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Abstract 

This paper addresses the problem of splitting tra-
jectories optimally for the purpose of efficiently 
supporting spatio-temporal range queries using 
index structures (e.g., R-trees) that use minimum 
bounding hyper-rectangles as trajectory ap-
proximations. We derive a formal cost model for 
estimating the number of I/Os required to evalu-
ate a spatio-temporal range query with respect to 
a given query size and an arbitrary split of a tra-
jectory. Based on the proposed model, we intro-
duce a dynamic programming algorithm for split-
ting a set of trajectories that minimizes the num-
ber of expected disk I/Os with respect to an aver-
age query size. In addition, we develop a linear 
time, near optimal solution for this problem to be 
used in a dynamic case where trajectory points 
are continuously updated. Our experimental 
evaluation confirms the effectiveness and effi-
ciency of our proposed splitting policies when 
embedded into an R-tree structure. 

1. Introduction 
Producing and collecting large volumes of spatio-
temporal data has become more practical in recent years, 
leading to increased availability and consequently the 
need for efficient management of this type of data. For 
many applications, it is important to track, store, and 
query data about moving objects, for instance, to deliver 
real time services to clients based on spatial and temporal 
context. Application areas include fleet control, wireless 
communication networks, and mobile computing.  

In this paper, we focus on spatio-temporal queries 

over historical trajectory data. Trajectories are often used 
to represent the path of moving objects. The authors in 
[12] distinguish two main types of spatio-temporal que-
ries: coordinate-based queries and trajectory-based que-
ries. Coordinate-based queries return only the ids or the 
count of objects, for instance, the ids of objects whose 
trajectories intersect a given spatial region during a given 
time interval. Trajectory-based queries require the exact 
information about (partial) trajectories to determine pos-
sibly complex topological relationships (e.g., whether 
they cross or bypass an area) or navigational information 
(e.g., what was their top speed and direction within a cer-
tain area during a given time interval). To process those 
queries, usually, one or more range queries are used to 
extract the relevant trajectory segments from an index. 

In order to process the important class of trajectory-
based queries efficiently, specialized index structures that 
support spatio-temporal range queries are needed. Virtu-
ally all spatio-temporal index structures proposed in the 
literature are derived from spatial index structures such as 
R-trees [9]. These approaches are based on the intuition 
that spatio-temporal data can be viewed as spatial objects 
in an extended spatial domain, where time is treated as an 
additional dimension. Trajectories are then represented by 
minimum bounding rectangles (MBRs).  

One straightforward solution within an R-tree is to ap-
proximate each trajectory by a single MBR. This ap-
proach, however, yields poor approximations, leading to 
low query performance in general (except possibly for 
queries with very large spatial and temporal extent). An-
other straightforward solution is to approximate each line 
segment of a trajectory individually by an MBR. Since 
each line segment can be oriented in only four different 
ways within an MBR [12], the orientation information and 
an MBR can be stored within each leaf node entry. In this 
case, information about each trajectory is completely 
stored within the R-tree and can be reconstructed without 
any additional disk I/Os to a separate data level. This type 
of index is particularly effective for coordinate based que-
ries. However, the size of such an R-tree is, in general, 
much larger than in the first approach, and the disk I/Os at 
the directory level are more significant. A more effective 
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alternative is to split trajectories and approximate the re-
sulting sub-trajectories independently by MBRs, balanc-
ing between the size of the index and the approximation 
quality, which may lead to a better overall performance.  

The problem of splitting trajectories optimally with 
the goal of minimizing the expected number of I/Os has 
not yet been treated rigorously. To our best knowledge, 
the only work that addresses this problem of splitting a set 
of trajectories to improve query performance is presented 
in [7]. The authors assume a predetermined total number 
of allowed splits for a static set of trajectories, and pro-
pose a solution that distributes the splits among the given 
trajectories so that the total volume of the resulting MBRs 
is minimized. We argue, and our experiments confirm, 
that such an optimization goal does not necessarily lead to 
the best query performance. Our main contributions in 
this paper are the following:  
• We derive an analytical cost model for evaluating the 

split of a trajectory into segments (in terms of ex-
pected I/Os), given a spatio-temporal range query. 

• Based on this model, we introduce a dynamic pro-
gramming solution for splitting a given set of trajec-
tories optimally.  

• In order to deal with dynamic cases where trajectories 
are updated incrementally, we derive another cost 
model that estimates an optimal length for segments 
when “incrementally” splitting a trajectory.  

• Combining our cost models, we develop a linear time 
trajectory splitting algorithm, which in practice per-
forms close to the optimal algorithm, and which can 
be used in dynamic cases. 

• Finally, we demonstrate through an extensive ex-
perimental evaluation that our algorithms are both ef-
ficient in practical situations and significantly outper-
form other trajectory splitting approaches. 

