CXHist : An On-line Classification-Based Histogram
for XML String Selectivity Estimation

Lipyeow Lim!

L IBM T. J. Watson Research Center
19 Skyline Drive
Hawthorne, NY 10532, USA
{liplim,min} @us.ibm.com

Abstract

Query optimization in IBM’s System RX, the
first truly relational-XML hybrid data manage-
ment system, requires accurate selectivity estima-
tion of path-value pairs, i.e., the number of nodes
in the XML tree reachable by a given path with the
given text value. Previous techniques have been
inadequate, because they have focused mainly on
the tag-labeled paths (tree structure) of the XML
data. For most real XML data, the number of dis-
tinct string values at the leaf nodes is orders of
magnitude larger than the set of distinct rooted tag
paths. Hence, the real challenge lies in accurate
selectivity estimation of the string predicates on
the leaf values reachable via a given path.

In this paper, we present CXHist, a novel
workload-aware histogram technique that pro-
vides accurate selectivity estimation on a broad
class of XML string-based queries. CXHist builds
a histogram in an on-line manner by grouping
queries into buckets using their true selectivity ob-
tained from query feedback. The set of queries
associated with each bucket is summarized into
feature distributions. These feature distributions
mimic a Bayesian classifier that is used to route
a query to its associated bucket during selectivity
estimation. We show how CXHist can be used
for two general types of (path, string) queries:
exact match queries and substring match queries.
Experiments using a prototype show that CXHist
provides accurate selectivity estimation for both
exact match queries and substring match queries.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VL DB Conference,
Trondheim, Norway, 2005

1187

Min Wang!

Jeffrey Scott Vitter?

2 Purdue University
150 N. University Street
West Lafayette, IN 47907, USA
jsv@purdue.edu

1 Introduction

In IBM’s System RX [19], XML data are stored natively
in a tree data structure. XML data are queried using the
SQL/XML and XQuery/XPath query languages. A path
or path expression is the most fundamental addressing unit
for locating node(s) in an XML tree. Paths are processed
using either indexes or tree traversals. For efficient pro-
cessing, complex path expressions in XML queries are pre-
processed into a set of candidate (path, pred) query pairs,
where path is a linear rooted path and pred is a string
predicate on the leaf value reachable via path. Conse-
quently, an XML query (such as XQuery) can be mapped
to several retrieval operations using (path, pred) query
pairs [29, 25, 30, 13]. For the example data in Figure 1,

book article

ﬂ(le\ title
auihor @Cookings | Author
g . @pBMSS

a“”{ @Jim$ VT’ @Johns
year @Tim$

publisher

title
author

N @Ants
el @Tim$

publisher
@1999% @20008

@Springer$ @19088

@Morgan Kaufmann$

Figure 1: An example XML data tree. Tag names are in bold and data
values are in italics.

the path expression / / aut hor =@r'i n?! can be mapped
to query pairs {(/ DBLP/ book/ aut hor , @i n) and
(/ DBLP/ arti cl e/ aut hor , @i n%), where the string
predicate is the exact match predicate. These retrieval op-
erations using
(path, pred) query pairs form the set of basic logical query
processing operators. Accurate estimation of the selectiv-
ity of such (path, pred) query pairs is therefore crucial for
choosing an optimal execution plan in cost-based query op-
timization.

The XML string selectivity estimation problem is de-
fined as follows: Given a (path, pred) query, where pred
is a string predicate, estimate the number of nodes in the

1The symbols ‘@’ and ‘$’ denote the start and end of a string respec-
tively.

XML data that are reachable by path and whose associ-
ated string values satisfy the string predicate pred. The
focus of this paper is on the string predicate portion of
a (path, pred) query, because the problem of estimat-
ing the selectivity of the path portion of a (path, pred)
query is already well addressed in the literature [1, 5,
20, 21, 16, 9, 28, 27]. Examples of queries with dif-
ferent string predicates include exact match queries and
substring queries. An exact match query is specified
by a (path, string) pair and retrieves all nodes reach-
able via path whose string value matches the query
string exactly. A substring query is specified by a
(path, substring) pair and retrieves all nodes reachable
via path whose string value contains substring. For the
XML tree in Figure 1, the selectivity of exact match query
(/ DBLP/ book/ aut hor , @i n%) is 2 and the selectivity
of substring query (/ DBLP/ book/ aut hor ;i n) is 3.

The XML string selectivity estimation problem is an im-
portant and non-trivial problem. The string aspect of the
problem is especially important to XML DBMSs for two
reasons. First, XML data are weakly-typed and therefore
XML databases must support the retrieval of XML data as
string data, even though some data could be treated as nu-
meric data as well. For numeric leaf values, traditional his-
tograms can be used for selectivity estimation [21, 9]. Sec-
ond, the set of distinct path-string pairs in an XML tree is
typically orders of magnitude larger than the set of distinct
rooted paths. For example, the DBLP XML data set has
2,026,814 distinct path-string pairs, but only 275 distinct
rooted paths. The small number of paths means that the se-
lectivity of all distinct rooted paths can be easily stored in
an index using little space?. The selectivity of distinct path-
string pairs, however, would require more sophisticated ap-
proximation techniques.

XML string selectivity estimation is a non-trivial prob-
lem because of three unique challenges:

1. How to capture substring statistics accurately in lim-
ited storage?

2. How to capture the correlation between paths and the
substring statistics accurately?

3. How to support a broad class of query types?

Capturing substring statistics for selectivity estimation
in relational databases has been studied in [14, 26, 12, 10,
11, 4]; however, the accuracy of these proposed solutions is
far from satisfactory [4]. The problem is hard because the
set of distinct strings is large and the corresponding set of
possible substrings is even larger (by orders of magnitude).
Storing the selectivity of each distinct string or substring
is clearly infeasible and more sophisticated approximation
techniques are required to capture the substring statistics.

The main difference between the XML string selectivity
estimation problem and the relational substring selectivity

2In the case that the number of distinct rooted paths is significantly
large, techniques based on the Markov assumption and/or bi-similarity
can be used [1, 5, 20, 21, 16].

1188

estimation problem is that a correlated path (whether im-
plicitly encoded as a path ID or explicitly as a XPath) is
associated with the query substring in the XML problem.
Hence, XML string selectivity estimation is a harder prob-
lem than relational substring selectivity estimation, because
the correlation between path and substring statistics needs
to be captured as well. Previous work on XML selectivity
estimation has emphasized the selectivity of navigational
paths and tree structures [1, 5, 20, 21, 16, 9] and has not
fully address the XML string selectivity estimation prob-
lem. While correlated sub-path trees (CSTs) [5] and XPath-
Learner [16] do address the correlation between paths and
their associated string values in a limited way, XPath-
Learner does not capture substring statistics and CSTs suf-
fer from the underestimation problem [4]. The problem of
accurately capturing substring statistics that are correlated
with paths has not been adequately addressed.

