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Abstract

Most recent schema matching systems assem-
ble multiple components, each employing a
particular matching technique. The domain
user must then tune the system: select the
right component to be executed and correctly
adjust their numerous “knobs” (e.g., thresh-
olds, formula coefficients). Tuning is skill- and
time-intensive, but (as we show) without it the
matching accuracy is significantly inferior.

We describe eTuner, an approach to automat-
ically tune schema matching systems. Given
a schema S, we match S against synthetic
schemas, for which the ground truth mapping
is known, and find a tuning that demonstra-
bly improves the performance of matching S
against real schemas. To efficiently search the
huge space of tuning configurations, eTuner
works sequentially, starting with tuning the
lowest level components. To increase the ap-
plicability of eTuner, we develop methods to
tune a broad range of matching components.
While the tuning process is completely auto-
matic, eTuner can also exploit user assistance
(whenever available) to further improve the
tuning quality. We employed eTuner to tune
four recently developed matching systems on
several real-world domains. eTuner produced
tuned matching systems that achieve higher
accuracy than using the systems with cur-
rently possible tuning methods, at virtually
no cost to the domain user.
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1 Introduction

Schema matching finds semantic correspondences
called matches between the schemas of disparate
data sources. Example matches include “loca-
tion = address” and “name = concat(first-name,last-
name)”. Application that manipulates data across
different schemas often must establish such semantic
matches, to ensure interoperability. Prime examples
of such applications arise in numerous contexts, in-
cluding data warehousing, scientific collaboration, e-
commerce, bioinformatics, and data integration on the
World-Wide Web [37].
Manually finding the matches is labor intensive,

thus numerous automatic matching techniques have
been developed (see [37, 35, 5, 21] for recent sur-
veys). Each individual matching technique has its
own strength and weakness [37]. Hence, increasingly,
matching tools are being assembled frommultiple com-
ponents, each employing a particular matching tech-
nique [37, 21].
The multi-component nature is powerful in that it

makes matching systems highly extensible and (with
sufficient skills) customizable to a particular applica-
tion domain [8, 38]. However, it places a serious bur-
den on the domain user: given a particular matching
situation, how to select the right matching components
to execute, and how to adjust the multiple “knobs”
(e.g., threshold, coefficients, weights, etc.) of the com-
ponents? Without tuning, matching systems often fail
to exploit domain characteristics, and produces infe-
rior accuracy. Indeed, in Section 6 we show that the
untuned versions of several off-the-shelf matching sys-
tems achieve only 14-62% accuracy (in F-1 score) on
four real-world domains.
High matching accuracy is crucial in many applica-

tions, so tuning will be quite valuable. To see this, con-
sider two scenarios. First, consider data exchange be-
tween automated applications, e.g., in a supply chain.
People do check correctness of each data value trans-
mitted, so erroneous matches will cause serious real
world mistakes. Thus, when building such applica-
tions, people check and edit output matches of the
automated system, or use a system such as Clio [41]
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Figure 1: An example of multi-component matching systems.

to elaborate matches into semantic mappings (e.g.,
in form of SQL queries [41] which specify exact rela-
tionships between elements of different schemas) [39].
Here, improving the accuracy of the automated match
phase can significantly reduce peoples’ workload, and
also the likelihood that they overlook or introduce mis-
takes.
Second, large-scale data integration, peer-to-peer,

and distributed IR systems (e.g., on the Web [1]) of-
ten involve tens or hundreds of sources, thus thou-
sands or tens of thousands of semantic matches across
the sources or metadata tags. At this scale, humans
cannot review all semantic matches associated with
all sources. Instead, the systems are likely to employ
the automated match results, and return the apparent
best answers for human review. Here, each improve-
ment in matching accuracy directly improves the result
the user receives.
While valuable, tuning is also very difficult, due to

the large number of knobs involved, the wide variety
of matching techniques employed (e.g., database, ma-
chine learning, IR, information theory, etc.), and the
complex interaction among the components. Writing a
“user manual” for tuning seems nearly impossible. For
example, tuning a matching component that employs
learning techniques often involves selecting the right
set of features [16] (Section 6.2), a task that is difficult
even for learning experts [16]. Further, since we rarely
know the ground truth for matches, it is not clear how
to compare the quality of knob configurations.
For all above reasons, matching systems are still

tuned manually, largely by trial and error – a time
consuming, frustrating, and error prone process. Con-
sequently, developing efficient techniques for tuning
seems an excellent way to improve matching systems
to a point where they are attractive in practice.
In this paper we describe eTuner, an approach to

automatically tune schema matching systems. In de-
veloping eTuner, we address the following challenges:

Define the Tuning Problem: Our first challenge is
to develop an appropriate model for matching systems,
over which we can define a tuning problem. To this
end, we view a matching system as a combination of
matching components. Figure 1.a shows a matching
system which has (n + 2) components: n matchers,
one combiner, and one selector (Section 3 describes
these components in detail).
To the user (and eTuner) the components are black-

boxes, with “exposed knobs” whose values can be ad-
justed. For example, a knob allows the user to set

a threshold α such that two schema attributes are
declared matched if their similarity score exceeds α.
Other knobs allow the user to assign reliability weights
to the component matching techniques. Yet another
knob controls how many times a component should
run. In addition, given a library of components, the
user also has the freedom to select which components
to be used, and where in the matching system.
Given the above knobs, many possible tuning prob-

lems can be defined. As a first step, in this paper we
consider the following: given a schema S, how to tune
a matching system M so that it achieves high accu-
racy when we subsequently apply it to match S with
other schemas. This is a very common problem that
arises in many settings, including data warehousing
and integration [37, 19].