The rest of the paper is organized as follows. Section 2 
provides background and motivation for the paper. In 
Section 3, we derive a formal cost model for evaluating 
the quality of trajectory splits and propose an algorithm 
for finding the optimal split with respect to this cost 
model. In Section 4, a linear time algorithm for splitting 
trajectories heuristically is formally derived. A thorough 
experimental performance evaluation and comparison is 
presented in Section 5. Section 6 discusses related work 
and Section 7 concludes the paper. 

2.   Background and Motivation 
The R-tree [6] is typically used to organize multi-
dimensional spatial objects using minimum bounding 
hyper-rectangles (MBRs) as approximations. The leaf 
nodes store the MBRs of data objects and pointers to the 
object and their exact geometry. Internal nodes store a 
sequence of pairs consisting of an MBR and a pointer to a 
child node. These MBRs enclose all entries stored in the 
sub-tree having the referenced child node as its root. To 
answer a range query, starting from the root, the set of 

MBRs intersecting the query range is determined, and 
then the corresponding child nodes are searched recur-
sively until the data pages are reached.  
Trajectories are sequences of positions recorded at dis-
crete points in time. A linear interpolation between two 
successive locations is typically assumed. A trajectory T 
is a sequence ),,(,),,,(),,,( 222111 kkk tyxtyxtyx K , where 
(xi, yi) is a spatial location, and ti is a time instant. A con-
secutive sequence of points of a trajectory T is called a 
segment of T. A segment of length 1, i.e., consisting of 2 
consecutive points, is called an elementary segment. 
In order to index trajectories using an R-tree, each trajec-
tory (or each of its segments if the trajectory is split) is 
approximated by a 3-dimensional MBR. It is easy to see 
that splitting trajectories, offers a great potential for im-
proving the performance of spatio-temporal range queries. 
When splitting a trajectory, the total volume of the ap-
proximating MBRs decreases, and consequently the ap-
proximations may less likely intersect range queries, lead-
ing to an overall reduction of the number of data pages 
that have to be retrieved when processing these queries. 
The actual amount of volume reduction when splitting a 
trajectory depends not only on the number of splits but 
also on the split points, as illustrated in Figure 1. 
 

t  
 
 

x  
Figure 1. MBRs for different trajectory splits. 

Based on this observation, Hadjieleftheriou et al. [7] pro-
posed several algorithms for minimizing the total volume 
of trajectory approximations given a user-specified num-
ber of splits s. First, a dynamic programming algorithm 
called DPSplit is proposed for splitting a single trajectory 
T using l splits so that the total volume of T’s approxima-
tions is minimized. The complexity of this algorithm is 
O(t2l), where t is the number of trajectory points in T. For 
the same problem, they also described an O(t log t) greedy 
heuristic called MergeSplit. To split a set of n trajectories 
{T1,…,Tn}, the authors proposed three algorithms that try 
to allocate to each trajectory Ti a number of splits li (out of 
the total number s of allowed splits), so that the overall 
volume of the trajectory approximations is reduced as 
much as possible. The first algorithm uses a dynamic pro-
gramming approach, with a time complexity of O(ns2). 
This algorithm produces the optimal solution with respect 
to volume reduction when combined with DPSplit. They 
also introduce two heuristics with time complexity 
O(slogn+nlogn) that show satisfactory performance in 
terms of volume reduction. All algorithms assume that the 
best splits of each trajectory into all possible number of 
splits are pre-computed and stored, adding the overhead 
of DPSplit or MergeSplit (with l=t–2) for each trajectory. 
These approaches have several drawbacks:  
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• Minimizing the total volume of trajectory approxima-
tions does not necessarily minimize the number of 
expected I/Os when processing range queries. Intro-
ducing more splits necessarily reduces the total vol-
ume of the trajectory approximations. However, it 
also increases the number of segments that may si-
multaneously intersect a query range, resulting in un-
necessary I/Os. Figure 2(a) shows a scenario where a 
trajectory has an unnecessarily large number of splits 
for the given query size; Figure 2(b) shows that the 
same splits are appropriate for a smaller query size.  

• The methods require as input parameter the total 
number of allowed splits for the whole set of trajecto-
ries. This parameter is difficult to determine even for 
a static set of trajectories. For the important dynamic 
case, where trajectories can continuously grow and 
new trajectories are added over time, a fixed overall 
number of splits is not meaningful.  

• Even knowing a good number of possible splits, the 
proposed algorithms are very time consuming and 
have a large storage overhead.  

 
 
 
 
 
 
 

Figure 2. Trajectory splits and different query sizes. 
We conclude that minimizing the volume of trajectory 
approximations is not enough to minimize the expected 
number of I/Os for spatio-temporal range queries. We 
claim that we also need to take into account query sizes.  
Assuming a query size may seem unusual and limiting at 
first glance, but we will see that it has several advantages: 
(1) our cost model will also show that the two straight-
forward solutions for approximating trajectories in R-trees 
–not splitting, and splitting at each trajectory point– are in 
fact just special cases, corresponding to trees that are op-
timized for an extremely small or extremely large query 
size, respectively; these correspond to “worst case” as-
sumptions about the query size for most real applications. 
(2) Having a query size offers a potential for tuning the 
index which is an option that the other splitting alterna-
tives cannot provide. In practical applications, the as-
sumed query size can be determined as the average query 
size computed from a workload of queries. (3) An average 
query size is also a more natural and robust parameter 
than a user-specified total number of splits as in [7], and 
is not restricted to static datasets.  