As a consequence of the flexibility of XML, XML query
languages, and XML applications, XML DBMSs need to
support a broad class of query types (exact match, sub-
string, prefix, suffix, etc.). Two particularly important
query types are exact match queries and substring queries.
Exact match queries occur frequently in transaction pro-
cessing and in application generated queries. Substring
queries, on the other hand, occur frequently in user gener-
ated queries, because users do not usually remember a text
string exactly. While separate statistics and techniques can
be used for each query type, we propose a single estimation
framework that is accurate for a broad class of query types
in this paper. Previous work that supports string predicates
is very restrictive in this aspect. The CST method [5] sup-
ports substring queries, but is prone to underestimation for
exact match queries [4]. The XPathLearner [16] method
supports exact match queries, but cannot handle substring
queries at all. The challenge then lies in designing a single
framework for the accurate estimation of the selectivity of
a broad class of string predicates.

Our contributions. In this paper, we propose CXHist as a
novel on-line selectivity estimation method that supports a
broad class of query types. CXHist is capable of capturing
accurate path-correlated statistics for a broad class of string
predicates on leaf values. These statistics are collected not
from costly off-line scans of the underlying data, but from
query feedback, i.e., past query answers (see Figure 2).
Consequently CXHist is able to adapt to both changes in
the query workload characteristics and in the underlying
data. CXHist stores the mapping between queries and their
selectivity using a histogram approximately. The selectiv-
ities are partitioned or quantized into a fixed number of
buckets and the set of queries associated with each bucket is
summarized into feature distributions using a query model.
Feature distributions therefore approximately ‘remember’
which queries belong to which bucket. Given a query, the
feature distributions mimic a Bayesian classifier [8] so as
to compute the bucket that the query belongs to. The selec-
tivity of the bucket (computed by the Bayesian classifier)
is then returned as the estimated selectivity. We show how

Plan Execution
QueryPlen

'/~ Selectivity Undat 1
1 _Estimator pdate !
| CXHist J CxHist |

Histogram System |

Query
Feedback

Figure 2: Workflow of CXHist.

to construct and maintain the feature distributions and the
buckets using only query feedback. Our contributions are
summarized below:

e CXHist is a new type of histogram that uses feature
distributions and Bayesian classification techniques to
capture the mapping between queries and their selec-
tivity. To the best of our knowledge, CXHist is the
first type of histogram based on classification.

e CXHist is on-line: it gathers statistics from query
feedback rather than from costly data scans, and hence
adapts to changes in workload characteristics and in
the underlying data. We also show how to build and
update a CXHist using only query feedback. With the
exception of [16], all previous work is off-line.

e CXHist is general. By defining an appropriate query
model CXHist is applicable to a broad class of query
types. CXHist is not limited to XML data: it can
be used for multidimensional string data in relational
databases as well.

e CXHist can be easily implemented and deployed in
practice.

The rest of the paper is organized as follows. Section 2
presents CXHist histograms in detail. Experimental vali-
dation is given in Section 3. Related work is discussed in
Section 4. In Section 5 we draw conclusions and discuss fu-
ture work. For ease of exposition, we present CXHist in the
context of exact match and substring queries, even though
CXHist is applicable to a broad class of query types. Note
also that the terms cardinality and selectivity are used in-
terchangeably in this paper.

2 CXHist Histograms

2.1 Overview

A key difference between our on-line CXHist technique
and traditional off-line histograms is that CXHist models
queries whereas the off-line methods model data. Mod-
elling queries has the advantage that the relevance of the
statistics collected and stored in the limited amount of
space can be tuned to the query workload: resources are
not wasted on storing statistics that are not relevant to the
query workload. CXHist models a query ¢ as a set of fea-
tures ¥ = (zy,...,x%). How a query is mapped to its
corresponding feature set is determined by the query model
(details in Section 2.2).

A CXHist histogram consists of a set of m buckets in-
dexed by B ={1,2,...,m}. Each bucket b stores

1189

1. sum(b), the sum of the selectivities of all the query
feedback that is associated with bucket b,

2. cnt(b), one plus the number of query feedback seen
so far that is associated with bucket b,

3. {P(X;|B=b) : i = 1,...,k}, aset of query feature
probability distributions that captures approximately
the set of queries that are associated with bucket b.
One distribution is stored for each feature random
variable X;.

The CXHist histogram is usually initialized with empty
feature distributions and some predetermined represen-
tative values for the sum(b) fields. Upon receiving
query feedback, CXHist updates the feature distributions,
sum(b), and cnt(b) fields, thereby learning and refining the
statistics using query feedback.

Given a query ¢, CXHist estimates the selectivity o(q)
by first computing the bucket b that is associated with g.
This computation is performed by using the query model to
map the query into feature space and by using the feature
distributions to mimic a Bayesian classifier. The selectivity
of ¢ is then computed as

sum(b)

est(b) = cnt(l;l; .

@

The feature distributions of a bucket b approximately “re-
members” which queries belong to bucket b. Each feature
distribution P(X;=x,;|B=b) is not stored as probabilities,
but using counts®, N (X;=z;, B=b), the number of times a
particular feature has been observed to be associated with
bucket b. The probabilities are recovered using,

Cimay N(Xizi'i,B:b)
P(Xi=z;|B=b) = > N(Xi=¢, B=b)’ @

CXHist updates itself using query feedback. Suppose
the query execution engines computes o (g) as the true se-
lectivity for query q. CXHist finds the bucket b+ whose
selectivity is closest to o (q). If the bucket b computed us-
ing feature distributions is not the same as bx, the feature
distributions of bucket b« are updated so that CXHist will
remember that query ¢ should be associated with bucket bx.

The update process potentially adds new entries to the
feature distributions and hence increases the memory used
by CXHist. Whenever CXHist exceeds a given size thresh-
old, the feature distributions are pruned so that the size of
CXHist stays below the given threshold. Since the size
threshold is set to a small constant (in practice this constant
is roughly 1-2% of the data size), the space complexity of
CXHist is O(1). The time complexity of the selectivity es-
timation, update and pruning procedures are therefore also
O(1) because their time complexity are only dependent on
the size of the CXHist histogram.

3Note that fractional counts are allowed for updates.

2.2 Modédling Queries

CXHist is a general histogram technique that can be used
whenever a query model can be defined. A query model
M(q)=Z is a mapping from a query to a feature set.
CXHist uses a query model to compress and summarize
the set of queries associated with each bucket into feature
distributions. A good query model should include features
that will distinguish queries associated with different buck-
ets with respect to the classification procedure. Query mod-
els are application-specific and we first describe the query
model used in this paper, before giving an example of a
query model that can be used in a different application sce-
nario.

Since we are mainly interested in substring and exact
match queries in this paper, the query model we used mod-
els these two types of queries. Our query model maps
each query to a pathid and all the n-grams of the query
(sub)string, where n is a tunable parameter. The distinc-
tion between substring and exact match queries are implic-
itly encoded using a start of string symbol ‘@ and an end
of string symbol ‘$’. For example, an exact match query
(5, @I M) is mapped to (5, @, LI ,1 M M) for n = 2.

To illustrate the generality of CXHist, we briefly
outline an example of a query model that can be
used for single-branch queries. Suppose the query is
/ DBLP/ book[year =@999%]/titl e=@\r, i.e., re-
trieve the titles of books published in 1999 prefixed by
‘Ar’. A possible query model would include the fol-
lowing features: the main path / DBLP/ book/titl e,
the main substring predicate @\r, the branching path
/ DBLP/ book/ year , the branching path string predicate
@.999%. The (sub)string predicates can be further mod-
eled using n-grams.

