
On Computing Top-t Most Influential Spatial Sites

Tian Xia Donghui Zhang∗ Evangelos Kanoulas Yang Du

College of Computer and Information Science
Northeastern University

Boston, MA 02115
{tianxia, donghui, ekanou, duy}@ccs.neu.edu

Abstract

Given a set O of weighted objects, a set S of
sites, and a query site s, the bichromatic RNN
query computes the influence set of s, or the
set of objects in O that consider s as the near-
est site among all sites in S. The influence of
a site s can be defined as the total weight of
its RNNs. This paper addresses the new and
interesting problem of finding the top-t most
influential sites from S, inside a given spatial
region Q. A straightforward approach is to
find the sites in Q, and compute the RNNs
of every such site. This approach is not effi-
cient for two reasons. First, all sites in Q need
to be identified whatsoever, and the number
may be large. Second, both the site R-tree
and the object R-tree need to be browsed a
large number of times. For each site in Q, the
R-tree of sites is browsed to identify the in-
fluence region – a polygonal region that may
contain RNNs, and then the R-tree of objects
is browsed to find the RNN set. This paper
proposes an algorithm called TopInfluential-
Sites, which finds the top-t most influential
sites by browsing both trees once systemati-
cally. Novel pruning techniques are provided,
based on a new metric called minExistDNN.
There is no need to compute the influence for
all sites in Q, or even to visit all sites in Q.
Experimental results verify that our proposed
method outperforms the straightforward ap-
proach.

∗This work was partially supported by NSF CAREER
Award IIS-0347600.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

1 Introduction

Since its introduction by [KM00], the reverse nearest
neighbor (RNN) query has received considerable at-
tention in recent spatial database research field. The
RNN query can be roughly classified into two cases:
the (traditional) monochromatic RNN query and the
bichromatic RNN query. In the monochromatic case,
there is only one spatial dataset O of objects. We
want to find the objects that are closer to a given lo-
cation than to other objects. In the bichromatic case,
there is another dataset S of sites. The RNNs of a
given site s are the objects o ∈ O such that ∀si ∈ S,
d(o, s) ≤ d(o, si). Here d() is the Euclidean distance
function. In other words, the RNNs of s are the objects
that consider s as the nearest site. The bichromatic
RNN query has many practical applications. For in-
stance, retrieve the residence buildings that consider a
give supermarket as the nearest, or retrieve the mo-
bile users that consider a given wireless station as
the closest. However, the bichromatic case is intrin-
sically more difficult than the monochromatic case.
For instance, the number of RNNs is limited in the
monochromatic case (e.g. at most 6 in the 2D space)
[Smi97], but unbounded in the bichromatic case.

This paper proposes and solves the problem of find-
ing top-t most influential sites, which is an extension
to the bichromatic RNN problem. There are several
differences. First, instead of taking as input a single
site, we take as input a spatial region Q. Second, in-
stead of computing the set of RNNs for a given site,
we are interested in the influence, or the total weight
of RNNs, of a site. In particular, we are interested in
efficiently identifying the sites in Q with the largest in-
fluence. Example applications are: find the two most
influential supermarkets in Boston, or find the most
influential wireless station in central USA.

Definition 1 Given a set of sites S, a set of weighted
objects O, a spatial region Q, and an integer t, the
top-t most influential site query retrieves t sites
in Q with the largest influences. Here the influence
of a site s ∈ S is the total weight of objects in O that
have s as the nearest site.

946

s1

s2 s3
s4

 1o o 2
o 3

o 4

o 5

o 6

Figure 1: The most influential site is s1, if all objects
have weight=1 and Q is the whole space.

For example, consider Figure 1. Let t = 1, and let
Q be the whole space. Further, let the weight of every
object be 1. The most influential site is s1, whose
influence is 3. There are three objects o1, o2 and o3

that have s1 as the nearest site.

One approach to solve this problem is to use pre-
computation. Each site stores its influence. At query
time, we find the sites in Q and return the top-t
most influential ones. This approach has two draw-
backs. First, it is time consuming to maintain the
pre-computed results upon updates. Second, the pre-
computation binds a set of sites closely with a set of
objects. Suppose a set of sites (e.g. supermarkets)
may be queried against multiple sets of objects (e.g.
the set of all residential buildings, or the set of store
members’ addresses). A site needs to maintain mul-
tiple influence values. For these reasons, we focus on
algorithms which apply directly to two plain R-trees,
one for sites and the other for objects, without any
pre-computation.

Another approach, which does not use pre-
computation, is to extend an existing solution to
the bichromatic RNN query [SRAE01]. The idea of
[SRAE01] to find the RNNs of a site s, is to dynam-
ically construct the influence region (or Voronoi cell),
by examining the R-tree of sites. Here, an influence
region is defined as a polygon in space which encloses
the locations that are closer to s than to any other
site. Once the influence region is computed, a range
query in the R-tree of objects is performed to locate
RNNs of s.

To find top-t most influential sites in Q, we can
perform a range query on S to find the sites in Q,
and then for each located site s, compute its RNNs
using [SRAE01]. An optimization is to index the set
of objects using an R-tree whose index entries store
the total weight of objects in their sub-trees. If a sub-
tree MBR is contained in an influence region, there is
no need to examine the sub-tree.

Nevertheless, this approach is not efficient for the
following two reasons. First, all sites in Q need to
be identified whatsoever. In practice, Q may be large
(e.g. “central USA”) and thus may contain many sites.
We know that out of the many sites in Q, only t sites
(for some small t) are needed. So, intuitively, pruning
techniques should be possible. That is, without going
all the way to the leaf level of the site R-tree, it may
be possible to determine that a sub-tree (intersecting
with Q) only contains sites with relatively small influ-

ences and therefore can be pruned. A bigger efficiency
issue is that the two R-trees need to be browsed many
times. In more detail, for every site in Q, the R-tree
of sites is browsed to identify the influence region, and
then the R-tree of objects is browsed to compute the
corresponding influence.

This paper presents an algorithm called TopInfluen-
tialSites, which finds the top-t most influential sites by
browsing both R-trees (aR-trees 1 to be more precise)
once. Novel pruning techniques are provided, based on
a new metric called minExistDNN. There is no need
to compute the influence for all sites in Q, or even to
locate all sites in Q.