Synthesizing Workload with Known Ground

Truth: Tuning system M amounts to searching for
the “best” knob configuration for matches to S. The
quality of a knob configuration of M is defined as an
aggregate accuracy of the matching system, when ap-
plied with that configuration. Accuracy metrics exist
(e.g., precision, recall, and combinations thereof [17]).
How can they be evaluated? How can we find a cor-
pus of match problems where ground truth (i.e., “true”
matches) are known? This is clearly a major challenge
for any effort on tuning matching systems.
To address this challenge, our key idea is to employ

a set of synthetic matching scenarios involving S, for
which we already know the correct matches, to evalu-
ate knob configurations. Specifically, we apply a set of
common transformation rules to the schema and data
of S, in essence randomly “perturbing” it to generate a
collection of synthetic schemas S1, S2, . . . , Sn. For ex-
ample, we can apply the rule “abbreviating a name to
the first three letters” to change the name EMPLOY-
EES of the table in Figure 1.b) to EMP, and the rule
“replacing ,000 with K” to the column salary of this
table. We note that these rules are created only once,
independent of any schema S.
Since we generated schemas S1, S2, . . . , Sn from S,

clearly we can infer the correct semantic matches be-
tween these schemas and S. Hence, the collection
of schema pairs {(S, S1), (S, S2), . . . , (S, Sn)}, together
with the correct matches, form a synthetic matching
workload, over which the average accuracy of any knob
configuration can be computed. We then use this ac-
curacy as the estimated accuracy of the configuration
over matching scenarios involving S.
While the above step of generating the synthetic

workload (and indeed the entire tuning process) is
completely automatic, eTuner can also exploit user as-
sistance, whenever available. Specifically, it can ask
the user to do some simple preprocessing of schema
S, then exploit the preprocessing to generate an even
better synthetic workload.

Search: The space of knob configurations is often
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huge, making exhaustive search impractical. Hence
we implement a sequential, greedy approach, denoted
staged tuning. Consider the matching system M in
Figure 1.a. Here, we first tune each of the match-
ers 1 . . . n in isolation, then tune the combination of
the combiner and the matchers, assuming the knobs
of the matchers have been set. Finally, we tune the
entire matching system, assuming that the knobs of
the combiner and matchers have been set. We de-
scribe in detail how to tune different types of knobs in
Section 5.
In summary, we make the following contributions:

• Establish that it is feasible to tune a matching
system, automatically.

• To enable estimating the quality of a match-
ing system’s result (with a given knob configura-
tion), we synthesize matching problems for which
ground truth is known. For potential applications
beyond the tuning context, see Section 7.

• Establish that staged tuning is a workable opti-
mization technique. The solution can also lever-
age human assistance to further increase tuning
quality.

• Extensive experiments over four real-world do-
mains with four matching systems. The re-
sults show that eTuner achieves higher accuracy
than the alternative (manual and semi-automatic)
methods, at virtually no cost to the domain user.

The paper is organized as follows. The next section
discusses related work. Section 3 defines the problem
of tuning matching systems. Sections 4-5 describe the
eTuner approach in detail. Section 6 presents experi-
mental results, and Section 7 concludes.

2 Related Work

Schema matching has received increasing attention
over the past two decades (e.g, [37, 35, 5, 4, 21]).
A wealth of matching techniques has been devel-
oped, employing hand-crafted rules and heuristics
(e.g., [31, 36, 11, 6, 32, 28, 30]), machine learning
[26, 7, 19, 15, 22, 33, 27], IR [14], information theory
[25], clustering [40, 28, 27], and statistics [24, 27].
Many of the developed techniques are synergistic

[37, 21]. As a result, the focus is shifting away from
monolithic (stovepipe) matching systems, toward cre-
ating robust and widely useful matching components,
and a plug-and-play framework for them. Many re-
cent works [8, 18, 19, 22, 38, 15, 27, 20] have used
a multi-component matching architecture, where each
component employs a particular matching technique
and the final predictions combine the predictions of
the components. A recent work using this approach [8]
aims at an industrial-strength schema matching sys-
tem, while [38] examines its scalability to very large
XML schemas.
A next logical direction is to make the frameworks

easy to customize for a particular set of matching

tasks. Our work aims at automating the customiza-
tion.
Several recent works exploit previously matched

schema pairs to improve matching accuracy (e.g.,
[18, 19, 27, 7]). Such prior match results, when-
ever available, can play the role of the “ground-truth”
workload and thus can be used for tuning as well. How-
ever, tuning data obtained this way is often costly, ad
hoc, and limited. In contrast, synthetic matching sce-
narios can be obtained freely, is often more comprehen-
sive, and can be tailored to a particular matching situ-
ation. In Section 6.5 we show that tuning on synthetic
scenarios outperforms tuning on previous matching re-
sults, but can exploit such results whenever available
to further improve tuning quality.
Finally, our work can be seen as part of the trend

toward self-tuning databases, to reduce the high total
cost of ownership [2, 13, 12].

3 The Match Tuning Problem

We describe our model of a matching system, then use
the model to define the match tuning problem. The
vast majority of current schema matching systems con-
sider only 1-1 matches, such as contact-info = phone
[37]. Hence, in this paper we focus on the problem
of tuning such systems, leaving those that finds com-
plex matches (e.g., address = concat(city, state) [15])
as future work. We handle only relational schemas,
but the ideas we offer here carry over to other data
representations (e.g., XML schemas).

3.1 Modeling 1-1 Matching Systems

We define an 1-1 matching system M to be a triple
(L,G,K), where L is a library of matching compo-
nents, G is a directed graph that specifies the flow of
execution among the components ofM, andK is a col-
lection of control variables (henceforth knobs) that the
user (or a tuning system such as eTuner) can set. (A
component description includes Kc, the set of knobs
available for that component.) In what follow we elab-
orate on the above concepts, using the LSD system in
Figures 2.a-c as a running example. LSD is a learning-
based multi-component matching system, and is de-
scribed in detail in [19].

3.1.1 Library of Matching Components

Such a library contains the following four types of com-
ponents, variants of which have often been proposed
in the literature [37, 21]:

• Matcher (schemas → similarity matrix): A matcher
takes two schemas S and T and outputs a similarity
matrix, which assigns to each attribute pair si of S
and tj of T a similarity score between 0 and 1. Li-
brary L in Figure 2.a has five matchers. The first two
compare the names of two attributes (using q-gram
and TF/IDF techniques, respectively) to compute
their similarity score [18, 19]. The remaining three
matchers exploit data instances [19].
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Figure 2: The LSD (a-c), SimFlood (b), and LSD-SF (c) systems.