2.3 Estimating Selectivity

Given a query g, selectivity estimation is done by determin-
ing which bucket the query belongs to. The mapping be-
tween a query and its bucket is modelled as a joint probabil-
ity distribution with the random variable B for the bucket
and a series of random variables, X':<X1, ..., Xy), forthe
features of the query (under a given query model). Suppose
that the query model maps the query ¢ into a set of features
Z = (x1,...,2), then the bucket b that ¢ belongs to is
computed as the bucket that maximizes the posterior prob-
ability of the query belonging to a bucket b given its feature
values,

arg Ill)rlean{P(B:b)?::E')} (3)

argrileaé({P(B:b)P(4:;?|B:b)}, 4)

where the second equality is obtained using Bayes rule and
by simplifying the denominator into a constant that is inde-
pendent of b and hence does not affect the maximal point.
This technique is commonly known as a Bayesian classi-
fier [8] (where each bucket is the class label) in machine

1190

learning literature. A naive Bayesian classifier further sim-
plifies the conditional distribution P(X=x|B=b) by as-
suming conditional independence among the features given
the bucket (the naive Bayes assumption),

n

[[P(x:1B=b). (5)

i=1

P(Xy,Xo,...,X,|B=b) =

Note that assuming conditional independence of the feature
distributions is not the same as

1. assuming attribute value independence in RDBMS, or

2. assuming that the path and value string are indepen-
dent with respect to the (path, string) pair selectivity,
or

3. assuming conditional independence of n-grams in the
pruned suffix tree methods of [12].

The underlying probability space in each of the above three
cases is different from the CXHist context. Despite the
conditional independence assumption on the features, naive
Bayesian classifiers have been shown to be very accurate
even for datasets with strong dependencies among the fea-
tures [7, 15]. Observe in Equation (5) that the probability
terms { P(X;|B=b) : Vi} are precisely those stored in each
bucket and that the probability term P(B=b) can be com-
puted as,

.y cnt(b)—1
POB=b = &= ot () — 1) ©

Once the bucket b for query ¢ is computed, the selectiv-
ity of ¢ is then computed as est(f)). There is a boundary
case when the posterior distribution is flat and no maxi-
mum point exists. In this case, a default selectivity such as
the smallest selectivity among the buckets can be returned.

Using the query model described in Section 2.2, each
substring or exact match query is modelled as a random
variable 7' for the pathlD and a series of random vari-
able {G1,Ga, ..., Gy} for the sequence of n-grams of the
query (sub)string. In addition to conditional independence,
we assume stationarity of the n-gram distribution,

P(Gi|B) = P(G|B) Vi. @

The n-gram model and the stationarity assumption were
first used by Shannon [24] for predicting English text and
has since been widely used in text modeling. Stationarity
allows us to store just one n-gram distribution per bucket
instead of one distribution for each position in a string.

Hence, given a query with feature values (¢, g1, 92, - - ., gk,
its associated bucket is computed as,
b = arg rglean{P(B:b) x P(T=t|B=b)
k
<11 P(Ggile)},)
=1

and the selectivity of ¢ is estimated as est(b).

24 Initializing CXHist

Given a fixed query model, a fixed number of buckets m,
the minimum selectivity {, and the maximum selectivity A,
a CXHist histogram is initialized with m buckets, such that,
for each bucket b, the bucket count cnt(b) is set to one, the
feature distributions are set to empty, and the sum(b) is ini-
tialized with a representative value from the interval [I, h].
The set of representative values can be chosen in several
ways. If a sample query workload is available during ini-
tialization, the MaxDiff [22] algorithm or the Lloyd-Max
algorithm [17, 18] can be used. If a query workload is not
available, the representative values can be picked uniformly
from the given interval, or they can be picked to be expo-
nentially increasing (eg. {1,2,4,8,16,...}). In our exper-
iments we used a combination of both ways. If the number
of buckets m is larger than log, (h —1), the smallest j repre-
sentative values, where j is a tunable parameter, can be ex-
ponentially increasing and the remaining values uniformly
spaced in the rest of the interval.

Ix2v7!
Sum(b) = Ix29-1 4 (b—]) h—lx27 "1

m—j

b<j
j<b<m
©)

For example, if m=10 and j=5, the representative values
for the interval [1, 66] are {1, 2, 4, 8, 16, 26, 36, 46, 56, 66 }.

Picking exponentially increasing representative values
for the smaller selectivities gives better estimates in terms
of relative error. The intuition is that if CXHist remem-
bers which queries belong to which bucket perfectly and
if CXHist does not update the representative values in the
buckets, then the relative error of each estimate is no more
than 50%.

2.5 Updating the CXHist Histogram

Given a query feedback, i.e. a (¢, o(q)) pair, we want to up-
date the histogram so that it will give a better estimate when
it encounters query ¢ again. For our discussion assume
that query ¢ maps to the feature vector ¥ = (xq,...,xx).
The update algorithm is outlined in Algorithm 2 and it
requires a subroutine ADDINSTANCE(b, (21, .. ., zx)) Out-
lined in Algorithm 1 that increments all the feature distri-
bution entries associated with each given feature value z;
in the given bucket b.

Algorithm 1 ADDINSTANCE (b, (z1, ..., Tk))

INPUT: bucket index b and query feature vector (x1, ..., xk)
1: forallie{1,...,k} do

2. if Bentry N(X;=x;| B=b) then

3 add new entry N (X;=z;|B=b) =0

4: increment N(X;=xz;|B=b)

First, find the bucket b« whose estimate est(bx) is clos-
est to o(q) (see line 1). Second, update the bucket bx
by incrementing cnt(bx) and adding o(q) to sum(b*)
(lines 2-3). Third, update the feature distributions of bucket
bx. If either no maximum point is found when estimat-
ing the selectivity of ¢ or the closest bucket b« is the
same as the bucket that maximizes the posterior probabil-

ity b, i.e., no classification error, then increment the count

1191

Algorithm 2 UPDATE ((g, 0(q)), {1, .., k),)

INPUT: query feedback (g, o(q)), feature vector (z1,...,xy) for query
q, learning rate v

1: bx — arg miny{|o(q) — est(b)|}

2: sum(bx) «— sum(bx) + o(q)

3: increment cnt(bx)

4: compute b using Equation (8).

5: b

6

7

8

if 3b or bx=b then
. ADDINSTANCE(b*, (21, ..., Zk))
. ese R . R
p — P(B=b)P(X=&|B=b)/P(B=bx)
9: px «— P(X=&|B=bx)
10: if px=0 then

11: ADDINSTANCE(b*, {1, ...,Zk})

12: px — P(X=&|B=b%)

13: whilep*x < pdo

14: forallie {1,...,k}do

15: update N (X;=x;|B=bx) using Equation (13)
16: recompute px

17: if px = pthen

18: ADDINSTANCE(bx, (21, . . ., Tk))

N(X;=xz;|B=bx) for each ¢ = 1,...,k (lines 5-6). Oth-
erwise, there is a classification error, i.e., bx # b. We want
to update the feature distributions such that ¢ will be classi-

fied into the bucket b« instead of b. Specifically, the desired

condition is

P(B=bx)P(X=&|B=bx) > P(B=b)P(X=%|B=b) (10)

P(B=b)P(X=&|B=b)
P(B=b%)

= P(X=7|B=bx) > - (11)

A naive method for updating the feature distributions is
to keep incrementing the count N (X;=x;| B=>bx) for each
i =1,..., kuntil the above condition is met.