Here minExistDNNS1
(O1) is a distance defined

between two minimum bounding rectangles (MBRs)
of R-trees. It is the smallest distance which is guar-
anteed to be an upper bound of the distance between
any object in O1 to its nearest site in S1. Here ‘DNN’
stands for distance to nearest neighbor. ‘Exist’ rep-
resents the fact that from any object in O1, within
this distance there must exist a site in S1. And ‘min’
corresponds to the fact that this metric is the small-
est upper bound. It reminds us the metrics minDist,
maxDist and minMaxDist [RKV95]. One difference
is that this new metric is directional. That is, switch-
ing S1 with O1 will get a different distance. This is
a useful metric. We have: if minExistDNNS1

(O1) <
minDist(O1, S2), no object in O1 will consider a site
in S2 to be the nearest site. It can be used to prune
the search space for NN and/or RNN related queries,
such as the problem of finding top-t most influential
sites. Nevertheless, it is NOT straightforward how to
compute it. In Section 3 we formally define the metric
and provide an algorithm to compute it.

For the top-t most influential site query, the algo-
rithm and the data structures used are outlined be-
low. For ease of presentation, let’s use O and S to
also represent the R-tree of objects in O and the R-
tree of sites in S, respectively. We keep three queues.
One queue, queueSIN (reads Q-ESS-IN), keeps the
(index or leaf) entries from S that intersect (or are
inside) Q. Each entry keeps a lower bound and an
upper bound for the influence of sites in the entry’s
spatial range. Another queue keeps the entries from
O that affects some entries in queueSIN . Here an
entry Oi affects an entry Sj , if and only if there
does not exist another entry Sk in the queues, such
that minExistDNNSk

(Oi) < minDist(Oi, Sj). Intu-
itively, if some object in Oi considers some site in Sj as
the closest site, Oi affects Sj . The third queue keeps
the entries from S that are outside Q, but are affected
by some entries in the queue of O. Initially, the en-
tries in the root nodes of O and S are selectively loaded
into the three queues. The metric minExistDNN is

1The aR-tree [PKZT01], is an R-tree in which each index
entry stores the total weight (or some other aggregate) of the
objects in the subtree. The aggregate values can be maintained
easily along with each update.

947

used to determine which Oi does not affect which Sj .
The algorithm then progressively chooses some entries
from one of the three queues to expand, and updates
the content of the queues. Here, to expand an index
entry means to retrieve the referenced node from disk
and visit its content. It terminates when there are t
sites in queueSIN whose lower bounds are no less than
the upper bounds of all remaining entries. These t
sites are reported as the most influential sites.

What’s crucial is: how do we choose the next entry
to expand? It is not a good choice to expand all en-
tries from one queue (e.g. queueSIN) to the leaf level
before expanding other queues. It is also not a good
choice to expand in a round-robin manner. A good
strategy should be to expand according to the actual
data, satisfying certain goals. For example, (a) The
lower bound and upper bound estimations should be
as accurate as possible. (b) An Oi should affect as
few Sj as possible, and vice versa. (c) The expansion
should quickly reveal some highly influential sites and
work on increasing their lower bounds.

The key results of this paper are:

• We propose a new metric called minExistDNN,
and an algorithm to calculate it. It can be used
to prune search space when computing the top-
t most influential sites. In the future we expect
this metric to be used in other NN/RNN related
spatial database problems.

• We propose and solve the top-t most influential
site query. Our algorithm works directly on the
datasets indexed by R-trees, without the need to
pre-compute the influence of all sites or the dis-
tance from every object to its closest site. Our
algorithm systematically chooses the next entry
to expand, according to the actual data distri-
bution. Experimental results are provided which
illustrates the efficiency of our algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work on RNN queries. Section
3 proposes the metric minExistDNN , with an al-
gorithm to compute it. Section 4 presents our algo-
rithm to compute top-t most influential sites. Section
5 presents experimental results. Finally, Section 6 con-
cludes the paper.

2 Background

The RNN problem was first studied in [KM00]. The
idea is to pre-compute, for each object, the distance
dnn to its nearest site. Thus each object corresponds
to a circle, whose center is the object and whose radius
is the dnn of it. Besides the R-tree which indexes the
original objects, a separate R-tree is maintained which
indexes the set of such circles. The problem of finding
RNNs (influence set) is then reduced to finding the
circles that contain the query point.

To eliminate the need of storing two R-trees, Yang
and Lin [YL01] proposed to store some additional in-
formation in the original R-tree, so that it logically
stores a circle per object. The extension is: every leaf
record stores dnn, and every index record also stores
dnn – the max dnn for all objects in the sub-tree. They
call the extended structure the Rdnn-tree. The benefit
for the RNN search is as follows. Let an index node
be N , and let the query location be l. If the distance
between l and the MBR of N is bigger than N.dnn,
there is no need to search the sub-tree rooted by N .
Lin et al. [LNY03] proposed a method to bulk-insert
the Rdnn-tree.

The work based on storing circles [KM00, YL01],
either physically or logically, can be used to answer
both the monochromatic RNN query and the bichro-
matic RNN query. However, the pre-computation in-
curs extra update cost to maintain the correct dnn
for each object or index entry. Furthermore, for the
bichromatic RNN case, the solution binds a set of ob-
jects closely with a set of sites. Below we review some
algorithms without pre-computation.

For the monochromatic RNN query, there are two
approaches without using pre-computation. An earlier
approach [SAE00] divides the space into six 60◦ regions
centered by the query location l. It was proved that
the only candidates of the RNNs are the six nearest
neighbors (NN) of l in each region. So [SAE00] finds
the six NNs, and then check to see if each of them re-
ally considers l as NN. A recent result which is more
efficient was introduced by [TPL04]. Given the query
location l, we first find its NN, say o1. Consider the bi-
sector of l and o1. All objects on the side of o1 (except
o1 itself) can be pruned, since their distances to o1 is
no more than the distances to l. Next, in the unpruned
space, the NN to l is found, and the space is further
pruned. Finally, the unpruned space does not contain
any object. The only candidates of RNNs are the iden-
tified NNs. The refinement step, which removes false
positives, uses the previously pruned MBRs so that no
tree node is visited twice throughout the algorithm.

An algorithm which computes bichromatic RNNs,
without pre-computation, was proposed by [SRAE01].
The idea is to dynamically construct the influence re-
gion of the query location l. Here, the influence region
is defined as a polygon in space which encloses and only
encloses all possible RNNs of l. This is equivalent to
the Voronoi cell enclosing l [BKOS97]. Conceptually,
if we draw a bisector line between l and a site s, any
object located on the l side of the bisector will have
smaller Euclidean distance to l than to s. The l side
of the bisector is a half plane. If we compare l against
all sites and take the intersection of these l-side half
planes, we get the Voronoi cell containing l.