• Combiner (matrix × . . .× matrix → matrix): A
combiner merges multiple similarity matrices into a
single one. Combiners can take the average, mini-
mum, maximum, or a weighted sum of the similarity
scores (Figure 2.a) [18, 22, 19]. More complex types
of combiner include decision tree [22], and elaborate
(often hand-crafted) scripts [8].

• Constraint Enforcer (matrix × constraints → ma-
trix): Such an enforcer exploits pre-specified do-
main constraints or heuristics to transform a simi-
larity matrix (often coming from a combiner) into
another one that better reflects the true similari-
ties. Library L in Figure 2.a has a single constraint
enforcer, which exploits integrity constraint such as
“lot-area cannot be smaller than house-area” [19].

• Match Selector (matrix → matches): This compo-
nent selects matches from a given similarity matrix.
The simplest selection strategy is thresholding: all
pairs of attributes with similarity score exceeding a
given threshold are returned as matches [18]. More
complex strategies include formulating the selection
as an optimization problem over a weighted bipartite
graph [30] (Figure 2.a).

3.1.2 Execution Graph

This is a directed graph whose nodes specify the com-
ponents ofM and whose edges specify the flow of ex-
ecution among the components. The graph has mul-
tiple levels, and must be well-formed in that (a) the
lowest-level components must be matchers that take
as input the schemas to be matched, (b) the highest-
level component must be a match selector that outputs
matches, and (c) all components must get their input.
In the following we describe the execution graphs of
four matching systems that we experimented with in
Section 6.

LSD: The execution graph of LSD [19] is shown in
Figure 2.b and has four levels. It states that LSD first
applies the n matchers, then combines their output
similarity matrices using a combiner. Next, LSD ap-
plies a constraint enforcer, followed finally by a match
selector. (We omit displaying domain constraints as
an input to the enforcer, to avoid clutter.)

COMA & SimFlood: Figure 1.a shows the ex-
ecution graph of the COMA system [18], which was

the first to clearly articulate and embody the multi-
component architecture. Figure 2.d shows the execu-
tion graph of the SimFlood matching system [30]. Sim-
Flood employs a single matcher (a name matcher [30]),
then iteratively applies a constraint enforcer. The en-
forcer exploits the heuristic “two attributes are likely
to match if their neighbors (as defined by the schema
structure) match” in a sophisticated manner to im-
prove the similarity scores. Finally, SimFlood applies
a match selector (called filter in [30]).

LSD-SF: We can combine LSD and SimFlood to
build a system called LSD-SF, whose execution graph
is shown in Figure 2.e. Here, the LSD system (with-
out the match selector) is treated as another matcher,
and is combined with the name matcher of SimFlood,
before the constraint enforcer of SimFlood.

User Interaction: Current matching systems usu-
ally offer two execution modes: automatic and inter-
active [18, 19, 37]. The first mode is as described
above: the system takes two schemas, runs without
any user intervention, and produces matches. In the
second mode users can provide feedback during exe-
cution, and the system can selectively rerun certain
components, based on the feedback (e.g., see [18, 19]).
Since our current focus is on automating the entire
tuning process (allowing optional user feedback only
in creating the synthetic workload, but not during the
staged tuning, see Section 4.2), we leave the problem
of tuning for the interactive mode as future work. Put
another way, we tune to optimize the matching pro-
vided when user interaction begins.

3.1.3 Tuning Knobs

Knobs of the Components: Matching components
are treated as black boxes, but we assume that each of
them has a set of knobs that are “exposed” and can be
adjusted. Each knob is either (I) unordered discrete,
(II) ordered discrete or continuous, or (III) set valued.
For example, Figure 2.c shows a decision tree

matcher that has four knobs. The first knob,
characteristics-of-attr, is set-valued. The matcher has
defined a broad set of salient characteristics of schema
attributes, such as the type of attribute (integer,
string, etc.), the min, max, average value of the at-
tribute , and so on (see [26, 22] for more examples).
The user (or eTuner) must assign to this knob a subset
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of these characteristics, so that the matcher can use
the selected characteristics to compare attributes. If
no subset is assigned, then a default one is used. In
learning terminology, this is known as feature selection,
a well-known and difficult problem [16].
The second knob, split-measure, is unordered dis-

crete (with values “information gain” or “gini index”),
and so is the third knob, post-prune? (with values
“yes” or “no”). The last knob, size-of-validation-set,
is ordered discrete (e.g., 40 or 100). These knobs al-
low the user to control several decisions made by the
matcher during the training process.

Knobs of the Execution Graph: For each node of
the execution graph, we assume the user (or eTuner)
can plug in one of the several components from the
library. Consider for example node Matcher 1 of the
execution graph in Figure 2.b. The system M may
specify that this node can be assigned either the q-
gram name matcher or TF/IDF name matcher from
the library (Figure 2.a).
Consequently, each node of an execution graph can

be viewed as a unordered discrete knob. Note that it is
conceptually possible to define “data flow” knobs, e.g.,
to change the topology of the execution graph. How-
ever, most current matching systems (with the possible
exception of [8]) do not provide such flexibility, and it
is not examined here.
Finally, we note that the model described above

covers a broad range of current matching systems, in-
cluding LSD, COMA, and SimFlood, as discussed ear-
lier, but also AutoMatch, Autoplex, GLUE, PromptDiff
[7, 20, 34] and those in [22, 27, 33], and Protoplasm,
an industrial-strength matching system under devel-
opment at Microsoft Research [8].

3.2 Tuning of Matching Systems

We are now in a position to define the general tuning
problem. Given

• matching systemM = (L,G,K), as defined above;

• workload W consisting of schema pairs
(S1, T1), (S2, T2), ..., (Sn, Tn) (often the range
of schemas will be described qualitatively, e.g., “fu-
ture schemas to be integrated with our warehouse”);
and

• utility function U defined over the process of match-
ing a schema pair using a matching system; U can
take into account performance factors such as match-
ing accuracy, execution time, etc;

the match tuning problem is to find a combination of
knob values (called a knob configuration) k∗ that max-
imizes the average utility over all schema pairs in the
workload. Formally, letM(k) be the matching system
M using the knob configuration k, and let K be the
space of all knob configurations, as defined byM, then

k∗ = argmaxk∈K [
n∑

i=1

U(M(k); (Si, Ti))]/n (1)

Schema S
Workload 
Generator

Staged
Tuner

Transformation
Rules

Tuning
Procedures

User Augmented 
Schema S

Synthetic
Workload

Tuned 
Matching
System M

Matching System
M = (L, G, K)

Figure 3: The eTuner architecture.

where U(M(k); (Si, Ti)) is the utility of applying
M(k) to the schema pair (Si, Ti).