3.   Optimal Trajectory Splitting 
In this section, we derive an analytical cost model that 
estimates the expected number of I/Os yielded by a given 
split of a trajectory and a given query size. Based on this 
model, we introduce an algorithm for splitting all trajecto-

ries in a set of trajectories so that the total number of ex-
pected disk I/Os for data pages is minimized.  

3.1   A cost model for splitting trajectories 

Given a trajectory T= tppp ,,, 21 K  with ),,( iiii tyxp = , 
we denote a segment of T that starts at point pu and ends at 
point pv by T[u,v] (using this notation T = T[1,t]).  

A trajectory can be split along its discrete temporal 
dimension into m segments (1 ≤ m ≤ t–1) in  possi-

ble ways (by choosing m–1 split points from T, excluding 
the endpoints p

⎟
⎠
⎞⎜

⎝
⎛

−
−

1
2

m
t

1 and pt). A decomposition of T into m 
segments, T=(T[1,i1], …, T[im-1, t]) for a sequence of split 
positions i1, …, im-1, will be approximated by a sequence 
of MBRs BT=(MBR(T[1,i1]),…,MBR(T[im-1, t])), where 
MBR(T[u,v]) denotes the MBR for segment T[u,v]. We 
denote the set of the MBR approximations of all possible 
decompositions of T into m segments by  

])},[(
]),...,,[(
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For our cost model, we assume that segments and their 
MBRs are stored independently, e.g., under an R-tree. 
That means that the MBRs of a trajectory are generally 
stored on different disk pages. Under this assumption and 
ignoring possible effects of an index directory and cach-
ing, each segment’s MBR that is intersected by a query 
will require an independent disk I/O.  

Denoting the MBR approximation of a specific de-
composition of T into m segments by BT = (B1, …, Bm), 
the number of expected disk I/Os required to answer a 
query q is related not only to the total volume of the 
MBRs in BT but also to the size of q. The size of a query 
determines the probability that q intersects some Bi ∈ BT, 
which in turn determines the expected number of I/Os that 
BT contributes to the total I/O cost of processing q.  

Given a range query q the expected number of I/Os 
due to BT can be derived as follows. If q intersects BT, 
then it intersects exactly k segments simultaneously, 
where 1 ≤ k ≤ m, yielding exactly k I/Os. The mutually 
exclusive events that q intersects exactly k segments of BT 
(and thus resulting in k I/Os) occur with probability 

);( kBqP T∩ . Consequently, the overall expected num-
ber of I/Os, , is the sum of the I/Os due to each 
event, weighted by the probability of the event, i.e.:  

)(qE TB

∑
=

∩⋅=
m

k

T
B kBqPkqE T

1
);()(  (2) 

The following lemma simplifies this expectation. 
Lemma 1.  Let )( iBqP ∩  be the probability that a query 
q intersects the ith segment in BT. Then  

∑
=

∩=
m

i
iB BqPqE T

1
)()(   (3) 

t 

y 
x Spatio-Temporal Query Range 

(a) (b) 
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That means that the expected number of I/Os can be com-
puted by simply summing up the probabilities of the 
query q intersecting the MBRs for the trajectory segments 
independently of each other. (A proof of 

 for the general case of 
MBRs for spatial data can be found in [11]).  

∑∑ ∩=∩⋅ k ik
T BqPkBqPk )();(

In order to determine , we consider in a fi-
nite data space S the area where a query q can fall and at 
the same time intersect B

)( iBqP ∩

i. This area, denoted by Extq(Bi), 
is given by extending Bi by half of the query extension in 
each dimension (see Figure 3). Clearly, the query inter-
sects an MBR Bi if and only if the query center is inside 
the query extended MBR Extq(Bi).  

 
Figure 3. A Query Extended MBR. 

Assuming a uniform distribution of queries, and ignor-
ing boundary effects, the probability of a query q inter-
secting a segment MBR Bi is proportional to the normal-
ized volume of the query extended MBR Extq(Bi): 

)(/))(()( SVolBExtVolBqP iqi =∩  (4) 
By substituting Equation (4) into (3), we obtain: 

∑
=

=
m

i
iqB SVolBExtVolqE T

1
)(/))(()(  (5) 

Minimizing this performance measure for a single tra-
jectory T, means finding among all possible decomposi-
tions of T into all possible numbers of segments m, the 
split with the minimum expected number of I/Os, i.e., 
finding . )}({min

),(,11
qE T

T
B

mTDecompBtm ∈−≤≤

While splitting a trajectory always reduces the total 
volume of the MBRs approximating the segments, this is 
not true for the query extended MBRs. Figure 4 illustrates 
a 2-dimensional case where the sum of the volumes of the 
query extended MBRs is minimized when splitting the 
trajectory only once. Introducing more splits will increase 
the sum of the volumes of the query extended MBRs.  