Of course, to compare with all sites is expensive.
As proved in [SRAE01], we only need to examine sites
in a certain rectangle which is computed as follows

948

l

A

C

m

o

D

B

n

p

A

C

m

o l

B

D

n

p

(a) (b)

Figure 2: Identifying the rectangle which is guaranteed
to contain all sites needed for computing a Voronoi cell.

(Figure 2). First, we find the nearest site of l in each
quadrant formed by axes parallel to the original axes
that pass through l. This is a constrained NN query
[FSAE01]. Let the four NNs be A, B, C and D in the
first, second, third and fourth quadrant respectively.
By using the four NNs we form an approximate influ-
ence region, mnop (Figure 2(a)). Then, we draw four
circles. Each one passes through l and one of the four
vertices of the approximate influence region, e.g. m,
with diameter being the distance between l and that
vertex, e.g. d(l, m) (Figure 2(b)). Next, we draw the
MBR of the four circles. Finally, each edge of the MBR
is expanded away from l by the same distance from l to
the edge. And we get the rectangle that is guaranteed
to contain all sites needed for computing the Voronoi
cell of l. A range query is performed using this rect-
angle on the R-tree of sites. The Voronoi cell of l can
be computed by only examining these identified sites.

An object is located in the Voronoi cell of l if and
only if it is closer to l than to any site. So to find
the RNNs of l, a range query using the Voronoi cell is
performed on the R-tree of objects.

There is some other RNN work as well. A com-
putational geometry work [MVZ02] on finding RNNs
also uses the idea of storing circles. The method fo-
cuses on asymptotic behavior rather than experimen-
tal evaluation. Singh et al. [SFT03] proposed an ap-
proximate RNN solution. The idea is to first find k (for
some system parameter k) NNs of the query location
l, then eliminate false positives. The problem is that
the method may have false negatives. The NN query
and RNN query for moving objects was discussed in
[BJKv02]. Finding RNNs and RNN aggregations over
a data stream was proposed by [KMS02]. The RNN
aggregation queries they considered are different from
our problem. Finding RNNs in a graph was discussed
in [YPMT05].

3 The New minExistDNN Metric

3.1 Motivation

To find the top-t most influential sites in a query region
Q, a reasonable algorithm should start with pushing
index entries from the root node of S, that intersect

with Q, into a processing queue. Then the entries
should be selectively expanded to reveal the t most
influential sites. Let’s name such a queue as queueSIN .
An optimal algorithm should focus on expanding the
entries that contain these t sites.

To differentiate the entries in queueSIN , we pro-
pose to use a priority queue, where the sorting key is
some upper bound of the influence for every location
in the entry and it can be computed in the following
way. Consider an entry Oi in the root node of O, and
an entry Sj in queueSIN . If some object in Oi may
consider some site in Sj as NN, we say Oi affects Sj ,
and the total weight of objects in Oi is added to the
upper bound of Sj . (This total weight is maintained
along with the index entry which stores Oi.) Here in
the affect relationship, one or both entries can be leaf
entries (i.e. sites or objects). For example, an object
o affects Sj , if it is possible that o’s NN is in Sj .

Clearly, we should be able to identify the set of
MBRs from O that affect each MBR of S. One in-
tuition is that if O1 is close to S1 but is far from S2,
it is likely that O1 does not affect S2. To be more pre-
cise, O1 does not affect S2 if for every location l in O1,
it is guaranteed that the distance from l to its nearest
site in S1 is smaller than the minimum distance from
l to S2.

Sl

minMaxDist maxDist

minDist
2

SO 2

minMaxDist

maxDist
minDist

1

(a) (b)

Figure 3: The three metrics defined in [RKV95], be-
tween a point and a rectangle. The metrics can also
be defined similarly between two rectangles.

This reminds us the three metrics defined in
[RKV95], as shown in Figure 3(a). Given a point l
and a rectangle S2, minDist(l, S2) and maxDist(l, S2)
are the lower bound and upper bound, respectively, of
the distance between l and any possible site in S2.
The third metric, minMaxDist(l, S2), is the smallest
distance which guarantees that, within this distance
from l, there exists a site in S2. The computation of
minMaxDist is as follows. For each edge of S2, com-
pute the maximum distance between l and any point
on the edge. This must be between l and one of the
two end point of the edge. Due to the property of the
(R-tree) MBR, each edge of S2 must contain at least
one site, and the maximum distance from l to each
edge is an upper bound of the minMaxDist(l, S2).
Therefore, out of the four distances, pick the mini-
mum one. Figure 3(b) shows that the three metrics
can be straightforwardly extended to the case of two
rectangles.

949

S1 S2

minDist (o, S) = 82
o

minMaxDist (o, S) = 51

Figure 4: Illustrating the case when an object o does
not affect S2, due to the existence of S1.

Theorem 1 An object o does not affect S2, if there
exists S1 such that

minMaxDist(o, S1) < minDist(o, S2)

Due to the space limitations, the proofs of theorems
and lemmas in this paper are omitted.

What we really need is an condition which deter-
mines that an MBR O1 does not affect S2, given S1.
What if we simply replace o in Theorem 1 with O1?
Well, it does not work. As shown in Figure 5, al-
though minMaxDist(O1, S1) < minDist(O1, S2), it
is still possible that on object o in O1 considers some
site in S2 as its nearest site.

S1
S2

O1

s1

1 11 2

s 2o

minMaxDist(O , S)=5, minDist(O , S)=6

1

d (o, s) = 9, d(o , s) = 62

Figure 5: Replacing o with an MBR O1 in Theorem 1
does not work.

Instead of using minMaxDist(O1, S1), the correct
condition should use some distance which (i) guaran-
tees that, within this distance, every location in O1 can
reach a site in S1; and (ii) is the smallest one among all
distances satisfying (i). We introduce a metric called
minExistDNN which satisfy these two conditions.

3.2 The Metric minExistDNN

Definition 2 Given two MBRs O1 and S1, the mini-
mum upper bound of the distance from an object in O1

to its nearest site in S1 is defined as:

minExistDNNS1
(O1) =

max{minMaxDist(l, S1) | ∀location l ∈ O1}

Note that unlike the existing three metrics
(minMaxDist, etc.), in minExistDNN we can-
not swap the input parameters. In other words,
minExistDNNS1

(O1) 6= minExistDNNO1
(S1).