A more principled method for getting the same effect
is to perform gradient descent [23] until the condition is
met (line 13). The number of iterations can be bounded by
a specified constant to prevent the whi | e-loop (line 13)
from taking too long. For gradient descent, we define the
error function as,

2
E(%) = |P(X=&|B=bx) —p| , (12)

where p=P(B=b) P(X=&|B=b)/P(B=>bx) is a constant
target value. Let w; be a shorthand for the count
N(X;=xz;, B=bx). For each feature value z; of the query,
the gradient descent method updates the count w; using the
negative gradient,

OB (%)

vy 8—11)1'7 (13

(1)

: wit) —

where w'"” and w"™") are the counts before and after the

update, and ~ is the learning rate parameter.

Two boundary cases need to be addressed. The first
boundary case occurs before the gradient descent iteration
when w;=0 for some ¢ and hence P(X':a?|B:b*):0 and
the gradient may be undefined. This situation is avoided by

incrementing N (X;=x;, B=bx) fori = 1,..., k (lines 10-
12). The other boundary case occurs after the gradient de-
scent loop when P(X'::?;’\B:b*) = p. The desired condi-
tion is P(X=Z|B=>bx) > p, so the feature distributions in
b* are incremented once more to break the tie (line 17).
One problem with using gradient descent in this form

is that the updates Aw; = 2Z@) can be very small (less

than 10~1%) when the number of feature values are large.
We address this problem by computing the updates Aw;
for all 4 and normalizing them so that the smallest Aw; is
one. The learning rate is then applied onto the normalized
updates.

We have discussed gradient descent update for CXHist
without assuming a specific query model. We now show
the update equations for the query model we adopted for
substring and exact match queries. To simplify the nota-
tion, we will use the following shorthand,

k
g =P(T=t|B=bx) [| P(G=g:| B=b+),
=1

wy =N (X=x, B=bx),
Wx =» N(X=z, B=bx),

p(t,g1,.--

where X is a feature random variable (either T" or G). The
squared error function for gradient descent is,

2
E(tagla"'7gk) = I:p(tagla"'agk) - ZS:| . (14)
For the pathID distribution, the update equation is,

BE(tvgla---agk)

Aw; = 0, =2[p(t,91,--~,gk) —ﬁ}
1 1
x p(t,g1,... 7gk)(E - ﬂ) (15)

For the n-gram distribution, recall that we have assumed
stationarity and that {gi,...,gx} are not necessarily all
distinct; hence, for each distinct n-gram ¢ that occurs «
timesin {g1,..., gz}, the update in w, is computed as,

aE(tagla'”vgk)

Awg: :2|:p(t7gl7~'-7gk)_ﬁ:|

Owy
« k

X p(t7917~--,9k)(w— - W—G> (16)
g9

2.6 Pruning CXHist

The size of a CXHist histogram is the sum over each bucket
b of the size of the sum(b) field, the cnt(b) field and the
feature distributions { N (X;|B=b)}. The initialization and
selectivity estimation procedures do not increase the size of
the histogram. The update procedure potentially adds new
entries to the feature distributions. After some number of

1192

updates, the CXHist histogram might need to be pruned so
that it does not exceed the memory allocated to it.

Pruning is governed by two parameters both in units of
bytes: the triggersize and the targetsize. Whenever the
size of the histogram exceeds triggersize bytes, the prun-
ing procedure is activated and the CXHist histogram is
pruned down to targetsize bytes.

Pruning is achieved by discarding entries with small
counts in the feature distributions. All feature distribution
entries {N(X;=x;|B=b) : Vi,xz;,b} are sorted by mag-
nitude and we keep discarding the smallest entry until the
desired target size is achieved. Mathematically, discarding
an entry is the same as setting the magnitude of that entry
to zero. The entries with the smaller counts are good candi-
dates for pruning because (1) they are likely to be less fre-
quently used, otherwise the update procedure would have
incremented their counts, and (2) they are less likely to af-
fect the maximal point in the selectivity estimation compu-
tation, since their probabilities are already small.

2.7 Example
Consider the following query workload:

No. | Path | String Selectivity
1 Ixly | @LIMS$ | 2

2 Ixlz | @MIN 20

3 Ixly | @LIM 10

4 Ixly | @LIM$ | 2

5 Ixly | IM 18

Given that the minimum and maximum selectivity are
1 and 20 respectively, and that 5 buckets are to be used,
we initialize the representative values as 1,2,4,8,16. The
ent(b) field for each b is set to 1. The query model maps
each query into a path random variable 7', and a series of
2-gram random variables G;. Assuming stationarity we
store only a single 2-gram distribution per bucket. The fea-
ture distributions are initially empty. We adopt the follow-
ing shorthand for computing the posterior probability for a
given query,

k

L(b) = P(B=b)P(T=t|B=b) | [P(G=g:|B=b),
h— P(B:B)PT— B=b kPG— B=b
P*m(*ﬂ*)g(ﬁw*)

k
pr = P(T=t|B=bx) | [P(G=g:|B=bx)

i=1

Query 1. CXHist gives a default estimate of 1 (50 % rela-
tive error) for the first query because all the feature distri-
butions are empty and no maximal point exists. CXHist re-
ceives the true selectivity 2 as feedback and updates itself.
The bucket with the closest estimate is bucket bx=2 and
we update bucket 2 by adding 2 to sum(2) and increment-
ing ent(2). The feature distributions are initially empty, so
ADDINSTANCE is called and the resulting CXHist is:

B | sum(b) | ent(b)
1 1 1
2 |4 2 B G | NG, B)
3 4 1 2 @L |1
4 8 1 2 LI 1
5 16 1 2 IM 1
2 M$ |1
BT N(T, B)
2 Ixly 1

Query 2. The second query is processed similarly and the
resulting feature distributions are shown as follows:

B | sum(b) | cent(b)
T [1 1 B G | NG, B)
2 4 2 2 @L 1
3 4 1 2 LI 1
4 8 1 2 IM 1
5 | 36 2 2 | M$ |1
5 @M |1
BT N(T, B) 5 | M| 1
2 Ixly 1 5 IN 1
5 | Iz 1

Query 3. For the third query, only bucket 2 gives a non-
Zero posterior probability,

L(2) = P(B=2) x P(T=/z/y|B=2) x P(G=@L|B=2)

x P(G=LI|B=2) x P(G=IM|B=2)
1 1 1 1

§X1XZXZXZ

0.007813,

therefore the selectivity is estimated as est(2) = 2 with a
relative error of 400 %.