 
Figure 4. Volumes of approximations using 0, 1, or 2 splits. 

Grey areas represent segments' MBRs, and dashed lines 
show the query extended MBRs. 

So far, we have only considered how to split a single 
trajectory optimally. Optimally splitting a set of trajecto-
ries , theoretically depends also on the directory struc-
ture of the particular spatial index used to store the MBRs. 
This directory structure depends on the page size, the dis-
tribution of the trajectories in space and the split algo-
rithm used for splitting overfilled node when constructing 

the index. Modeling these aspects even for purely spatial 
data seems infeasible, and only empirically justified heu-
ristics for splitting directory nodes in R-trees have been 
proposed so far in the literature. Therefore (and to be in-
dependent of the used index structure), we restrict our 
model to the I/O cost due to the data level of an index 
structure (which dominates the total query cost for most 
R-trees), and ignore the possible effect of an index direc-
tory and the distribution of the trajectories in space. In this 
case, each trajectory T in  contributes independently 
towards the total number of expected I/Os for data pages, 
given a query q, i.e., the expected number of I/Os can be 
computed as the sum of the individual expectations:  

Θ

Θ

∑
Θ∈

=
T

Btotal qEqE T )()(   (6) 

Given Equation 6, we can find the optimal splits for a 
set of trajectories (with respect to q), by minimizing the 
splits for each trajectory individually. 

In general, a trajectory T can be split into m segments 
in different ways, possibly resulting in a different number 
of I/Os when processing q. Let  be the minimum 
expected number of I/Os that can be obtained for T by 
splitting T into m segments: 

)(, qEopt
mT

)}({min)(
),(

, qEqE T
T

B
mTDecompB

opt
mT

∈
=   (7) 

A trajectory T can be split into different numbers of 
segments, ranging from 1 to t–1. Consequently, the mini-
mal number of I/Os over all possible splits, , is given 
by the best possible split of T for m ranging from 1 to t–1: 

)(qEopt
T

)}({min)( ,
11

qEqE opt
mT

tm

opt
T

−≤≤
=  (8) 

As a consequence of this cost model, it is easy to see 
that an R-tree obtained by not splitting any trajectory is 
equivalent to an R-tree that is optimized for a query size 
where even splitting the largest trajectory will result in a 
larger expected number of I/Os than not splitting, which is 
only possible if the query is very large. Similarly, an R-
tree obtained by splitting every trajectory into all its seg-
ments is equivalent to an R-tree that is optimized for a 
query size where every split of a trajectory introduces a 
gain in the expected number of I/Os, which is only possi-
ble if the query is very small. Because of space limita-
tions, we have to omit the analytical details here, but 
clearly, those query sizes are not representative for most 
real applications. However, they are implicitly and un-
changeably integrated into these respective R-trees.  

  Dynamic Programming Algorithm 

To solve Equation 8, we propose a dynamic programming 
solution, which finds the best possible split of T for each 
value of m. Using our notation T[u,v] to denote a segment 
of T from point pu to point pv, we can re-write  as 

. In order to apply dynamic programming to our 
problem, we have to show the following property: 

)(, qE opt
mT

)(],,1[ qE opt
mtT

Extq(Bi) Query
qx

qy

qy/2 

 qx/2 
Bi
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Theorem 1.  Given a trajectory T= tppp ,,, 21 K  and a 
query q, it holds that    

)}()({min)( 1],,[1],,1[1],,1[ qEqEqE tuT
opt

muTtu

opt
mtT += −<<

 (9) 

Proof. (Sketch) Using Equation 5, Equation 7 can be re-
written as  
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Expanding the sum in this equation gives us  
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Let the start position of the last segment of an optimal 
decomposition of T be u, and let  
denote the MBR of this last segment. Then we obtain  

]),[( tuTMBRBopt
m =
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)()( 1],,[1],,1[ qEqE opt
tuT

opt
muT += −    

This equation holds since the last segment (starting at 
u) is fixed by assumption, and the remaining prefix of T, 
T[1,u] must consequently be split into m–1 segments so 
that the sum of volumes of the extended MBRs for the 
first m–1 segments is minimal, in order for the whole sum 
to be minimal. To find the optimal decomposition of T 
without knowing u, we have to consider all possible val-
ues of start positions u in the range 1 < u < t for the last 
segment of T, as stated in the theorem: 

)}()({min)( 1],,[1],,1[1],,1[ qEqEqE opt
tuT

opt
muTtu

opt
mtT += −<<

  

Theorem 1 states that in order to find the optimal solu-
tion for a trajectory T using m segments, it is sufficient to 
consider all optimal sub-solutions using m–1 segments for 
the prefixes T[1,u], 1 < u < t, (which can be found by re-
cursively applying Equation 9), and combine them with 
the solution for the remaining segment T[u,t].  