This is why we put S1 as subscript.
Let’s see why this metric satisfies the two require-

ment given at the end of the previous sub-section. (i)

For every location l ∈ O1, minMaxDist(l, S1) is an
upper bound of the distance between l and its near-
est site in S1. So within minExistDNNS1

(O1), which
is the maximum of all such minMaxDist, every loca-
tion in O1 will meet a site in S1. (ii) Consider any
distance d < minExistDNNS1

(O1). According to
Definition 2, there must exist a location lM ∈ O1 s.t.
d < minMaxDist(lM , S1). So d does not satisfy (i).

Theorem 2 An MBR O1 does not affect S2, if there
exists S1 such that

minExistDNNS1
(O1) < minDist(O1, S2)

Figure 6 illustrates minExistDNNS1
(O1) in two

scenarios. In Figure 6(a), the distance is between a
corner point of O1 and a corner point of S1. The cor-
rectness is easy to see. However, the correctness of
Figure 6(b) is not intuitive. The next section presents
an algorithm that calculates this metric.

O

S

1

1

O

S

1

1

(a) (b)

Figure 6: Illustration of minExistDNNS1
(O1).

3.3 Calculating minExistDNN

Let’s associate every location l in space with a corner
point of S1 – the corner whose distance to l is equal
to minMaxDist(l, S1). If all locations in O1 were as-
sociated with the same corner of S1, the computation
of minExistDNNS1

(O1) would become an easy task.
That is, we simply compute the maximum distance
between that corner of S1 with O1. However, different
locations in O1 may be associated with different corner
points of S1.

In Step 1 below, we present a space partition-
ing scheme such that every location in the same
partition is associated with the same corner of S1.
This immediately suggests an algorithm for calculat-
ing minExistDNNS1

(O1). That is, we divide O1 into
multiple sub-regions, one in each partition. Then, for
each sub-region, we calculate the maximum distance
from the associated corner of S1 to the sub-region.

In Step 2, based on the space partitioning, we
develop a more efficient algorithm which computes
minMaxDist(l, S1) for up to eight locations in O1.
The maximum of these eight distances is the required
minExistDNN .

3.3.1 Step 1: space partitioning

Lemma 1 Given a location l and an MBR S1,
minMaxDist(l, S1) is the distance between l and the
second closest corner point of S1.

950

Suppose every location in space is associated with
the second closest corner of S1. Figure 7 shows a par-
titioning of space, such that all locations in the same
partition are associated with the same corner. (Our
partitions are different from the Voronoi diagram of
order 2 of the four corner points, whose partitions are
associated with two closest corner point.)

P : b
1

P : c
2

P : a
3 P : d

4

P : c
5

P : b
6

P : d
7

P : a
8

90

S1
a

b

c

d

Figure 7: A partitioning of space such that in every
partition, all locations take the same corner of the rect-
angle as the second closest corner.

The space partitioning is created by four lines in-
tersecting at the same location: the center of S1. The
four lines are the perpendicular bisectors (in short, bi-
sectors) of S1’s edges and diagonals. Notice that every
two edges, e.g. top and bottom, have the same bisec-
tor. The associated corner for locations in each parti-
tion is shown in Figure 7. For instance, P1 : b means
all locations in partition P1 are associated with b.

Let’s see why this partitioning is correct. Consider
a quadrant of space: the union of P1 and P2 (Figure 7).
Any location in this quadrant considers the upper-left
corner a as the closest corner. We know the second
closest corner is either b or c, but not d. So if we draw
a bisector of diagonal bc, any location on the b side of
the bisector (P1) considers b to be closer than c, and
thus takes b as the second closest corner. Similarly,
any location in P2 considers c as the second closest
corner. Same with the other partitions.

3.3.2 Step 2: the algorithm

We argue that the location in O1, whose distance to its
associated corner of S1 is the minExistDNNS1

(O1),
is one of, at most, eight candidate locations. The can-
didates are the four corners of O1 plus the (up to four)
intersection points between the border of O1 and the
diagonals’ bisectors. Thus the algorithm to compute
minExistDNNS1

(O1) is to calculate minMaxDist
for each candidate location, and return the maximum.

We denote the intersections between O1 and the
two diagonal bisectors of S1 as the intersection points
of O1, and the number of the intersection points of O1

is at most 4. Also, an intersection segment of O1 is
a line segment on one of the diagonal bisectors inside
rectangle O1. To prove our claim above, we introduce
two lemmas.

Lemma 2 For any point p ∈ O1, there exists a
point, p′, either on some border or on some intersec-
tion segment of O1, such that minMaxDist(p′, S1) ≥
minMaxDist(p, S1).

Lemma 3 For any point p′ on the borders or the
intersection segments of rectangle O1, there ex-
ists a corner or intersection point p′′, such that
minMaxDist(p′′, S1) ≥ minMaxDist(p′, S1).

1

b

B

p p
A

p"
P : b

’

Figure 8: An example of Lemma 2 and 3, illustrat-
ing minMaxDist(p′, S1) ≥ minMaxDist(p, S1) and
minMaxDist(p′′, S1) ≥ minMaxDist(p′, S1).

An example of Lemma 2 and 3 is illustrated
in Figure 8. For clarity, we only keep the in-
formation of partition 1. Point p is an arbitrary
point within O1 in partition 1. An illustration
of Lemma 2 is, by moving p along the x-axis to-
wards p′, minMaxDist(p, S1) increases. Therefore,
minMaxDist(p′, S1) > minMaxDist(p, S1). An il-
lustration of Lemma 3 is, by moving, now, p′ on the
intersection segment towards p′′, minMaxDist(p′, S1)
increases,too. Therefore, minMaxDist(p′′, S1) >
minMaxDist(p′, S1).

As a corollary of Lemma 2 and 3, we have:

Theorem 3 For any point p ∈ O1, there exist
a corner point or intersection point p′′, such that
minMaxDist(p′′, S1) ≥ minMaxDist(p, S1).

4 Finding Top-t Most Influential Sites

This section designs an algorithm that computes top-t
most influential sites, by examining an R-tree S of sites
and an R-tree O of objects. For each site s in the query
result, any correct algorithm needs to visit the R-tree
node that stores s, as well as all of its ancestor nodes.
We maintain a priority queue of entries (index entries
or sites) from S, that are inside the query region Q.
The queue is called queueSIN . For clarity, we assume
each MBR of any index entry in S is either inside or
outside Q. In Section 4.4 we address the case when an
MBR partially intersects Q.