Using the query feedback, the bucket with the closest
estimate is bx = 4 and cnt(4) and sum(4) are updated
accordingly. Since the feature distributions in bucket 4 are
empty, we apply the subroutine ADDINSTANCE once and
check if gradient descent is required,

p = 1/3><1><1><1><1—0015625
P= 13 VR S ’
11 1
= 1x-x=x = =0.037037.
ik X g Xz X3

Since px > p, no further updates are required . The result-
ing state of CXHist is:

B | sum(b) | cent(b) B |G N(G, B)
1 1 1 2 @L 1
2 4 2 2 LI 1
3 4 1 2 M 1
4 18 2 2 M$ 1
5 | 36 2 4 l@L |1
4 LI 1
BT N(T, B) 4 M |1
2 Ixly 1 5 @M |1
4 Ixly 1 5 Mi 1
5 Ixlz 1 5 IN 1

Query 4. Only bucket 2 has a non-zero posterior probabil-
ity,

1
x 7 =0.001302, (17)

1193

so CXHist computes the estimate as est(2) = 2 with zero
error. The update process applies the subroutine ADDIN-
STANCE once on the feature distributions of bucket 2. The
resulting histogram is as follows.

B | sum(b) | cnt(b) B |G N(G, B)
1 1 1 2 @L 2
2 6 3 2 LI 2
3 4 1 2 IM 2
4 18 2 2 M$ 2
5 36 2 4 @L 1
4 LI 1
BT N(T,B) 4 M |1
2 Ixly 2 5 @eM |1
4 | Ixly 1 5 [M| 1
5 Ixlz 1 5 IN 1

Query 5. Computing the posterior probabilities,

L(1)= L(3)=L((5)=0
2 2
L2)= x1x2=012
L) = L x1xLt=0083333
4 3 ’

CXHist concludes that bucket 2 maximizes the posterior
probability and returns est(2) = 2 as the estimate (with 89
% relative error).

Using the query feedback, the bucket with the closest
estimate is computed to be b« = 5, and ent(5) and sum(5)
are updated accordingly. Since L(5) = 0, the subroutine
ADDINSTANCE is applied once. The resultant state of the
CXHist histogram is shown below:

B | sum(b) | cnt(b) B| G N(G, B)
1 1 1 2 @L 2
2 6 3 2 LI 2
3 4 1 2 IM 2
4 18 2 2 M$ 2
5 54 3 4 @L 1
4 LI 1
BT N(T, B) 4 M |1
2 Ixly 2 5 @M |1
4 | Iy 1 5 M| 1
5 Ixlz 1 5 IN 1
5 | Iy 1 5 | IM |1

In order to determine whether gradient descent is required,
the update procedure computes p and px,

2/5 2 1 1
A: _— 1 —_ = .2 = — —_ = '12 .
b 2/5>< X g =02, pr=gx =012
Since p>px, gradient descent is required and we

compute the deltas for w;=N(T=/x/y, B=5) and
we=N(G=IM, B=5) using Equation (15) and (16),

1
Aw, =2 % (0.125 — 0.4) x 0125 x (1 -) = ~0.034

1
Awy =2 % (0.125 — 0.4) x 0.125 x (1 - 7) = ~0.052.

Normalizing (Aw;, Aw,) by the minimum absolute delta
value, we have (Aw,=—1, Aw,=—1.5). Using a learning
rate of 1, CXHist updates the following,

N(T=/Ixly, B=5)
N(G=IM, B=5)

— N(T=Ixly,B=5)+1,
— N(G=IM,B=5) + 1.5.
Recomputing px, we have

2 25 0303030 > §
3% 55 p;

and the gradient descent loop terminates.

px =

3 Experiments

In this section, we evaluate the performance of CXHist un-
der varying memory constraints and workload skew, and
we also investigate the stability of CXHist under changes
in the workload characteristics.

Data Set. We have used the DBLP XML data (as of Octo-
ber 2003). Because our main focus is on string predicates
and also motivated by the fact that many XML DBMSs
map rooted paths to path identifiers (pathlDs) for more ef-
ficient data storage and query processing [29, 25, 30, 13]*
our implementation also map all rooted paths into pathlDs.
The XML data file is preprocessed into a collection of
(path, string, count) triples by counting the occurrences
of each distinct (path, string) pair. The total number of
leaves is 5,045,240 of which there are 2,026,814 distinct
(path, string) pairs.

Query workloads. For each experiment we have used
three types of workloads: substring match workload,
exact match workload, and a mixed workload. Each
query is generated from the randomly permuted set of
(path, string, count) triples by randomly picking a triple
according to a discretized Gaussian distribution G(n, u, s),
where n is the number of triples, y is the mean, and s is the
standard deviation. For an exact match query, the pathid
and text string from the chosen triple is returned. For a
substring query, the pathid from the chosen triple and a
substring token uniformly randomly picked from the text
string of the chosen triple is returned. After all the queries
of a workload have been generated, the workload is ran-
domly permuted. Mixed workloads are generated by mix-
ing and randomly permuting a substring workload and an
exact match workload.

We present results from a subset (mean =992, 942) of
the workloads we experimented with. Table 1 summarizes
the important workload characteristics. The cardinality and
size (in bytes) of the set of distinct queries in each work-
load (see Table 1) are important in allocating memory to
a selectivity estimation method: If the allocated memory is

41 the set of distinct paths is too large to be mapped to a set of pathIDs,
a Markov model can be used to model the set of paths explicitly [1, 16] in
the query model.

1194

large enough to store the set of distinct queries (and the cor-
responding selectivities), it forms a cache that can estimate
selectivity with zero error. Figure 3 shows the typical distri-
bution of query selectivities (sorted in descending order) of
the three types of workloads. Note that these distributions
are consistent with Zipf’s Law for word frequencies [31].
Each workload will be referenced using its ID and a letter
(s,e,m) denoting whether it is a substring, exact match, or
mixed workload respectively. For example, workload Ilm
refers to the mixed workload generated with standard devi-
ation 10,000.

Comparisons. CXHist will be compared with two other
methods: the off-line pruned suffix tree method (PST) and
the on-line compressed histogram method (CH). PST con-
structs one pruned suffix tree per pathID for the leaf val-
ues associated with the pathID. Note that this is the same
as constructing one large suffix tree where the first level
nodes contain the pathlDs as alphabets. The suffix trees
are pruned by increasing threshold counts to obtained the
desired size. CH is adapted from XPathLearner [16] and
caches the top-k query feedback with the largest selectivity
and aggregates the selectivity of the other query feedback
into buckets according to the pathlD and the first ¢ letters
of the leaf value. Whenever CH uses more than triggersize
bytes of memory, CH discards buckets in increasing order
of selectivity until memory usage is less than targetsize
bytes.

Counting Memory. For CXHist, 4-byte integers are
used for the sum(b) and cnt(b) fields. Each pathlD
distribution stores a list of 8-byte (pathid, count) pairs
and each n-gram distribution stores a list of (n—+4)-byte
(n-gram, count) pairs. For the CH method with parameters
k and ¢, the memory usage consists of the memory used to
store the top & queries and their selectivity, and the mem-
ory used by the list of buckets. Each bucket stores a g-byte
prefix string, and three 4-byte fields for the pathlD, sum,
and count. For the PST method, consult [14] for memory
accounting.