The runtime of a dynamic programming algorithm that 
accordingly determines the split of one trajectory T into m 
segments (i.e., m–1 splits) is O(t2(m–1)) where t is the 
number of points in T. Consequently, to find the best pos-
sible split for T among all possible values of m, the algo-
rithm has to be applied for the maximum possible value of 
m, i.e., for m=t–1. To split n trajectories optimally, the 
algorithm has to be applied n times. This time complexity 
is the same as the time complexity for the DPSplit pre-
computation step used in Hadjieleftheriou et al.’s algo-
rithms [7]. Our algorithm, however, does not need to exe-
cute an additional, time consuming and storage intensive 
search algorithm on top of this solution to obtain a glob-
ally optimal solution with respect to our cost model.  

3.3   Directory Level Node Splitting 

So far, we have only considered access to data pages. As-
suming the MBRs approximating trajectory segements are 
stored independently on disk pages. For this estimation, it 

is not essential that the MBRs enclose trajectory seg-
ments. Trajectories only determine the possible points that 
can be considered when splitting them, resulting in differ-
ent sets of MBRs.  

For R-tree based indices, directory pages may be split 
during index construction and during updates. Different 
heuristics have been proposed for that purpose, such as 
the quadratic and the linear split [6], or the R*-tree split 
[1]. These algorithms generate a certain subset of all pos-
sible splits of an MBR and minimize evaluation functions, 
which are typically based on volume and overlap of the 
resulting MBRs. The goal of these heuristics is essentially 
to minimize the probability that queries will intersect both 
resulting MBRs thus reducing the number of subtrees that 
have to be traversed.  

The rationale behind our cost model can be applied to 
directory level splits as a heuristic evaluation function as 
well: Given the average query size used to split trajecto-
ries, we can choose among the possible splits of a direc-
tory node the split that minimizes the volume of the re-
sulting query extended MBRs using Equation 5. More 
precisely, we replace the node split evaluation function 
using our cost model, keeping the original algorithm for 
generating candidate node splits. 

4   Heuristic Trajectory Splitting 
The above split strategy requires complete trajectories to 
be available in order to find the optimal splits. For many 
applications, however, trajectories are updated continu-
ously. Another limitation is that for large datasets contain-
ing long trajectories, even if they were completely avail-
able, the dynamic programming solution may be too inef-
ficient to be practical. For such applications, a more effi-
cient and incremental method is needed, which ideally can 
produce near optimal results.  

4.1   A Cost Model for Optimal Segment Size 

In this section we assume trajectories where points are 
continuously added over time. We formally derive an 
approximation of the optimal split of a trajectory that can 
be computed incrementally.  

Consider first the special case of trajectories for ob-
jects moving with constant speed in a constant direction 
that are sampled at constant time intervals1 (see Figure 5 
for a 2d illustration). For brevity, we call such trajectories 
“constant-slope trajectories”. We will show that the opti-
mal split of these trajectories, according to our previous 
cost model, will result in segments of equal size. Using 
this property, pieces of arbitrary trajectories can be ap-
proximated by constant slope trajectories and split “near-
optimally” in linear time. 
                                                           
1 Sampling at constant time intervals does not really constitute a 
restriction here since we assume a linear interpolation between 
sampling points so that constant time intervals can always be 
achieved by a suitable re-sampling.  
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Assume a trajectory T consisting of t points, or 
equivalently, consisting of t–1 consecutive elementary 
segments s1, …, st-1 as well as a decomposition of T, 
BT={B1, …,Bm}. The sum in Equation 5 can be expressed 
differently by thinking of the volume of each Extq(Bi) as 
being “generated” by the elementary segments contained 
in Bi, via a function f that expresses an equal contribution 
of each elementary segment s to the volume of the query 
extended MBR it belongs to: 

scontainingBinsegmentselementary
scontainingBExtVol

sf
i

iq

#
))((

)( =  (10)  

Lemma 2. Let BT={B1, …,Bm} be a decomposition of a 
trajectory T, and f be defined as in Equation 10. Then,  

∑ ∑∑∑
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i
i

Bincontaineds

m

i
iq sfsfBExtVol

i1

1

11
)()())((  (11) 

Proof. Trivial. By “construction” of f, it holds that 
 for each B))(()(∑ =

iBincontaineds
iq BExtVolsf i in BT.  

The significance of Lemma 2 is that a decomposition that 
minimizes the right hand side also minimizes the left hand 
side. Minimizing the right hand side is in general not an 
easier problem, since the f values for elementary segments 
depend on where the actual split points for a split of T are. 
However, for constant-slope trajectories, the f values de-
pend only on the number of elementary segments in an 
enclosing MBR Bi, i.e., we can compute the volume of 
Extq(Bi) using only the increments in each dimension 
( ) that define the slope of the trajectory, and the 
number c of elementary segments in B

tyx ∆∆∆ ,,
i : 

)()()())(( tyxiq qtcqycqxcBExtVol +∆⋅⋅+∆⋅⋅+∆⋅=  (12) 
 
 
 
 
 
 

Figure 5. Illustration of a constant-slope trajectory sampled 
at regular time intervals. 