For each entry Sj in queueSIN , we store two values
minInfluence and maxInfluence. If Sj is a single site,
these are a lower bound and an upper bound of its in-
fluence. If Sj is an index entry, these are a lower bound

951

and an upper bound of the influence of the most influ-
ential site in the sub-tree of Sj . The algorithm stops
when there are t sites in queueSIN , each of which has a
minInfluence no less than the largest maxInfluence of
all remaining entries. The algorithm aims at quickly
making the estimates accurate, while focusing on ex-
panding index entries which are highly likely to contain
some of top-t most influential sites. To expand an in-
dex entry e, it is replaced by the entries in the R-tree
node referenced by e. Clearly, we cannot ignore the en-
tries from S whose MBRs are outside Q, or the entries
from O. We maintain two queues, queueSOUT (reads
Q-ESS-OUT) and queueO, for these entries. Similar
to the case of queueSIN , at the beginning of the al-
gorithm these two queues contain some entries in the
root nodes of S and O, which may be expanded as the
algorithm runs on.

There are some challenging issues. One issue is,
how to set and update minInfluence and maxInflu-
ence of entries in queueSIN? A crucial sub-issue is
how do we determine whether some Oi in queueO af-
fects some Sj in queueSIN or queueSOUT . (Recall
that Oi affects Sj , if and only if there does not ex-
ist another entry Sk in queueSIN or queueSOUT , such
that minExistDNNSk

(Oi) < minDist(Oi, Sj).) An-
other issue is, how to choose an index entry to expand?
As mentioned in the introduction, a good expanding
strategy should consider the actual data and should
satisfy certain goals that increase the efficiency of the
algorithm.

Section 4.1 formally defines the three queues and
discusses how to set minInfluence and maxInfluence.
Section 4.2 presents our algorithm, which embodies
the strategy of choosing index entries to expand. Sec-
tion 4.3 explores in more detail one step in the algo-
rithm, which is to determine whether it is highly likely
that an entry in queueO can be pruned (because it does
not affect any entry in queueSIN). With the intro-
duction of yet another new metric called minMinEx-
istDNN, we can mathematically measure the probabil-
ity that some Oi in queueO can be pruned by some Sj

in queueSOUT . Finally, Section 4.4 extends the solu-
tion to the general case when the MBR of an index
entry in S may partially intersect Q.

4.1 Data Structures

To clearly define what we store in each of the three
queues, let’s introduce two concepts. An index entry
e, from either S or O, is said to be an expanded entry
(by our algorithm), if the content of the tree node refer-
enced by e has been examined. That is, if the node has
been retrieved from disk. All entries in an examined
tree node are said to be visited. The three queues we
use can only contain visited but not expanded entries.
A non-visited entry is in some node not yet retrieved
from disk. An expanded entry has been removed from
the queues. We have:

• queueSIN = {Sj |Sj is a visited but not expanded
entry in S, whose MBR is inside Q and whose
maxInfluence>0}.

• queueO = {Oi|Oi is a visited but not ex-
panded entry in O, which affects some entry in
queueSIN}.

• queueSOUT = {Sj |Sj is a visited but not ex-
panded entry in S, whose MBR is outside Q and
which is affected by some entry in queueO}.

Here the maxInfluence for an entry Sj in
queueSIN is the total weight of visited but not ex-
panded entries in O that affect Sj . If Sj has maxIn-
fluence=0, all sites in Sj have influence=0, and there
is no need to keep Sj in queueSIN .

The only reason we keep queueO and queueSOUT

is to compute the minInfluence and maxInfluence of
entries in queueSIN . So queueO only consists of entries
from O that affect at least one entry in queueSIN , and
queueSOUT only consists of entries from S (but outside
Q) that are affected by at least one entry in queueO.

Here the minInfluence for an entry Sj in
queueSIN is a lower bound of the maximum influence
for a site in Sj . It is computed in the following way.
Consider some Oi in queueO which only affects Sj ,
i.e. Oi does not affect any other entry in queueSIN or
queueSOUT . Every object in Oi considers some site in
Sj as the nearest site. There must exist a site s1 in Sj

whose influence is at least |Oi|/|Sj |. Here |Oi| is the to-
tal weight of objects in the sub-tree of Oi, while |Sj | is
the number of sites in the sub-tree of Sj . If there is an-
other O′

i which only affects Sj , there must exist a site
s′
1

in Sj whose influence is at least (|Oi| + |O′
i|)/|Sj |.

In general, the minInfluence of an index entry Sj in
queueSIN is the

∑
(|Oi|)/|Sj | for every Oi in queueO

that only affects Sj . This is also true in case Sj is a
site (|Sj | = 1).

To maintain the content of the three queues, we
need to know which Oi affects which Sj . If an algo-
rithm naively considers every MBR in O to affect all
MBRs in S, it either fails to identify the most influen-
tial sites, or is very inefficient. We should be able to
find the minimum number of entries in queueSIN and
queueSOUT affected by each entry in queueO. We have
addressed this issue in Section 3, where we pointed out
that O1 does not affect S2, if there exists S1 such that
minExistDNNS1

(O1) > minDist(O1, S2).
An implementation detail is that in queueO each Oi

maintains a list of pointers, one to each affected Sj in
queueSIN and queueSOUT . Likewise, each Sj keeps a
list of pointers, one to each Oi that affects it.

4.2 The Algorithm

Our algorithm which computes top-t most influential
sites is shown in Figure 9.

952

A crucial operation throughout the algorithm is ex-
pand. To expand an index entry from one of the three
queues, we remove it as well as the links to it, while
trying to insert entries in the referenced node into the
same queue. For instance, suppose we want to expand
an index entry Sj in queueSIN (expanding an index en-
try in queueO or queueSOUT is similar). There must
have some entries in queueO which affect Sj . In our
data structure, Sj keeps a list of pointers, referenc-
ing its affecting entries in queueO. And each Oi in
queueO also points to Sj . These links should be re-
moved. When examining the node referenced by Sj ,
we try to insert each child entry into the same queue
as Sj . Here to identify the entries in queueO that may
affect a child entry, we only need to examine an Oi if
it used to affect Sj . More formally, we have:

Theorem 4 If Oi does not affect Sj , none of its chil-
dren will affect Sj . If Sj is not affected by Oi, none of
its children will be affected by Oi.