Parameters. For both CXHist and CH the parameter
targetsize is set to be 10% lower than triggersize. The
parameter triggersize is set to be a fraction of usize, the
size of the set of distinct queries in the workload. For
CH, the parameter % needs to be a small fraction of uniq,
the number of distinct queries in the workload, otherwise
all the distinct queries will be cached. Where there is no
confusion which workload is being used, the values for
triggersize and k will be specified as a percentage. For
our experiments, we have set k& = 0.125 x wuniq or equiv-
alently £ = 12.5%. The notation CH(k, q, triggersize) de-
notes the CH method with parameters k, g and ¢riggersize.
For CXHist, the buckets are initialized with nexp exponen-
tial values and the gradient descent update method with a
learning rate of 1 is used. The maximum selectivity is set
to half the maximum number of (path, string) pairs, i.e.,
2,522,620. The notation CXHist(n, m, nexp, triggersize)
denotes the CXHist method with the following parameters:

substring exact match mixed
ID | std. dewv. uniq usize size uniq usize size uniq usize size
I | 100,000 | 3,279 56,449 87,825 | 4,964 221,426 223,020 | 8,243 277,875 310,841
I 10,000 | 3,337 57,283 87,302 | 4,687 207,945 222,033 | 8,024 265,228 309,331
1l 1,000 | 2,712 46,877 87,584 | 2,808 125285 223,184 | 5520 172,162 310,764
v 100 | 1,275 20,674 88,000 522 24,583 239,024 | 1,697 45,257 327,020
\% 10 253 4,484 87,793 67 3,436 265,349 320 7,920 353,138

Table 1: Workload characteristics. The standard deviation of the Gaussian distribution used to generate the workload is given by the “std. dev.” column.
The number and size of the distinct queries in the workload is given by the “unig” and “usize” fields. The “size” field gives the size of the workload in
bytes. Each exact match and substring workload has 5000 queries per workload and each mix workload has 10,000 queries.

Sorted Query Selectivity for Workload Ils
300000

Sorted Query Selectivity for Workload Ile

Sorted Query Selectivity for Workload IIm

Workload Ils

5000
250000
4000
200000

3000
150000

Selectivity
Selectivity

100000 2000

50000 1000

300000

Workload Ile

Workload Ilm ——
250000

200000

150000

Selectivity

100000

50000

0 0

0

0 1000 2000 3000 4000 5000 0 1000 2000
Query Number

3000 4000 5000 0 2000 4000 6000 8000
Query Number

10000
Query Number

Figure 3: Sorted query selectivities of Workload Ils, Ile, and IIm (from left to right respectively).

n-gram features, m buckets, nexp exponential representa-
tive bucket values and triggersize as the pruning threshold.
We have also studied the effect of the parameters n, m and
nexp on accuracy and a detailed discussion will be included
in the full paper. For PST, we have used the independence
strategy I; of [14] because we found it to be the most accu-
rate in terms of average relative error among the different
estimation strategies in [14, 12].

Metrics. We use the average relative error (a.r.e.) to mea-
sure the accuracy of the selectivity estimation methods.
The a.r.e. with respect to a set W of n queries is defined
as

e = Ly It =] @

o(q)

where o (q) is the selectivity of query ¢ in the workload W
and 6 (q) is the corresponding estimated selectivity. The
state of the selectivity estimation method is assumed to re-
main unchanged for all the queries in workload 1. For
on-line methods, the on-line a.r.e. better reflects the per-
formance of the on-line selectivity estimation method dur-
ing deployment. The on-line a.r.e. is defined as in (18),
except that the selectivity estimation method is allowed to
update itself in between queries. For an off-line method,
the on-line a.r.e. and the a.r.e. are the same.

3.1 Accuracy vsMemory

In this experiment, we vary the amount of memory allo-
cated to each method via the triggersize parameter and
measure the relative error performance for each workload.
Note that triggersize is set to a fraction (§,%,3,1) of
the usize of the workload (see Table 1), which in turn is
less than 1% the size of the XML data (ca. 125 MB). For
brevity, we present a set of representative results (Figure 4)

using Workload Il. The off-line PST method performs so
poorly compared to CH and CXHist that we omit its re-
sults in the plots in order to use a more suitable scale on the
y-axis. The results in Figure 4 compare the performance
of CH and CXHist. Two prefix lengths (3 and 4) are used
for the CH method and two n-gram lengths (3 and 4) are
used for CXHist, because accuracy is dependent on both
memory and the prefix/n-gram length. For substring and
mixed workloads, CXHist is more accurate than CH. For
exact match queries, CH is slightly (less than 1%) more
accurate than CXHist, because the selectivity distribution
of the exact match queries is more skewed than that of the
substring queries (see Figure 3) and hence the top-k cache
in CH captures almost all of the queries with large selec-
tivities and the buckets need only capture the remaining se-
lectivities which are uniformly small and close to one.

We further analyze the results for ¢riggersize=25% by
partitioning the selectivity estimates according to the true
selectivity. Because small selectivities occur much more
frequently in the data and consequently in the workload,
we show the average relative error for the small selectiv-
ity partitions in Figure 5 and augment the figures with the
fraction (normalized to a percentage) of the queries in the
workload with the specified true selectivity. CH is not accu-
rate for queries with small selectivities when the selectivity
distribution in the workload is less skewed (for example, in
the substring workload, see the first plot in Figure 5). The
reason is that the selectivities of the queries not captured by
the top-k cache is less uniform and cannot be captured by
the buckets accurately. CXHist, on the other hand, seems
to be consistently accurate for queries with small selectivi-
ties. For queries with very large selectivity, however, CH is
more accurate than CXHist, because it caches the selectiv-
ity of the k queries with the largest selectivity. This is not a
limitation in CXHist, because (1) queries with large selec-

1195

OARE vs Memory (triggersize) for Workload IIs

W
S
S
©

OARE vs Memory (triggersize) for Workload lle

OARE vs Memory (triggersize) for Workload IIm

i
)
S

CH(417,3) ——
CH(417,4 %) -

CXHist(3,30,18,%) -

CXHist(4,30,18,%) o

N
a
=]

78

N
=3
=]

76 ¢ R R

-
a
=]

74

CH(585,3%) —+—

CH(585/4,%) -~
CXHist(3,30,187%) -
CXHist(4,30,18,%) o

CH(1003.3 %) ——
CH(1003,4%) -

CXHist(3,30,18,%) -

CXHist(4,30,18,%) o

2R
© 9 B
S © o

~
=]

-3
S

i
1<)
=]

721

S

On-line Average Relative Error (%)
On-line Average Relative Error (%)