Furthermore, we can now look at the values of f for 
MBRs of varying number of contained elementary seg-
ments c by looking at its definition as a function g of c, 

c
cg tyx qtcqycqxc )()()(
)(

+∆⋅⋅+∆⋅⋅+∆⋅
=  (13) 

The significance of this function is that g(c) has a real 
minimum, which means that there is an optimal segment 
length copt (i.e., optimal number of consecutive elemen-
tary segments that form the segments) for constant slope 
trajectories T, in the sense that if T is decomposed into 
segments of this length, the value f(s) will be minimal for 
each elementary segment s. This in turn means that this 
decomposition minimizes the right hand side of Equation 
11, giving us an optimal decomposition according to our 
cost model in Section 3. In this optimal decomposition, all 
the segments have the same length copt, which is inde-

pendent of the length of T. The value copt determines 
where the split points have to be; it is only dependent on 
the increments in each dimension in T and the query size, 
which also means that we can optimally split constant-
slope trajectories in an incremental manner, i.e., after 
some points of T have been added. We will use this fact 
later to derive a heuristic incremental splitting algorithm 
for arbitrary trajectories by conceptually approximating 
them with several “constant-slope” sub-trajectories.  
Theorem 2. Given a query q, and increments ( tyx ∆∆∆ ,, ) 
(that define the slope of a constant-slope trajectory), the 
function g (Equation 13) has a global, real minimum copt 
with respect to c. 
Proof. Function g can be re-written as 

c
cg kckckck 43

2
2

3
1)( +++

=  

where , 

 ,  

tyxk ∆∆∆=1 yxt tqxtqyyqxk ∆∆+∆∆+∆∆=2

yxtxty q∆tqq∆yqq∆xqk ++=3 tyx qqqk =4

Dividing by c gives )()(
1

432
2

1 c
kkckckcg +++=  

Applying the first derivative to find extremas, we get 

0))
1

(2(
)(

2421 =−++=
c

kkck
dc

cdg  

which is equivalent to finding the solutions to  
0))(2( 4

2
2

3
1 =−++ kckck     (14) 

This cubic equation has an analytical solution copt in the 
domain of positive real numbers. The second derivative is 
always greater than 0, so g(c) has a minimum at c= copt.  

Intuitively, we can use the value copt that minimizes 
g(c) to construct an optimal decomposition of a constant-
slope trajectory T (according to the cost model in section 
3) by dividing it into segments of equal length, containing 
copt many elementary segments. In practice, since copt does 
not depend on the number of trajectory points and can be 
computed using only the increments tyx ∆∆∆ ,,  of T and 
the query size, we can split T into segments of length copt 
continuously as points are added to T over time. 
Theorem 3. Given a query q, and a constant-slope trajec-
tory tpppT ,,, 21 K=  defined by increments ( tyx ∆∆∆ ,, ), 
we can find copt that minimizes g(c) (according to Theo-
rem 2). Assuming that t is divisible2 by copt, the decompo-
sition of T into segments of equal length determined by 
copt is a solution to Equation 8, i.e., a decomposition that 
minimizes the expected number of I/Os. 
Proof. Without loss of generality, let copt be an integer.3 
Let  be the decomposition of T where 
each B

),...,( 1 m
T
c BBB opt =

i contains the same number copt of elementary seg-

                                                           
2 This is justified by the fact that we assume long trajectories 
where points are continuously added.  
3 If copt is not an integer, we can re-sample T so that copt can be 
expressed as an integer w.r.t. the new elementary segment size. 

∆x
∆t

t 
qx/2

qt/2

x 
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ments s. The resulting values f(s) (Equation 10) for each 
elementary segment s is by Theorem 2 minimal, i.e., no 
other MBR size can give smaller f(s) values. Conse-
quently, the sum  is minimal for the decomposi-

tion  among all possible decompositions. By Lemma 
2, this decomposition is also a solution to Equation 8.  

∑
−= 1,...1

)(
ti

isf

T
coptB

So far, in this section, we have assumed trajectories of 
constant slope that are sampled at constant time intervals. 
This assumption is not true for most trajectories in practi-
cal applications. However, we can still apply our model to 
an arbitrary trajectory T by approximating it with a con-
stant-slope trajectory T∆ in the following way. We can 
compute the increments that define the slope of 
T

tyx ∆∆∆ ,,
∆  as the average of the corresponding increments of T, 

e.g., in x direction: ∑
−

=
∆

−
=∆

1

11
1 t

i
ix

t
x , where represents 

the difference in x direction between two consecutive 
points of T. Obviously, the smaller the variance in the 
increments of T is, the better is the approximation T

ix∆

∆. Al-
though the error of the approximation can be large for 
long trajectories, this is not true for sub-trajectories in 
case of most real world applications since objects usually 
keep moving in a similar direction with a similar speed 
for certain periods of time. The fact that we can typically 
approximate a long trajectory well, using several con-
stant-slope sub-trajectories, allows us to design an incre-
mental splitting algorithm that performs nearly optimal in 
practice (unless objects move extremely erratically). 