Problem Definition: In this paper we restrict the
general problem. First, we use just one utility func-
tion U accuracy, a combination of precision and recall
formalized in Section 6. The rationale for using this
measure appear in [17, 37, 27]. Second, we tune M
for the workload of matching a single schema S with
all future schemas Ti. This scenario arises in numer-
ous contexts, including data integration and warehous-
ing [19, 37]. In the next two sections we describe the
eTuner solution to this problem.

4 The eTuner Approach

The eTuner architecture (see Figure 3) consists of two
main modules: workload generator and staged tuner.
Given a schema S, the workload generator applies a set
of transformation rules to generate a synthetic work-
load. The staged tuner then tunes a matching system
M using the synthetic workload and tuning procedures
stored in an eTuner repository. The tuned system M
can now be applied to match schema S with any sub-
sequent schema. It is important to note that the trans-
formation rules and the tuning procedures are created
only once, independently of any application domain,
when implementing eTuner.

While the tuning process is completely automatic,
eTuner can also exploit user assistance to generate an
even higher quality synthetic workload. Specifically,
the user can “augment” schema S with information
on the relationships among attributes (see the dotted
arrows in Figure 3).

The rest of this section describes the workload gen-
erator, in both automatic and user-assisted modes,
while the next section describes the staged tuner.

4.1 Automatic Workload Creation

Given a schema S and a parameter n, the workload
generator proceeds in three steps. (1) It uses S to
create two schemas U and V , which are identical to
S but are associated with different data tuples. (2) It
perturbs V to generate n schemas V1, V2, . . . , Vn. (3)
For each schema Vi, i ∈ [1, n], it traces the derivation
process to create the set of correct semantic matches
Ωi between U and Vi, then outputs the set of triples
{(U, Vi,Ωi)}

n
i=1

as the synthetic workload. We now
describe the three steps in detail.
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Input:      schema S, data tuplesD, transformation functions T, workload size n
Output:   synthetic workload W (n schema pairs and their correct matches)
Let Tt, Tc, Tn, Tv , Tf be table-, column-, name-, value- and format-transformation 
rules in repository T
1. Split schema S into U, V

1.1. Let U = S and V = S 
1.2. Create data set Du, Dv such that Du ∩ Dv = ∅, Du ∪ Dv = D, |Du| = |Dv|

2. Generate n schemas V1, V2, … Vn from V
2.1. Let Vi = V 
2.2. Perturb number of tables in Vi using rules in Tt

2.3. Perturb the structure of each table in Vi using rules in Tc

2.4. Foreach name nk in schema Vi do change nk using rules in Tn

2.5. Foreach column cj in Vi do
Let dcj = data associated with cj in Dv

Let σcj
2 = variance(dcj) and µcj = mean(dcj)

Perturb σcj
2 and µcj using rules in Tv

Generate |dcj| data values using a Gaussian distribution generator 
with perturbed σcj

2 and µcj

Perturb format of each generated data value using rules in Tf

3. Foreach (U, Vi) do generate its correct match set Ωi

3.1. Let  Ωi = ∅
3.2. Foreach column c in Vi do

Foreach column c’ in V do if c is generated from c’ then add (c, c’) to Ωi

4. Return W = { (U, V1, Ω1), (U, V2, Ω2), …(U, Vn, Ωn)}

Figure 4: High-level description of the workload generator.

4.1.1 Create Schemas U and V from Schema S

The workload generator begins by creating two
schemas U and V which are identical to S. Next, it
partitions data tuplesD associated with S (if any) into
two equal, but disjoint sets Du and Dv, then assign
them to U and V , respectively. This is to ensure that
once V has been perturbed into Vi, we can pair U and
Vi to form a matching scenario where the schemas do
not share any data tuple. Using schemas that share
data tuples would make matching easier [15, 9] and
thus may significantly bias the tuning process.
The above step is illustrated in Figure 5.a, which

shows a schema S with three tables. The schemas V
and U generated from S also have three tables with
identical structures. However, table 3 of S, which we
show in detail as table EMPLOYEES in Figure 5.a, has
in effect being partitioned into two halves. Its first
two tuples go to the corresponding table of schema
V , while the remaining two tuples go to schema U .
We experimented, and found that the above simple
strategy of randomizing, then halving tuples in each
table worked as well as more complex strategies.

4.1.2 Create Schemas V1, . . . , Vn by Perturbing V

To create a schema, say, V1, the workload generator
perturbs schema V in several steps, using a set of pre-
specified, domain-independent rules stored in eTuner.

• Perturbing Number of Tables: The genera-
tor randomly selects a perturb-number-of-tables rule to
apply to the tables of schema V . This is repeated up
to αt times (currently set to two in our experiments).
eTuner currently has two such rules. The first one ran-
domly selects two joinable tables, and merges them
based on a join path to create a new table. The sec-
ond rule randomly selects and splits a table into two
(that can be joined to recover the original table).
As an example, after applying the rules, schema V

at the top of Figure 5.a, which has three tables 1, 2, 3,

has been transformed into schema V1, which has only
two tables 12 and 3. The tables 1 and 2 of V have
been merged into table 12 of V1.

• Perturbing the Structure of Each Table: For
each table of schema V1, the generator now perturbs its
structure. It randomly selects column-transformation
rules to apply to the columns of the table, up to αc

times (currently set to four). eTuner has three such
rules. The first one merges two columns. Currently,
two columns can be merged only if (a) they are neigh-
boring columns, and (b) they share a prefix or suffix
(e.g., first-name and last-name). The second rule ran-
domly removes a column from the table. The third
rule swaps two columns.
Continuing with our example, in Figure 5.b, for

table EMPLOYEES, column first is dropped and two
columns last and id are swapped.