- -

a
=3

On-line Average Relative Error (%)
®
3

x x B &

50 7 40
0 10000 20000 30000 40000 50000 60000 0 50000 100000 150000 200000 0 50000 100000 150000 200000 250000 300000
Memory (bytes) Memory (bytes) Memory (bytes)
Figure 4: performance of CH and CXHist over varying memory (triggersize) allocations.
< OARE by Selectivity for Workload II —
< OARE by Selectivity for Workload Ils 5 120 v Selectivily for orkload e & OARE by Selectivity for Workload IIm
5 T T T Chazswaesw) = | 8 B - 8 T T i dsn) =
5 140 CXHist(3,30,18,25%) ™8 4 | 09} CXHist(3,30,18,25% 4 @ _ 160 > CXHist(3,30,18,25%} =
0 S 120 Fraction of Workload —°— | s Fraction of Workloaq —o— 28 110 Fraction of Workioad —
23 76 204 367 | B &0 £3 1m0
8§ 100 A B B ©8 o8
BN El
035 | 29 58 g
g2 60 g= g
g5 | 5 5 40 %5 60
<5 9| 55 2 55 40
Eg o T8 8
LT 0 I8 O ol o §& o Fonn‘an > §L ol LS - e —
o~ "1 2 3 4 5 6 7 8 9 10 ~~- 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Query Selectivity Query Selectivity Query Selectivity

Figure 5: Performance of CH and CXHist partitioned by selectivity for the smallest 10 selectivities.

tivity are infrequent, and (2) the CXHist buckets with large
representative values can be modified to store their asso-
ciated queries exactly (without query modelling) to mimic
the behavior of a cache for queries with large selectivity.

3.2 Accuracy vs Workload Skew

In this experiment, the parameter ¢riggersize is fixed at
25% x usize and the performance on workloads generated
with different skew (standard deviation) is measured. In-
creasing standard deviation denote increasing uniformity,
i.e., queries in the workload cover the XML data more
uniformly. Highly skewed workloads are generally easy
for on-line selectivity estimators, because the set of dis-
tinct queries are small and repetitions are frequent. Highly
uniform workloads are generally hard, because repetitions
seldom occur and almost every query is unique. Figure 6
shows the on-line a.r.e. vs skew plots. For substring work-
loads, CH is significantly less accurate than CXHist es-
pecially when the workload is highly skewed. For exact
match workloads, both CH and CXHist are very accurate
with CH being slightly more accurate for medium skew.
For mixed workload, the superior accuracy of CXHist on
substring queries dominates.

3.3 Changing Workload Characteristics

In this experiment, we investigate how changes in the work-
load characteristics affect accuracy of the estimates. The
change in workload characteristics is simulated by concate-
nating two workloads generated with different mean and
standard deviation. For brevity, the results for a concate-
nated workload of 1lm and IlIm are presented. Other com-

binations of workloads exhibit similar behavior.

In Figure 7, we measure the a.r.e. with respect to I1m af-
ter each of the first 10,000 queries and with respect to I1Im
after each of the last 10,000 queries. CXHist remains ac-
curate throughout the 20,000 queries, whereas the accuracy
of CH degrades after the first 5000 queries.

Adaptivity from Workload Iim to llim

700 - ‘ " CH(1003,3,66307) ——

CXHist(3,30,18,66307) ———
600 |
500 |
400 |

300 -

Ave. Rel. Error (%)

200 -

100 -

10000 15000

Query Number

0 5000 20000

Figure 7: Average relative errors of CH and CXHist on Workload IIm
after each update for queries 1 to 10,000 and on Workload 11Im after each
update for queries 10,001 to 20,000.

In Figure 8, we show the accuracy of CH and CXHist
for different memory allocations on the same concate-
nated workload lIm-I11Im. Compared to the performance on
Workload IIm alone (see Figure 4), the performance of CH
on the concatenated workload has degraded significantly
(the parameter settings are the same for both figures). The
performance of CXHist, on the other hand, remains stable.

1196

OARE vs Std. Dev. for Substring Workload
6000 10

OARE vs Std. Dev. for Exact Match Workload

OARE vs Std. Dev. for Mixed Workload

CH(12.5%,3,25%) ——
It 0/ RV
5000 CXHist(3,30,18,25%) x|

4000
3000
2000

1000

On-line Average Relative Error (%)
On-line Average Relative Error (%)

-1000

7000
CH(12.5%,3,25%) —+—
6000 | CXHist(3,30,18,25%) —x-—

CH(12.5%,3,25%) —+—

5000
4000 -
3000 -
2000
1000

On-line Average Relative Error (%)

10 100 1000 10000 100000 10 100
Standard Deviation

-1000

1000 10000 100000 10 100 1000 10000 100000
Standard Deviation

Standard Deviation

Figure 6: Performance of CH and CXHist over workloads with different skew.

OARE vs Memory (triggersize) for Workload (lIm,1im)
400

. j j CH(1003,3,) ——
350 | CH(1003:4) -
CXHIST(3,30,18,%) =
300 | CXHIST(4,30,18.%)

250
200 -

150 -
100 -
50 r

On-line Average Relative Error (%)

50000 100000 150000 200000 250000
Memory (bytes)

Figure 8: On-line performance of CH and CXHist with different
triggersize settings over Workload Im-11im.

4 Reated Work

Sub-string selectivity estimation for relational databases
has been studied in [14, 26, 12, 10, 11]. All these tech-
niques rely on a pruned suffix tree (PST) as the summary
data structure. Note that to adapt these techniques for
XML selectivity estimation, one PST will be required for
each distinct path. PST-based methods typically parse a
query string into possibly (overlapping) component sub-
strings that have an entry in the PST. The counts of the
component substrings are combined using either complete
independence or Markov assumptions. These assumptions
often result in large underestimation errors [4]. CXHist is
a new type of histogram that is different from a PST and
therefore do not suffer from the same limitations.

Recently, Chaudhuri et al. [4] proposed using a regres-
sion tree on top of a basic string estimation technique such
as a PST to correct the underestimation problem often asso-
ciated with independence and Markov assumptions. While
modelling of estimation errors can always be used to reduce
or correct the errors in a basic string estimation technique,
a simpler, more elegant solution is preferable. CXHist
is based on a new paradigm using Bayesian classifiers.
CXHist does not combine constituent substring selectivi-
ties using the independence or Markov assumptions; there-
fore CXHist does not share the same limitations as PST-
based methods.

XML selectivity estimation has also been studied in
[1, 5, 20, 21, 16, 9, 28, 27]. These methods can be cat-
egorized by whether they are on-line or off-line, whether
they handle subtree queries or path queries only, whether

1197

they handle leaf values, and whether the leaf values are
assumed to be strings or numbers. One major difference
between CXHist and previous work is that previous work
has focused on queries on the navigational paths or sub-
trees, whereas CXHist focuses on string-based queries on
the leaf values reachable via a given path.

The correlated sub-path tree (CST) method [5, 6] is an
augmented PST constructed from the XML data by treat-
ing element tags as atomic alphabets and the leaf values
as strings. The CST method is off-line, handles subtree
queries, and supports substring queries on the leaf values.
Being a PST-based technique, the CST method suffers from
the underestimation problem. CXHist is a new histogram
technique that overcomes this limitation.

The Markov Table (MT) method of [1] uses a fixed or-
der Markov model to capture sub-path statistics in XML
data. Queries on leaf values are not supported. The XPath-
Learner method [16] extends the MT method [1] to an
on-line method. In addition, XPathLearner supports ex-
act match queries on leaf values using a form of com-
pressed histogram to store the tag-value pair distribution.
However, XPathLearner cannot handle substring queries at
all. CXHist is a new type of histogram (not based on the
Markov model) that can handle a broad class of query types
including substring queries.