Due to entry expansions, we may need to re-
evaluate the associations of some queue entries. Two
simple pruning cases are (1) if a queue entry Sj is not
affected by any Oi’s, remove Sj from the queue; (2) if
Oi does not affect any entry in the queueSIN , remove
Oi from the queue. There is another more subtle case
as follows. Suppose Sj is expanded, and let Sk be an
entry in the referenced node. Sk is checked for asso-
ciations against Oi that affects Sj . If Sk is affected
by Oi, we need also to examine if any entry origi-
nally affected by Oi could be pruned from Oi using
minExistDNNsj

(Oi).
Step 1 of the algorithm examines the root nodes

of O and S and builds up the three queues. This
step works in the following way. First, the entries in
the root node of S, whose MBRs are inside Q, are
pushed into queueSIN . Then, we select the entries
from the root node of O that affect at least one entry
in queueSIN , and push them into queueO. Third, we
push into queueSOUT the root entries of S which are
affected by some entries in queueO. Finally, the en-
tries in queueSIN not affected by any entry in queueO

are removed.
Step 2 is a stopping condition. The algorithm stops

when t most influential sites are identified. Note that
our algorithm can return a site without computing its
actual influence. As long as the minInfluence of a site
is big enough, we can report it. Of course, if we want to
find the actual influence, we can keep expanding nodes
until its minInfluence and maxInfluence become equal.

Step 3 makes sure that queueSIN has at least cer-
tain number of entries. The intuition is that if there
are only a few sites in Q, the algorithm should focus
on expanding most or all of them before expanding
entries in queueO or queueSOUT .

Step 4 picks the set (called topβSIN) of β entries
from queueSIN with maxInfluence. The rationale is

Algorithm TopInfluentialSites(O, S, t, Q).
Input: An R-tree O of objects, an R-tree S of sites, an
integer t, and a spatial region Q

Action: Return the top-t most influential sites in Q.

1. Push the root entries of O and S into queueSIN ,
queueO and queueSOUT .

2. If the t entries from queueSIN with maximum max-
Influence are all sites, with minInfluence no less than
the maxInfluence of all remaining entries in queueSIN ,
return these t sites as query result.

3. While |queueSIN | < β (for a given constant β ≥ 1),
expand all index entries in queueSIN .

4. Pick and expand β most influential entries in
queueSIN . Let topβSIN be the β entries in queueSIN

with maximum influence.

5. Let CO be the set of every Oi in queueO that affects
at least one entry in topβSIN .

6. for every Oi in CO

6.1 Compute the largest probability that Oi can be
pruned by expanding some Sj in queueSOUT .

6.2 If this probability is above γ (for a given con-
stant γ ∈ [0, 1]), expand the corresponding Sj .

7. Let impOi be the most important Oi ∈ CO.

8. While there exists an Sj in queueSIN or queueSOUT

whose MBR contains the MBR of impOi, expand that
Sj .

9. If there exists an Sj in queueSIN or queueSOUT more
important than impOi, expand that Sj .

10. If impOi is an index entry which affects multiple in-
queue entries from S, expand Oi.

11. goto Step 2.

Figure 9: Computation of top-t most influential sites.

that we want to focus on expanding the index en-
tries whose corresponding sub-trees may contain some
of the top-t most influential sites. The index entries
among them are expanded once. Then we need to
give the related entries from the other two queues a
chance. So Step 5 picks the set (called CO) of entries
from queueO that affect some entries in topβSIN .

At Step 6, we handle the case when some entry in
CO has high probability to be pruned by expanding
some entry Sj in queueSOUT . In this case, we should
expand Sj to prune that entry in CO . This will result
in more accurate influence estimation for entries in the
picked topβSIN . This topic, including a mathemati-
cal definition of the probability, is discussed in detail
below in Section 4.3.

At this step, we want to work on making the min-
Influence and maxInfluence estimations of entries in
topβSIN as accurate as possible. That is to say, we
need to focus on an entry in CO which, if expanded,

953

will maximally increase the accuracy of the most num-
ber of estimations of entries in topβSIN .

Step 7 picks such an entry Oi, which is the most
important. Here the importance of Oi is defined as:

|Oi| ∗ (# affected entries in topβSIN) ∗ area(Oi)

Intuitively,

• If the total weight of objects in Oi is large, Oi is
important. To know more precisely how this large
weight is actually distributed is beneficial.

• If Oi affects many entries in topβSIN , Oi is im-
portant, for its total weight contributes to max-
Influence of all those entries.

• If Oi has a large area, it is important. Suppose
some O′

i has a tiny area. Even though it may have
a large total weight of objects and it may affect
many entries in topβSIN , expanding it may not
help for every child entry may affect all the entries
that O′

i currently affects.

Step 8 shows the case when there exists an entry Sj

that spatially contains the most important Oi. In this
case, however deep we expand Oi, all of its descendant
entries will affect Sj . So we make sure such an Sj does
not exist.

Now we want to give a chance to entries in
queueSOUT or queueSIN , which are affected by some
entry in CO. Step 9 says we should expand such an
Sj if it is more important than Oi. Intuitively, if Sj is
affected by many entries in CO, and if Sj has a large
area, it is more important. Our policy is, Sj is more
important than Oi, if

area(Sj) ∗ (# entries in CO that affect Sj) >

α ∗ area(Oi) ∗ (# entries in topβSIN affected by Oi)

Here we use some chosen constant α to control how
likely to expand some entry Sj , which is affected by
some entries in CO . A larger α means Sj is less likely
to be expanded.

4.3 The Probability of Pruning An Entry
in queueO by Expanding An Entry in
queueSOUT

In Step 6 of Algorithm TopInfluentialSites, we expand
an entry Sj such that by expanding it, the proba-
bility of pruning the previously picked Oi is above a
threshold γ. Here we consider the probability that
there exists a child entry of Sj , say child, that sat-
isfies: minExistDNNchild(Oi) < minDist(Oi, Sk),
where Sk is the entry in queueSIN with the minimum
minDist from Oi.

In Figure 10(a), even though Sj cannot be used to
prune Oi, it is very likely that some child entry in
Sj has a much smaller minExistDNN with Oi, and

S

kS iO

iO

jS

iOSj

Q

) = 6minExistDNN (

minDist (,

k

) = 5

S

kS

iO

jS

iOSj

iO

Q

minDist (,) = 5

minExistDNN (

k

) = 6

(a) (b)

Figure 10: The probability of pruning Oi by expanding
Sj is bigger in (a) than (b).

therefore the probability is high. On the other hand,
Figure 10(b) shows a case with a small probability.
Intuitively, in the latter case Sj is small, and thus
expanding it to its child entries may not reduce the
minExistDNN very much.

Our goal in this section is to mathematically define
this probability. To do so, we first introduce a new
metric called minMinExistDNN .