• Perturbing Table and Column Names: In
the next step, the name of each table and its columns
in schema V1 are perturbed. eTuner has implemented
a set of rules that capture common name transforma-
tions [28, 15, 37]. Examples include abbreviation to
the first three or four characters, dropping all vow-
els, replacing the name with a synonym (currently
obtained from Merriam-Webster’s online thesaurus),
and dropping prefixes (e.g., changing ACTIVE-EMPS
to EMPS). Rules that perturb a column name also con-
sider adding a perturbed version of the table name
as prefix, or borrowing prefixes from neighboring
columns. We also add a rule that changes a column
name into a random sequence of characters, to model
cases where column names are not intelligible to any-
one other than the data creator. For each name, the
rules are called up to αn times (currently set to two).
In Figure 5.b, the name of table EMPLOYEES has

been abbreviated to EMPS (the first three letters plus
“S” for plurality). The name of column last has been
added the new table name as a prefix, to become emp-
last. Finally, the name of column salary($) has been
replaced with the synonym wage.

• Perturbing Data: In the final step, the gener-
ator perturbs the data of each table column in V1, by
perturbing the format, then values of the data. eTuner
has a set of rules that capture common transforma-
tion of data formats (and is extensible to adding more
rules). Examples include “dropping or adding $ sign”,
“changing dates from 12/4 to Dec 4”,etc. For each col-
umn, the generator applies such rules up to αd times
(currently set to two).
Once the format of a column c has been perturbed,

the generator perturbs the data values. If the val-
ues are numeric (e.g., price, age, etc), then they are
assumed to have been generated from a normal dis-
tribution with mean µc and variance σc

2. Thus, the
generator estimates µc and σc

2 from current data val-
ues in column c. It then randomly decides whether to
perturb the mean and variance by a random amount in
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(c) Sample matches created between V1 and U

(b) Perturbing the schema V to generate a new schema V1

EMPS.emp-last = EMPLOYEES.last
EMPS.id = EMPLOYEES.id
EMPS.wage = EMPLOYEES.salary($)

(a) Splitting S to create two identical schemas V and U, with disjoint data tuples

Figure 5: Perturbing schema S to generate two schemas U and V1 and the correct matches between them.

the range +/-[10,100]%. Let the new mean and vari-

ance be µ′c and variance σ
′
c
2
. Then each value x is now

generated according to the above normal distribution.
If the values are textual (e.g., house description), then
the generator randomly adds or remove text tokens.
More detail can be found in the full paper.
For example, consider column wage of Table EMPS

in Figure 5.b (the rightmost table). Its format has
been perturbed so that the signs “$” and “,” are
dropped, and its values have been changed, so that
“40,000$” is now “45200”.

4.1.3 Create Semantic Matches between Vi and U

In the final step, the generator retraces the pertur-
bation history to create correct semantic matches be-
tween V1 and U . Briefly, if attribute a of V1 is de-
rived from attributes b1, . . . , bk of schema V , then
(since schemas U and V are identical) we create a =
b1, . . . , a = bn as correct matches between V1 and
U . Figure 5.c lists the correct matches between table
EMPS of V1 and table EMPLOYEES of U . As another
example, suppose attributes first-name and last-name
of V are merged to create attribute name of V1, then
the generator derives the matches name = first-name
and name = last-name.
Let Ωi be the set of derived semantic matches be-

tween Vi and U . The workload generator then returns
the set of triples {(U, Vi,Ωi)}

n
i=1
as the synthetic work-

load on which to tune matching systemM.

4.2 User-Assisted Workload Creation

The generator can exploit user assistance whenever
available, to build a better workload, which in turn
improves tuning performance.
To illustrate the benefits of user assistance, suppose

each employee can be contacted via two phone num-
bers, phone-1 and phone-2 (as attributes of schema
U). Suppose while generating schema V1 attribute
phone-1 is renamed emp-phone and phone-2 is dropped.
Then the generator will declare the match emp-phone
= phone-1 correct (between V1 and U), but will not rec-
ognize emp-phone = phone-2 as also correct (since emp-
phone is not derived from phone-2, see Section 4.1.3).
This is counter-intuitive, since both numbers are the
employee’s phone numbers. Furthermore, it will force
the tuning algorithm to look for “artificial” ways to

distinguish the two phone numbers, thereby overfit-
ting the tuning process.
To address this issue, we say a group of attributes

G = {ai1, . . . , ain} of schema S are match-equivalent
if and only if whenever a match b = aij , 1 ≤ j ≤ n
is judged correct, then all other matches b = aik, 1 ≤
k ≤ n, k 6= j, are also judged correct. In the above
example, phone-1 and phone-2 are match equivalent.
We ask the user to identify match equivalent attributes
of schema S. The generator then refines the set of
correct semantic matches, so that if G = {ai1, . . . , ain}
is match equivalent, and b = aij , 1 ≤ j ≤ n is correct,
then b = aik, 1 ≤ k ≤ n, k 6= j are also correct.
The user does not have to specify all match-

equivalent attribute groups, only as much as he/she
can afford. Further, such grouping is a relatively low-
level effort, since it involves examining only schema S,
and judging if attributes are semantically close enough
to be deemed match equivalent. Such attributes are of-
ten neighbors of one another, facilitating the examina-
tion. Section 6 shows that such user assistance can sig-
nificantly improve the tuning performance. The user
can also assist in many other ways, e.g., by suggesting
domain-specific perturbation rules; but such possibili-
ties are outside the scope of this paper.

5 Tuning with the Synthetic Workload

We now describe how to tune a M with a synthetic
workload W as created in the previous section.