The XSKETCH summary structure [20] is a variable
order Markov model constructed by performing a greedy
search for the best fitting model. XSKETCH as presented
in [20] handles subtree queries on element tags only. The
extension presented in [21] handles numeric leaf values us-
ing standard histograms — string predicates on leaf values
are not supported. CXHist assumes that ambiguity in navi-
gational path has been resolved to a set of rooted paths and
addresses string-based queries on the leaf values instead.

A different approach is taken by StatiX [9]. StatiX ex-
ploits structural information in XML schemas to build his-
tograms that support subtree queries on numerical leaf val-
ues. CXHist addresses string-based queries on leaf values.

Position histograms [28] encode the ancestor-
descendant relationship of each XML node using points
on a 2D plane and builds a histogram for those points. Po-
sition histograms specifically address ancestor-descendant

queries, whereas CXHist addresses string-based queries
on leaf values.

The bloom histogram [27] method bears some resem-
blance to CXHist in that the “data” is sorted and parti-
tioned into buckets using selectivity. However, CXHist is
fundamentally different in that it is on-line and it models
queries instead of data. Because bloom histograms are off-
line, they are not workload-aware and do not adapt to query
workload characteristics.

The concept of using query feedback to build histograms
has been used in [3, 2] for relational, numerical data and in
[16] for XML path expressions. CXHist uses query feed-
back in a similar way, but builds a different kind of his-
togram for string data.

5 Conclusion

In this paper, we have proposed CXHist as a new type of
histogram that is on-line, adaptive to changes in workload
characteristics and in the underlying data, and applicable
to a broad class of query types including string predicates
on leaf values. CXHist is the first histogram technique
that is based on classification. The key idea is to partition
the query selectivities into buckets and use feature distri-
butions to approximately capture the queries that are asso-
ciated with each bucket. Bayesian classification methods
are used with these feature distributions to compute the se-
lectivity of a given query. Our experiments have shown
that CXHist provides very accurate estimates for both ex-
act match and substring queries — no previous technique
have this property. Moreover, its performance is stable over
changes in workload characteristics. While we have only
applied CXHist to string predicate queries on XML data in
this paper, CXHist is a general histogram technique that is
applicable to other types of complex queries in relational-
XML hybrid databases.

References

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating
the selectivity of XML path expressions for internet scale applica-
tions. In VLDB 2001, pages 591-600, 2001.

[2] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Building
histograms without looking at data. In SIGMOD 1999, pages 181-
192, 1999.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a multidimen-
sional workload-aware histogram. In W. G. Aref, editor, SIGMOD
2001, pages 211-222. ACM Press, 2001.

[4] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity estimation
for string predicates: Overcoming the underestimation problem. In
ICDE 2004, 2004.

[5] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan,
R. T. Ng, and D. Srivastava. Counting twig matches in a tree. In
ICDE 2001, pages 595-604, 2001.

[6] Z.Chen, F. Korn, N. Koudas, and S. Muthukrishnan. Selectivity es-
timation for boolean queries. In PODS 2000, pages 216-225, 2000.

[7]1 P. Domingos and M. J. Pazzani. Beyond independence: Conditions
for the optimality of the simple bayesian classifier. In International
Conference on Machine Learning, pages 105-112, 1996.

1198

[8] R.O.Dudaand P. E. Hart. Pattern Classification and Scene Analy-
sis. Wiley, New York, 1972.

[9] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Simeon. StatiX:
Making XML count. In SIGMOD 2002, pages 181-191, 2002.

[10] H. V. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava. Multi-
dimensional substring selectivity estimation. In VLDB 1999, pages
387-398, 1999.

[11] H. V. Jagadish, O. Kapitskaia, R. T. Ng, and D. Srivastava. One-
dimensional and multi-dimensional substring selectivity estimation.
VLDB Journal 2000, 9(3):214-230, 2000.

[12] H. V. Jagadish, R. T. Ng, and D. Srivastava. Substring selectivity
estimation. In PODS 1999, pages 249-260, 1999.

[13] H. Jiang, H. Lu, W. Wang, and J. X. Yu. XParent: An efficient
RDBMS-based XML database system. In ICDE 2002, pages 335—
336, 2002.

[14] P. Krishnan, J. S. Vitter, and B. R. lyer. Estimating alphanumeric
selectivity in the presence of wildcards. In SIGMOD 1996, pages
282-293, 1996.

[15] P.Langley, W. Iba, and K. Thompson. An analysis of bayesian clas-
sifiers. In National Conference on Artificial Intelligence, pages 223-
228, 1992.

[16] L.Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. Parr. XPath-
Learner: An on-line self-tuning markov histogram for XML path
selectivity estimation. In VLDB 2002, 2002.

[17] S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. on
Info. Theory, 28:129-137, March 1982.

[18] J. Max. Quantizing for minimum distortion. IRE Trans. on Info.
Theory, 1960.

[19] F. Ozcan, R. Cochrane, H. Pirahesh, J. Kleewein, K. Beyer, V. Josi-
fovski, and C. Zhang. System RX: One part relational, one part
XML. In SIGMOD 2005, 2005.

[20] N. Polyzotis and M. N. Garofalakis. Statistical synopses for graph-
structured XML databases. In SIGMOD 2002, pages 358-369,
2002.

[21] N. Polyzotis and M. N. Garofalakis. Structure and value synopses
for XML data graphs. In VLDB 2002, pages 466—477, 2002.

[22] V.Poosalaand Y. E. loannidis. Selectivity estimation without the at-
tribute value independence assumption. In VLDB 1997, pages 486—
495, 1997.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning in-
ternal representations by error propagation. In Parallel Distributed
Processing—Explorations in the Microstructure of Cognition, chap-
ter 8, pages 318-362. MIT Press, 1986.

[24] C. Shannon. Prediction and entropy of printed english. Bell Systems
Technical Journal, 30:50-64, 1951.

[25] 1. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and querying ordered XML us-
ing a relational database system. In SIGMOD 2002, pages 204-215,
2002.

[26] M. Wang, J. S. Vitter, and B. R. lyer. Selectivity estimation in the
presence of alphanumeric correlations. In ICDE 1997, pages 169—
180, 1997.

[27] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom histogram: Path
selectivity estimation for xml data with updates. In VLDB 2004,
pages 240-251, 2004.

[28] Y. Wu, J. M. Patel, and H. V. Jagadish. Estimating answer sizes for
XML queries. In EDBT 2002, pages 590-608, 2002.

[29] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel:
a path-based approach to storage and retrieval of XML documents
using relational databases. ACM Trans. Inter. Tech., 1(1):110-141,
2001.

[30] A. Zhou, H. Lu, S. Zheng, Y. Liang, L. Zhang, W. Ji, and Z. Tian.
VXMLR: A visual XML-relational database system. In VLDB 2001,
pages 719-720, 2001.

[31] G. K. Zipf. Human behaviour and the principle of least effort: an
introduction to human ecology, 1949.

