message once a quote request has 
been received. The permitted responses then depend on 
whether the cancellation request was received before or 
after the purchase order was received. It is possible to 
specify this type of messaging behaviour using 
BPEL4WS, CSP, CCP or π-calculus but the service 
descriptions quickly become verbose and tediously 
repetitive.  

5. Static Consistency Checking 
We have used these definitions of contracts and 
consistency to show that it is possible to develop design-
time tools that can successfully check that service-based 
applications always terminate with their participating 
services in consistent states. This proof-of-concept starts 
from the formal definition of the contracts of the 
participating services and then uses a model checker 
(SPIN [17]) to test whether these contracts are compatible 
and that the resulting application protocol meets our 
specified correctness criteria, including consistency. The 
contracts are modelled using SPIN’s Process Meta-
Language (PROMELA) and the correctness properties are 
specified in Linear Temporal Logic (LTL). 

The model checker tests for three formal correctness 
properties for application protocols that correspond to the 
common problems discussed in Section 2. These 
properties are: 

1. That all messages sent or received by a service 
comply with the conditions defined in its contract. 
No messages are allowed to be left unprocessed after 
a distributed application has finished. 

2. That the application protocol eventually terminates. 
We assume that the application protocol contains no 
unbounded loops and that each service will 
eventually send or receive a final message. This 
property ensures that the application protocol will 
not deadlock and that all the participating services 
will eventually terminate. 

3. That services finish in consistent states and so agree 
on the final outcome of the distributed application 
We define consistency through the use of global 
consistency constraints that are expressed in terms of 
the messaging state of the application (what 

messages have or not been sent and received by the 
participating services). As an example of one of 
these consistency constraints, after a successful 
purchase both the merchant and customer should 
agree that goods have been delivered and payment 
has been received. In terms of messages, the 
merchant will have sent a receipt and received a 
goods received acknowledgement; and the customer 
will have received a receipt and sent a goods 
received acknowledgement. There can be other 
consistency constraints that must hold as well as this 
one, and there can be any number of alternative 
constraints that define other acceptable outcomes.  

 
This last property is the one that lets us use tools 

originally intended for checking protocol correctness to 
verify that all message sequences belonging to a given 
application protocol finish with their participating 
services in globally consistent states.  

At this time, our model checking work uses a set of 
global consistency constraints when checking that an 
application protocol meets this consistency-based 
correctness property. We are already considering defining 
local consistency constraints as part of a service’s contract 
and then deriving the required global consistency 
constraints from these local constraints. Further 
investigation of this possibility is being planned as future 
work.  

6. Designing for Consistency 
We have successfully specified and verified a number of 
asynchronous two-party distributed applications using the 
SPIN-based approach just described. We initially found 
that defining error-free contracts and application protocols 
was harder than expected, and we repeatedly had 
problems with race conditions and unprocessed messages 
at termination. We found that two important guidelines 
helped us produce error-free designs. 

The first, and most critical, design guideline is that 
any internal service state that is needed to determine 
whether a distributed application has reached a consistent 
outcome must always and unambiguously be reflected in 
protocol messages. We believe that this requirement just 
reflects traditional business processes and protocol design. 
For example, when the merchant service reaches the point 
where it regards the goods as having been successfully 
paid for, it must send a suitable message to indicate that it 
has reached this state – a receipt message in our example. 
The merchant service is not allowed to reach the ‘paid’ 
state without sending out such a message, and once this 
state has been reached the merchant service cannot 
change it without sending out another message to signal 
the ‘paid’ state has changed.  

Our second guideline is to use the WS-
BusinessActivity standard [3] to terminate each sub-
protocol and protocol. Every application protocol and 
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sub-protocol must eventually terminate and WS-
BusinessActivity provides a very general framework for 
coordinating the termination of stateful pair-wise 
interactions. We found that adopting WS-
BusinessActivity allowed us to avoid certain classes of 
problems in protocol design such as deadlocks and not 
reaching agreed outcomes.  

We found it important to think of WS-
BusinessActivity as a set of related protocol elements, or 
a toolkit for terminating pair-wise stateful interactions, 
rather than as a single monolithic protocol. Not all 
possible paths defined in the WS-BusinessActivity 
specification need to be used in any one application 
protocol [10] and the system designer is free to use only 
those paths that are appropriate for their purposes. We 
initially found that it was very difficult to define correct 
application protocols, even for what seemed like 
relatively simple examples, as race situations were not 
being properly handled. However, once we adopted WS-
BusinessActivity, and gained some experience, the task of 
designing correct contracts and application protocols 
became much easier. 

7. Further Work 
The work discussed so far does not guarantee that a 
service-based distributed application can never finish with 
its participating services in inconsistent states, but it can 
let a developer check that their application does not 
contain consistency-related errors resulting from 
incompatibilities between service contracts.  

We have also developed a protocol for dynamic 
consistency checking that can be run at the termination of 
a service-based application. This protocol is based on the 
way that the reflection and transfer of critical state within 
messages links the local consistency expressions for each 
of the participating services and should let us verify 
global consistency at termination without needing global 
consistency expressions and an overall coordinator to 
evaluate them. The correctness of this protocol is based 
on formal work we have underway to show that we can 
derive global consistency constraints from local 
consistency constraints that are defined as part of an 
extended contract. This extension also completes our 
work on contracts and removes the need for global 
consistency constraints during verification.  

The other major problem facing developers of loosely-
coupled service-based applications is the lack of isolation 
and the subsequent risk that concurrent applications will 
interfere with each other. Our initial research indicates 
that this problem can also be resolved to some extent by 
taking a similar approach based on protocols and patterns 
such as reservations. 

The work presented in this paper also needs to be 
generalised for distributed applications consisting of an 
arbitrary number of services. The discussions in this paper 
deal with only two services and WS-BusinessActivity is 

also just a pair-wise termination protocol. We are 
currently investigating whether composition and 
delegation mean that practical multi-party service-based 
applications can always be regarded as two-party for the 
purposes proving their correctness. The correctness 
properties and the methods for specifying a contract 
remain the same for multi-service applications, however 
specifying correct application protocols may be difficult if 
we need to coordinate termination between many 
services, not just two.  
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