5.1 Staged Tuning

Our goal is to find a knob configuration of M that
maximizes the average accuracy overW. The configu-
ration space is usually huge, making exhaustive search
impractical.
Consequently, we propose a staged, greedy tuning

approach. Assume the execution graph of M has k
levels. We first tune each match component at the
bottom, k-th level in isolation. Next, we tune subsys-
tems that consist of components at the (k − 1)th and
k-th levels. While tuning such subsystems, we assume
the components at the k-th level have been tuned, so
their knob values are fixed, and we only need to tune
knobs at level (k−1)th. If there is a loop of m compo-
nents, then the loop is treated as a single component
when being considered for addition to a subsystem.
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This staged tuning repeats until we have reached the
first level and hence have tuned the entire system.
Consider for example tuning the LSD system in Fig-

ure 2.b. We first tune each of the matchers 1 . . . n.
Next, we tune the subsystem consisting of the com-
biner and the matchers, but assuming that the match-
ers have been tuned. Then we tune the subsystem
consisting of the constraint enforcer, combiner, and
matchers, assuming that the combiner and matchers
have been tuned, and so on. Suppose the execution
graph has k levels, m nodes per level, and each node
can be assigned one of the n components in the library.
Assume each component has p knobs, and each knob
has q values. Then staged tuning examines only a total
of k×(m×(n×p×q)) out of (n×p×q)k×m knob con-
figurations, a drastic reduction. Section 6 shows that
while not guaranteeing to find the optimal knob con-
figuration, staged tuning still outperforms currently
possible tuning methods.

5.2 Tuning Subsystems of M

We now describe in detail how to tune a subsystem S
of the original matching systemM. First, if S does not
produce matches as output (e.g., producing similarity
matrix instead), we add the match selector ofM as the
top component of S. This is to enable the evaluation
of S’s accuracy on the synthetic workload.
We then tune the knobs of S as follows. Recall from

Section 3.1.3 that there are three types of knobs: (I)
unordered discrete, (II) ordered discrete or continuous,
and (III) set valued. Type-I knobs usually have few
values (e.g., “yes”/”no”), while Type-II knobs usually
have a large number of values. Hence, we first convert
each type-II knob into a type-I knob, by selecting q
equally-spaced values (currently set to six). For ex-
ample, for value range [0,1], we select 0, 0.2, etc., for
value range [0,500], we select 0, 100, 200, etc.
We now only have type-I and type-III knobs. In

fact, in practice we often have just one type-III (set-
valued) knob: selecting features for a matcher (e.g.,
[22, 19]). Hence, we assume that there is just one type-
III knob for subsystem S, which handles feature selec-
tion. In the next step, we form the Cartesian space
of all type-I knobs. This space is usually small, since
each type-I knob has few values, and S does not have
many knobs (due to the staged tuning assumption).
For each knob setting in this Cartesian space, we can
then tune for the lone type-III knob, as described in
detailed in Section 5.3 below, then select the setting
with the highest accuracy.
At this moment, we have selected a value for all

type-I and type-III knobs of S. Recall that some type-I
knobs are actually converted from type-II ones, which
are ordered discrete or continuous. We can now focus
on these type-II knobs, and perform hill climbing to
obtain a potentially better knob configuration.

Tuning Interrelated Knobs: We may know of fast
procedures to tune a set of interrelated knobs. For

Min/nbMin Minimum length/non-blanks of character attributes
Minimum value of numeric attributes

IsNumeric If numeric, YES; else NO
Feature Descriptions

# of Number of the “    ”  symbol
# of $ Number of the “$”  symbol
# of token Number of tokens
# of digit Number of digits
Type Type of attributes

Max/nbMax Maximum length/non-blanks of character attributes
Maximum value of numeric attributes

Avg/nbAvg Average length/non-blanks of character attributes
Average value of numeric attributes

CV/nbCV CV of length/non-blanks of character attributes
CV of numeric attributes

SD/nbSD SD of length/non-blanks of character attributes
SD of numeric attributes

@ @

Figure 6: Sample features that eTuner uses in selecting a best
set of features for the schema attributes.

201 61801

length-3

ave Goodwin , $

others

ALL

Words

length-73-digits … 5-digits… … …… …

…… … … … …… … … … … …

delimiters

Special CharactersNumbers

Figure 7: An example taxonomy for the Naive Bayes matcher.

example, a weighted sum combiner has n knobs that
specify matcher weights [19]. They can be tuned using
linear or logistic regression (over the synthetic work-
load) [19]. However, such tuning often requires that all
other knobs of S have been set (otherwise S cannot be
run). For this reason, in Step 1 we run the tuning pro-
cess as described earlier, to obtain reasonable values
for the knobs of S. Then in Step 2 we run procedures
to tune interrelated knobs (if any, these procedures
are stored in eTuner). If this tuning results in a better
knob configuration, then we take it; otherwise we use
the knob configuration found in Step 1.

5.3 Tuning to Select Features

We now describe how to tune the type-III knob that
selects features for subsystem S. Without loss of gen-
erality, assume S is a matcher.
Recall from Section 3.1.3 that a matcher often

transforms each schema attribute into a feature vec-
tor, then uses the vectors to compare attributes. In
eTuner we have enumerated a set of features judged to
be salient characteristics of schema attributes, based
on our matching experience and the literature (e.g.,
[26, 18, 30, 22, 7, 28, 19, 20]). Figure 6 shows 16 sam-
ple features. The goal of tuning is then to select from
the set F of all enumerated features a subset F ∗ that
best assist the matching process.
The simplest solution to find F ∗ is to enumerate

all subsets of F , run S with each of the subsets over
the synthetic workload, then select the subset with the
highest matching accuracy. This solution is clearly im-
practical. Hence, we consider a well-known selection
method called wrapper [16], which starts with a set of
features (e.g., the empty set), then considers adding or
deleting a single feature. The possible changes to the
feature set are evaluated by running S over the syn-
thetic workload, and the best change is made. Then a
new set of changes is considered. However, even this
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Figure 8: (a) Real world domains and (b) matching systems
for our experiments

greedy algorithm is too expensive. Even just for 20
features, it would run S over the synthetic workload
210 times.
To reduce the runtime complexity, given the feature

set F , we first apply another selection method called
Relief-F (described in detail in [16]) to select a small
subset F ′. Relief-F detects relevant features well, and
runs very fast, as it examines only the synthetic work-
load, not running any matching algorithm [16]. We
then apply the above greedy wrapper algorithm to the
much smaller set F ′ to select the final set of features
F ∗.