4.2   Linear Time Trajectory Splitting  

To split a trajectory T incrementally, we can  buffer a cer-
tain number of incoming points of T, say from point pu to 
point pv, and compute the average increments 

tyx ∆∆∆ ,, for the points in the buffer to obtain a constant-
slope approximation T∆[u,v] for the trajectory segment 
T[u,v] in the buffer. Using the proof of Theorem 2, we can 
then determine the optimal number copt of elementary 
segments that should be grouped together in an optimal 
decomposition of T∆[u,v], and then use this number to 
decompose T[u,v] accordingly.  

To apply this method, we have to determine a suitable 
number of points that should be buffered before applying 
the split policy. This number may depend on several fac-
tors including the average query size, the speed, the direc-
tion changes, and the sampling rate of the moving object. 
For different trajectories, and even for different segments 
of the same trajectory, a different buffer size may be ap-
propriate. The cost model for optimally splitting a trajec-
tory from Section 3 can be used as a heuristic to deter-
mine dynamically a suitable buffer size. We can deter-
mine when an MBR around a trajectory segment T[u,v+1] 
is not optimal, according to the following condition.  

)()()( 1],1,[1],,[1],1,[ qEqEqE vvTvuTvuT ++ +>  (15) 

This condition is true, when the expected number of 
I/Os using one MBR around the segment of T[u,v+1] is 
larger (i.e., worse w.r.t. performance) than the number of 
expected I/Os when introducing a split before the last 
elementary segment of T[u,v+1]. In this case, it makes 
sense to consider splitting T[u,v+1] since there is at least 
one possible split (before the last elementary segment) 
that will result in a better I/O expectation. This split is, 
however, in general not the best possible way of splitting 
the current segment T[u,v]. Iteratively collecting points 
until Equation 15 becomes true, then introducing a split at 
exactly that position, and repeating this until the trajectory 
ends, will, in general, create segments that are consis-
tently larger than the segments obtained by an optimal 
split. Equation 15 is good at detecting significant changes 
in speed and direction of a trajectory. For nearly constant-
slope segments of a trajectory, the condition tends to be 
true only after several times the optimal segments size has 
been accumulated. We have confirmed this behavior ex-
perimentally, but we can also understand it more for-
mally. Consider the difference between the left hand side 
and the right hand side of Equation 15.  

)]()([)( 1],1,[1],,[1],1,[ qEqEqE vvTvuTvuT ++ +−  (16) 
For the case of constant-slope trajectories, we can 

compute the expected I/O values in this expression as the 
volumes of the query extended MBRs around T[u,v+1], 
T[u,v], and T[v,v+1] respectively, using Equation 12. The 
number of elementary segments in T[u,v] is c = v – u.  

After simple arithmetic transformations, we obtain: 

421
2

11],1,[1],,[1],1,[ 233)()()( kckckckqEqEqE vvTvuTvuT −++=−− ++

where k1, k2, k4 are defined as in the proof of Theorem 2. 
Consequently, Equation 15 holds if  

421
2

1 233 kckckck >++ .    (17) 
On the other hand, we know from the proof of Theo-

rem 2 that the function g (Equation 13) has a global mini-
mum copt

 for the optimal number of elementary segments 
at  or, equivalently if  02 4

2
2

3
1 =−+ kckck optopt

4
2

2
3

12 kckck optopt =+     (18) 
Substituting Equation 18 in Equation 17, tells us when 

the condition in Equation 15 is true in terms of the num-
ber of elementary segments for a constant-slope trajec-
tory, i.e., it is true if 

2
2

3
121

2
1 2233 optopt ckckckckck +>++   (19) 

It is easy to see that this inequality holds if the value 
of c is larger than or equal to the value of copt for all c ≥ 2 
(i.e., if the buffer contains at least 2 elementary segments, 
which is required in practice before considering a split).  

In summary, this means that the number of elementary 
segments c, collected up to the point where condition 18 
becomes true (i.e., the trajectory buffer at that point), is 
always a multiple of the optimal segment size. 

Using a dynamically determined buffer size according 
to these considerations, we propose a linear time trajec-
tory splitting algorithm, called LinearSplit. The algorithm 
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collects points of a trajectory consecutively. For each new 
point pv+1, it determines whether the new point should be 
merged into the current buffer T[u,v] or whether a split at 
this point would improve I/O expectation according to 
Equation 15. If the condition is true, the optimal segment 
size copt

 (Theorem 2) is computed (using a constant-slope 
approximation of the current trajectory segment T[u,v]), 
and we round copt to the nearest positive integer . We 

split as many segments of size as possible from T[u,v] 
and insert the corresponding MBRs into the index. This 
procedure is repeated as long as new points are added. If a 
trajectory is completed, the last segment which may still 
be in the buffer has to be inserted as well.  

*
optc

*
optc

Obviously, this algorithm splits a trajectory in O(t) 
time where t is the number of points of a trajectory. The 
pseudo code for the algorithm LinearSplit is given below. 