Definition 3 Given MBRs Oi and Sj , the smallest
possible minExistDNN of Oi with regards to any MBR
contained in Sj , is minMinExistDNNSj

(Oi) =

min
rect⊆Sj

{minExistDNNrect(Oi)}

We already know that minDist(Oi, Sk) ≤
minExistDNNSj

(Oi), for otherwise Oi should have
already been pruned by Sj . Definition 3 implies that
if minDist(Oi, Sk) ≤ minMinExistDNNSj

(Oi),
the probability of having Oi pruned by expanding
Sj is 0. So let’s assume that minDist(Oi, Sk)
is between minMinExistDNNSj

(Oi) and
minExistDNNSj

(Oi). The probability of hav-
ing Oi pruned by expanding Sj is formally defined
as

minDist(Oi, Sk) − minMinExistDNNSj
(Oi)

minExistDNNSj
(Oi) − minMinExistDNNSj

(Oi)

To see that this is a reasonable probability, we
point out that if minDist(Oi, Sk) changes from
minMinExistDNNSj

(Oi) to minExistDNNSj
(Oi),

the probability increases from 0 to 1, which matches
our intuition.

The algorithm to compute
minMinExistDNNSj

(Oi) is: pick the location l
in Sj which has minimum distance to the center of
Oi, and return the maximum distance from l to a
corner of Oi. Due to space limitations the proof is
omitted. An illustration of this new metric appears in
Figure 11.

954

minMinExistDNN (OSj

jS

iO

)i

Figure 11: Illustration of minMinExistDNN .

4.4 The General Case when An MBR in S
May Intersect with Q

So far we have assumed that no index entry’s MBR, in
the R-tree S of sites, intersects with the query region
Q. This unrealistic assumption is only used to simplify
the presentation of our algorithm. We can easily ex-
tend our algorithm to handle the general case without
this assumption. The changes that need to be made
are as follows.

First, queueSIN also contains index entries from S
whose MBRs intersect with Q. Second, to compute the
minDist between some Oi to an entry Sj in queueSIN ,
use the intersection part between Sj ’s MBR and Q.
Finally, suppose an edge of some Sj , whose MBR in-
tersects with Q, is completely outside Q. This edge
should be stored as an entry in queueSOUT so as to
increase the chance of pruning entries in queueO.

5 Performance

5.1 Experimental Setup

We compare our algorithm TopInfluentialSites with
the Voronoi based method extended from [SRAE01].
In particular, we implement the optimized version of
the Voronoi based method, such that if a Voronoi cell
fully contains a subtree, we do not expand that sub-
tree. Both algorithms store sites and objects in R-
trees. The fan-out of each node in an R-tree is 40% of
the capacity. The node capacity varies from 1KB to
4KB in different experiments. We also utilize an LRU
buffer with capacity varying from 64 disk pages to 512
disk pages, for each R-tree. All the data structures
and algorithms are coded using Java, and ran on a PC
with 2.66-GHz Pentium 4 processor.

In the experiments, We use real data of the Digi-
tal Chart of the World taken from the R-tree-Portal
[The03]. One dataset consists of 24,493 populated
places in North America, and another dataset contains
9,203 cultural landmarks in North America. These two
data sets form two combinations of sites and objects.
One takes the cultural landmarks (9,203 points) as the
sites data and the populated places (24,493 points)
as the objects data. The ratio between # sites and
objects is 1 : 2.5. Another combination is the re-
verse case, where the ratio is 2.5 : 1. Our experiments
are performed on both combinations of datasets. The
weight of an object is 1, i.e., the influence of a site is
the number of its RNNs.

5.2 Selection of Parameters

In our experiments, we choose the value of three pa-
rameters α, β and γ experimentally. Due to space
limitations, the experiment charts are omitted, and
the results are reported as follows.

We choose t = 4 and β = t. In fact, our preliminary
results show that with the increase of t, our algorithm
is not affected much.

Recall that γ determines whether an entry in
queueO should be expanded (Section 4.3). Intuitively,
if γ is small, we may expand many site MBRs, while if
γ is large, we may not expand any of the site MBRs.
Our experimental results show that when γ is between
0.5 to 0.7, the performances differ a little. In the fol-
lowing experiments, we choose γ = 0.5.

Finally, α determines whether Sj is more important
than Oi in step 9 of the algorithm TopInfluentialSites
(Figure 9). Our preliminary results show that in order
to make Sj and Oi comparable, the value of α depends
on the ratio between # sites and # objects. In our
algorithm, we choose α to be the ratio.

5.3 Experimental Results

In our experiments, we compare our method and
the Voronoi based method extensively by varying the
query size, the page size and the buffer size. In this
section, We denote the algorithm TopInfluentialSites
as TIS and the Voronoi based method as Voronoi.
Except otherwise stated, the page size of an R-tree is
1KB and each R-tree uses an LRU buffer with capac-
ity of 128 pages. Our results are the average of ten
runs. Notice that all figures comparing Voronoi and
TIS used logarithmic scales.

We first compare the number of disk page accesses
by varying the query size, when #sites : #objects =
1 : 2.5. Figure 12(a) shows the comparison of the total
disk I/Os of both site R-tree and object R-tree, and in
Figure 12(b), we compare them separately. Notations
of Voronoi (obj), Voronoi (sites), TIS (obj) and
TIS (site) represent the disk I/Os on the object R-
tree and site R-tree using Voronoi or TIS, respectively.

TIS greatly outperforms Voronoi on all query sizes.
As shown in Figure 12(a), when the query size is small
(0.001% and 0.01%), Voronoi is barely comparable to
TIS. With the increase of the query size, the disk I/Os
of Voronoi increases almost exponentially. This is be-
cause, for every site in the query range, Voronoi based
method performs nearest neighbor and range queries
on the site R-tree to compute its Voronoi cell, and
then performs range query (using the Voronoi cell) on
the object R-tree. When the query size increases, the
number of sites inside the query increases dramatically,
therefore, the number of range queries performed on
both R-trees increases as well. Figure 12(b) reveals
how the total disk I/Os are divided among the site
R-tree and the object R-tree. In both methods, the

955

(a)

(b)

Figure 12: Comparing the number of disk I/Os when
#sites : #objects = 1 : 2.5.

number of disk I/Os on the site R-tree is comparable
to that on the object R-tree.

We also perform range queries by varying the query
size, when #sites : #data = 2.5 : 1, as shown in
Figure 13. Similar to the previous experiment charts,
Figure 13(a) shows the comparison of total disk I/Os
and Figure 13(b) shows the I/Os on the site R-tree
and the object R-tree separately.