Selecting Features for Text-Based Matchers:

Features as described above are commonly used by
learning methods such as decision tree, neural network
[26, 22, 19, 20] and also by many rule-based meth-
ods (e.g., [18, 28, 30]). However, many learning-based
(e.g., Naive Bayes, SVM) as well as IR-based match-
ing methods (e.g., [14, 19]) view data instances as text
fragments, and as such operate on a different space
of features. We now consider generating such feature
spaces and the associated feature selection problem.
We can treat each distinct word, number, or special

characters in the data instances as a feature. Thus,
the address 201 Goodwin ave. Urbana, IL 61801 is rep-
resented with eight features: four words, two num-
bers, and two special characters “,” and “.”. However,
for zip codes, specific values such as “61801” are not
important; what we really need (to match attributes
accurately) is knowing that they are 5-digit numbers.
Hence, we should consider abstracted features, such as
5-digits, in addition to word-level features.
Figure 7 shows a sample taxonomy of features over

text for eTuner (adapted from [10]). A line cutting
across this taxonomy represents a selected feature set.
Consider for example the thick line in the figure. It
states that all numbers are abstracted into 1-digit, 2-
digits, etc, all words can be treated as features, and so
on. Given this, the above address is now represented
as the set {3-digits, Goodwin, ave, delimiters,Urbana,
delimiters, IL, 5-digits}. To find the best feature set,
we employ a method similar to the wrapper method
described earlier, starting from the feature set at the
bottom of the taxonomy.

6 Empirical Evaluation

We now present experimental results over four real-
world domains and four matching systems, to demon-
strate the need for tuning and the utility of eTuner.

Domains: We obtained publicly available schemas
in four domains. The schemas have been used in re-
cent schema matching experiments [19, 15, 27]. The
domains have varying numbers of schemas (2-10) and
diverse schema sizes (10-50 attributes per schema, see
Figure 8.a). Real Estate lists houses for sale. Courses
contains time schedules for several universities. Inven-
tory describes business product inventories, and Prod-
uct stores product descriptions of groceries.

Matching Systems: Figure 8.b summarizes the
four matching systems in our experiments. We be-
gan by obtaining three multi-component systems that
were proposed recently. The LSD system was origi-
nally developed by one of us [19] to match XML DTDs.
We adapted it to relations. The SimFlood system [30]
was downloaded from the Web. The COMA system
was described in [18]. Since we did not have access to
COMA, we implemented a version of it called iCOMA.
The iCOMA library includes all components described
in [18], except the hybrid and reuse matchers. We also
added the decision tree matcher to the library, to ex-
ploit data. Finally, we combined LSD and SimFlood (as
described in Section 3), to obtain LSD-SF, the fourth
matching system. Figure 8.b shows that the systems
have 4-18 components, with 7-25 knobs (the full paper
will give a complete description).

Experimental Methodology: For each domain, we
randomly selected a schema to be the source schema
S. Next we applied the above four matching systems
(tuned in several ways, as described below) to match S
and the remaining schemas in the domain (treated as
future target schemas). This was repeated four times
except for Product, which contains only 2 sources. We
then report the average accuracy per domain. For
eTuner, we set the size of the synthetic workload at
30, and the number of tuples per schema table at 50.

Performance Measure: Following recent schema
matching practice [18, 17, 30, 27, 37], we use the F1

score to evaluate matching accuracy. Given a set
of candidate matches for S and T , we have F1 =
(2PR)/(P + R), where precision P is the percentage
of candidate matches that are correct, and recall R
is the fraction of all correct matches discovered. The
goal of tuning is to find the knob configuration that
maximizes F1 score.

6.1 The Need for Tuning

We begin by demonstrating the need for tuning, using
Figures 9.a-d. The figures show the results for LSD,
iCOMA, SimFlood, and LSD-SF, respectively. Each fig-
ure shows the results over four domains: Real Estate,
Product, Inventory, and Course. Thus we have a total
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Figure 9: Matching accuracy for (a) LSD, (b) iCOMA, (c)
SimFlood, and (d) LSD-SF.

of 16 groups: one for each pair of system and domain,
separated by dotted vertical lines on the figures.
We first applied the matching systems “as is” to the

domains, and reported the accuracy as the first bar in
each group. For instance, for LSD and Real Estate
(the first group of Figure 9.a), the first bar is 33%.
The “as is” accuracy is 14-62% across all 16 cases,
demonstrating that “off-the-shelf” matching systems
are quite brittle.
Next, we did our best to tune each system inde-

pendently of any domain, in effect imitating a vendor
tuning a system before release. (We found graduate
student volunteers not suitable for this task, suggest-
ing that administrators will also have difficulty tuning.
See below for details). We examined literature about
each matching system, leveraged our knowledge of ma-
chine learning and schema matching, and tweaked the
systems on pairs of schemas not otherwise used in the
experiments. The second bar in each group reports
the accuracy of applying the tuned systems, scattered
in the range 19-78% across all 16 cases. This accu-
racy suggests that tuning matching systems once and
for all does not work well, implying the need for more
context dependent settings.

6.2 “Quick and Dirty” Tuning

Next, we examined the following. Whenever we need
to match two schemas S and T , does it seem possible

to provide a simple interactive tuning wizard? Per-
haps one might carry out “quick and dirty” tuning, by
just tweaking a few knobs, examining the output of
the matching system, then adjusting the knobs again?
If this works, then there is no compelling need for au-
tomated tuning.
We asked a few graduate students to perform such

tuning on six pairs of schemas, and found two ma-
jor problems. First, it turned out to be very difficult
to explain the matching systems in sufficient details so
that the volunteers feel they can tune effectively. Con-
sider for example the decision tree matcher described
in Section 3.1.3. We found that the tuned version of
this matcher improves accuracy significantly, so tun-
ing it is necessary. However, it was very difficult to
explain the meaning of its knobs (see Section 3.1.3) to
a volunteer who lacked knowledge of machine learn-
ing. Second, even after much explanation, we found
that we could perform “quick and dirty” tuning bet-
ter than volunteers. Similar difficulties arose when we
asked volunteers to tune systems in a domain indepen-
dent manner (as described earlier).
Thus, we carried out tuning ourselves, allotting

one hour per matching task. The measured accuracy
over the six matching tasks is 21-65%, suggesting that
“quick and dirty” tuning is not robust. The key dif-
ficulty was that despite our expertise, we still were
unable to predict the effects of tuning certain (combi-
nations of) knobs. Lacking the ground truth matches
(during the tuning process), we were also unable to
estimate the quality of each knob configuration with
high accuracy.

6.3 Domain- & Source-Dependent Tuning

Next, we examined if it is possible to tune just once
per domain, or once per a source S (before matching
S with future schemas).
We tuned each matching system for each domain, in

a manner similar to domain-independent tuning, but
taking into account the characteristics of the domain
sources. (For example, if a domain has many textual
attributes, then we assigned more weight to the Naive
Bayes text classifier [19].) The third bar in each group
(Figures 9.a-d) shows accuracy 19-78%.
We then explored source-dependent tuning. Given

a source S, we assume that we already know matches
between S and two other sources S1 − S2 in the same
domain. We used staged tuning of eTuner over these
known matches to obtain a tuned version of the match-
ing system. Next, we manually tweaked the system,
trying to further improve its accuracy over matching
S with S1 − S2. The fourth bar in each group (Fig-
ures 9.a-d) shows accuracy 22-81%.
The results show that source-dependent (most la-

bor consuming) tuning beats domain-dependent tun-
ing (less labor consuming, as carried out only once
per domain) by 1-7%, which in turns beats domain-
independent tuning (least costly) by 0-6%.
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Figure 10: Changes in the matching accuracy with respect to
(a) size of the synthetic workload, and (b) the number of prior
matched schema pairs in the workload.

6.4 Tuning with eTuner

The fifth bar (second bar from the right) of each group
(Figures 9.a-d) then shows the accuracy of matching
systems tuned automatically with eTuner. The results
show accuracy 23-82% across all 16 groups. eTuner
is better than source-dependent tuning (the best tun-
ing method so far) in 14 out of 16 cases, by 1-15%,
and is slightly worse in 2 cases, by 2%. The cost of
using eTuner consists mainly of “hooking” it up with
the knobs of a matching system, and would presum-
ably be born by vendors and amortized over all uses.
The above analysis demonstrates the promise of eTuner
over previous tuning alternatives.
Zooming into the experiments shows that tuning

improves all levels of matching systems. For exam-
ple, the accuracy of matchers improves by 6% and of
combiner by 13% for LSD.

User-Assisted Tuning: The last bar of each group
(Figures 9.a-d) shows the accuracy of eTuner with user-
assisted workload creation (Section 4.2), with users be-
ing volunteer graduate students. The results show ac-
curacy 38-79% across all 16 groups, improving 1-14%
over automatic tuning (except in three cases there is no
improvement, and one case of decreased accuracy by
1%). The results show the benefits of user assistance
in tuning.

6.5 Sensitivity Analysis

Synthetic Workload: Figure 10.a shows the accu-
racies of automatic eTuner, as we vary the size (i.e.,
number of schemas generated) of the synthetic work-
load. The accuracies are for LSD over Real Estate
and Inventory, though we observed similar trends in
other cases. As the workload size increases, the num-
ber of schema/data perturbation rules that it captures
increases. This improves accuracy. After size 25-30,
however, accuracy starts decreasing. This is because
at this point, all perturbation rules have been captured
in the workload. As the workload’s size increases, its
“distance” from real workloads increases, and so tun-
ing overfits the matching system. Thus, for the current
set of perturbation rules (as detailed in Section 4.1),
we set the optimal workload size at 30. The results
also show no abrupt degradation of accuracy, thus
demonstrating that the tuning performance is robust
for small changes in the workload size.

Adding Perturbation Rules to Matching Sys-

tems: It is interesting to note that even if a schema
matching system captures all perturbation templates
of eTuner, it still does not necessarily do well, due to
the difficulty of “reverse engineering”. For example,
the iMAP complex matching system [15] contains a far
richer set of perturbation rules than eTuner. Never-
theless, its accuracy on 1-1 matching (as reported in
[15] on a different domain) is only 62-71%.

Exploiting Prior Match Results: Figure 10.b
shows the accuracy of LSD over Inventory, as we re-
placed 0%, 22%, etc. of the synthetic workload with
real schema pairs that have been matched in the same
domain. The results show that exploiting previously
matched schema pairs indeed improves the quality of
the synthetic workload, thereby matching accuracy.
This is important because such prior match results
are sometimes available [19, 18]. However, while such
match results can complement the synthetic matching
scenarios, exploiting them alone does not work as well,
as we demonstrated with source-dependent tuning de-
scribed in Section 6.3.

Runtime Complexity: Our unoptimized version
of eTuner took under 30 minutes to tune a schema S,
spending the vast majority of time in the staged tun-
ing step. We expect that tuning matching systems
will often be carried out offline, e.g., overnight, or as
a background task. In general, the scalability of tun-
ing techniques such as eTuner will benefit from scaling
techniques developed for matching very large schemas
[38] as well as optimization within the tuning module,
such as reusing results across matching steps and more
efficient, specialized procedures for knob tuning.

7 Conclusion and Future Work

We have demonstrated that tuning is important
for fully realizing the potentials of multi-component
matching systems. Current tuning methods are ad
hoc, labor intensive, or brittle. Hence, we have de-
veloped eTuner, an approach to automatically tune
schema matching systems. Given a schema S and a
matching system M, our key idea is to synthesize a
collection of matching scenarios involving S, for which
we already know the ground-truth matches, and then
use the collection to tune systemM. This way, tuning
can be automated, and can be tailored to the partic-
ular schema S. We evaluated eTuner on four match-
ing systems over four real-world domains. The results
show that matching systems tuned with eTuner achieve
higher accuracy than with current tuning methods, at
little cost to the user.
For future work, we are exploring better search

methods, and more extensive evaluation of eTuner.
The current work also hints at some possible resem-
blances between match tuning and query optimization:
given problem (query answering vs. schema match-
ing) and a set of operators (e.g., hash join, index join
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vs. matchers, combiners), how to quickly assemble an
execution tree that performs optimally in some sense
(time vs. accuracy). It might be interesting to further
explore this connection. We also consider applying
the above idea of using synthetic input/output pairs
to make a system robust to other contexts. We have
successfully adapted it to mapping maintenance [29],
and are adapting it to record linkage systems (e.g.,
[23, 3]).
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