Again TIS outperforms Voronoi in all query sizes.
In this case, the number of sites is much larger than
the number of objects, and queries with small sizes
contain many sites. Therefore, compared to the case
of site-object ratio being 1 : 2.5, the number of disk
I/Os of small queries are much larger. Especially, as
shown in Figure 13(b), the disk I/Os on the site R-tree
dominates the total disk I/Os in the Voronoi method.

In both cases of Figure 12 and Figure 13, our
method (TIS) shows stability to the data sets and the
query size, because (1) we examine both trees in only
one pass, (2) we visit a node from either trees only if
necessary.

In the remaining experiments, we use #sites :
#objects = 1 : 2.5.

In Figure 14, the page size varies from 1KB to 4KB,
and the buffer size (128 pages) is unchanged. The size
of range query is 1% of the whole space. When the
page size is 1KB, the number of entries in each node is
around 45. With the increase of page size, the number
of tree nodes decreases. Therefore, the number of disk
I/Os in both methods drops dramatically. Still, TIS
is better than Voronoi by an order of magnitude in all
cases.

(a)

(b)

Figure 13: Comparing the number of disk I/Os when
#sites : #objects = 2.5 : 1.

Figure 14: Varying page size.

In Figure 15, the performances are compared un-
der various sizes of the LRU buffer. The buffer size is
changed from 64 pages to 512 pages. With the page
size being 1KB, the total number of nodes of the ob-
ject R-tree and that of the site R-tree are 1010 and
380, respectively. It is intuitive that when the size of
the LRU buffer increases, the number of disk I/Os de-
creases. The number of disk I/Os drop dramatically
when the buffer size increases to 512 pages, since most
pages could be accommodated in the buffer. Again,
TIS outperforms Voronoi in all cases, while the differ-
ence narrows with the increase of the buffer size.

Finally, with regard to the algorithm TopInfluen-
tialSites, we also compare our strategy of expanding
the entries in the queues with the naive round robin
strategy. In Figure 16, we still denote our strategy as
TIS and the round robin strategy as TIS RR.

In Figure 16, we perform queries with different sizes
using both strategy, and our carefully designed strat-
egy outperforms the naive one in all cases. With the

956

Figure 15: Varying buffer size.

Figure 16: Comparison with the round-robin expan-
sion strategy.

increase of the query size, the number of entries in
three queues increases, and choices of picking an entry
to expand become more important as we do not want
to expand all entries. Therefore, the difference of two
strategies increases.

6 Conclusions

This paper addressed the new problem of finding top-
t most influential spatial sites. An existing work on
finding RNNs [SRAE01] can be extended to solve this
problem. However, the approach is inefficient as it
needs to browse both the site R-tree and the ob-
ject R-tree many times. We proposed an algorithm
called TopInfluentialSites, which solved the problem
by browsing both R-trees once. The algorithm pos-
sesses pruning ability based on a novel metric called
minExistDNN. Experimental results on real datasets
have revealed more than an order of magnitude im-
provement on the query performance.

References

[BJKv02] R. Benetis, C. S. Jensen, G. Karčiauskas, and
S. Šaltenis. Nearest Neighbor and Reverse
Nearest Neighbor Queries for Moving Objects.
In Proc. of Int. Database Engineering & Ap-
plications Symposium (IDEAS), pages 44–53,
2002.

[BKOS97] M. de Berg, M. van Kreveld, M. Overmars,
and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Sprinter Verlag,
1997.

[FSAE01] H. Ferhatosmanoglu, I. Stanoia, D. Agrawal,
and A El Abbadi. Constrained Nearest Neigh-
bor Queries. In Proc. of Symposium on Spatial
and Temporal Databases (SSTD), pages 257–
278, 2001.

[KM00] F. Korn and S. Muthukrishnan. Influence Sets
Based on Reverse Nearest Neighbor Queries.
In ACM SIGMOD, pages 201–212, 2000.

[KMS02] F. Korn, S. Muthukrishnan, and D. Srivas-
tava. Reverse Nearest Neighbor Aggregates
Over Data Streams. In VLDB, pages 814–825,
2002.

[LNY03] K.-I. Lin, M. Nolen, and C. Yang. Apply-
ing Bulk Insertion Techniques for Dynamic Re-
verse Nearest Neighbor Problems. In Proc.
of Int. Database Engineering & Applications
Symposium (IDEAS), pages 290–297, 2003.

[MVZ02] A. Maheshwari, J. Vahrenhold, and N. Zeh. On
Reverse Nearest Neighbor Queries. In Proc. of
Canadian Conf. on Computational Geometry
(CCCG), pages 128–132, 2002.

[PKZT01] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao.
Efficient OLAP Operations in Spatial Data
Warehouses. In Proc. of Symposium on Spatial
and Temporal Databases (SSTD), pages 443–
459, 2001.

[RKV95] N. Roussopoulos, S. Kelley, and F. Vincent.
Nearest Neighbor Queries. In ACM SIGMOD,
pages 71–79, 1995.

[SAE00] I. Stanoi, D. Agrawal, and A. El Abbadi. Re-
verse Nearest Neighbor Queries for Dynamic
Databases. In ACM/SIGMOD Int. Work-
shop on Research Issues on Data Mining and
Knowledge Discovery (DMKD), pages 44–53,
2000.

[SFT03] A. Singh, H. Ferhatosmanoglu, and A. S. To-
sun. High dimensional reverse nearest neigh-
bor queries. In Proc. of Int. Conf. on Infor-
mation and Knowledge Management (CIKM),
pages 91–98, 2003.

[Smi97] M. Smid. Closest Point Problems in Computa-
tional Geometry. In J.-R. Sack and J. Urrutia,
editors, Handbook on Computational Geome-
try. Elsevier Science Publishing, 1997.

[SRAE01] I. Stanoi, M. Riedewald, D. Agrawal, and A. El
Abbadi. Discovery of Influence Sets in Fre-
quently Updated Databases. In VLDB, pages
99–108, 2001.

[The03] Yannis Theodoridis. The R-tree-portal.
http://www.rtreeportal. org, 2003.

[TPL04] Y. Tao, D. Papadias, and X. Lian. Reverse
kNN Search in Arbitrary Dimensionality. In
VLDB, pages 744–755, 2004.

[YL01] C. Yang and K.-I. Lin. An index structure for
efficient reverse nearest neighbor queries. In
ICDE, pages 485–492, 2001.

[YPMT05] M. L. Yiu, D. Papadias, N. Mamoulis, and
Y. Tao. Reverse Nearest Neighbors in Large
Graphs. In ICDE, pages 186–187, 2005.

957