Algorithm LinearSplit 
u := 1
while (next point p

, v := 2; //after the first 2 points of T 
v+1 in trajectory T exists) 

   if  )()()( 1],1,[1],,[1],1,[ qEqEqE vvTvuTvuT ++ +>
      find copt for T[u,v] using Theorem 2; 
      c* = round(copt); 
      extract the first k= segments from ⎣ *u)/c(v− ⎦
      T[u,v]; insert their MBRs into the index; 
      u:=u + k * c*; 
   v++; 
//end of T is reached 
insert last MBR(T[u,v]) into the index; 

5.   Experimental Results 
For the experimental evaluation, we used two datasets, 
produced by the Network Data Generator [20] and by 
GSTD [17], respectively. The network data generator 
simulates different classes of objects, e.g., vehicles and 
people, moving through streets of a real city (Oldenburg). 
Different objects have different speeds and lifetimes, giv-
ing a rich and realistic dataset. GSTD allows generating 
more random patterns suitable to investigate the perform-
ance of the algorithms under more extreme situations.  

For each generator, we produced datasets containing 
10,000, 20,000, and 50,000 trajectories, respectively. For 
each trajectory in the network datasets, a varying number 
of observations ranging between 50 and 345 were re-
corded, resulting in 97 observations on average per trajec-
tory. We set GSTD’s parameters so that trajectories were 
formed by objects, uniformly distributed in the data space, 
changing speed and direction randomly at any point in 
time (the maximum speed was limited though, so that an 
object could not cross more than 20% of the total space 
from one time stamp to the next). This scenario, when 
objects are moving extremely erratically, was expected to 
be particularly challenging for the LinearSplit algorithm. 
Exactly 100 observations were recorded for each trajec-
tory. Therefore, all our datasets had between 1,000,000 
and 5,000,000 observations. All experiments were per-
formed on a 1900+ AMD Athlon PC with 512 Mb RAM.  

We used the R-tree implementation provided by the 
XXL library [3], using a 4Kb page size for all algorithms. 
For our algorithms, we replaced the split evaluation func-
tion using our cost model as described in Section 3.3.  

We evaluate the quality of all algorithms by measuring 
the number of disk I/Os on the index’s directory and data 
level per query, averaged over 10,000 uniformly distrib-
uted queries, without considering buffering. We also 
measure the actual time required to pre-process a dataset, 
i.e., the time required to split the trajectories, create the 
MBRs and create the index tree.  

Our dynamic programming-based algorithm is re-
ferred to as “OptimalSplit”; the linear time algorithm is 
referred to as “LinearSplit”. “HKTG-k%” denotes the 
volume oriented split policy proposed in [7] (using the 
DPSplit algorithm for splitting trajectories individually), 
where k% means that 100kN  total number of splits are 
used for splitting a dataset with N trajectories [7]. Similar 
to [7], we set k equal to 50, 100 and 150.4 We also com-
pare with two baseline algorithms. First, an R-tree, re-
ferred to as “NoSplit”, where each trajectory is approxi-
mated by a single MBR, i.e., trajectories were not split (as 
discussed above, this is equivalent to a tree, optimized for 
a very large query size). Second, an R-tree, referred to as 
“FullSplit”, where each elementary segment of trajectory 
is approximated by an MBR, i.e., trajectories were split at 
each observation point (as discussed above, this is equiva-
lent to a tree optimized for an extremely small query size). 

5.1   Optimality and Robustness w.r.t. Query Size 

In the first experiment, we used datasets of 50,000 trajec-
tories to study the suitability and robustness of the cost 
models and the associated split algorithms. We measured 
the average number of disk I/Os at the data level here, 
since the objective of the models is minimizing data level 
I/Os. We built trees that are optimized for different query 
sizes of S% of each spatial dimension and T time points. 
In particular, S = 1%, 2%,…, 16% and T=1, 2,…, 16.5 We 
use Ii,j to denote the index that is optimized for the query 
size with spatial extensions given by S=i% and temporal 
extension T=j. Similarly, Qi,j denotes the size of the que-
ries that were executed against the different indices. The 
numbers in Tables 1 through 4 represent the average per-
formance for different indices and different query sizes. 
                                                           
4 We also set k for the HKTG-k% algorithm so that it corre-
sponded to the optimal number of splits found by our optimal 
split algorithm. However, when using our datasets we could not 
finish building the trees even after a few days. We did test the 
HKTG-k% with the optimal number of splits for very small data 
sets, up to 5,000 trajectories. On those dataset, the number of 
data level I/Os of the HKTG-k% algorithm is very close to ours 
when provided with the optimal number of splits, however, the 
overall I/O performance for queries was much worse than ours 
due to a larger overhead for directory level I/Os.  
5 The spatial extension of a query is given as percentage of the 
total 2d space since the space is finite; the temporal dimension is 
given in absolute time points since time is unbounded. 

941



Each row represents the performance of a query Qi,j using 
all the constructed indices (listed in the columns). If the 
models are appropriate, given a query size, the best per-
formance should occur when using the index built for that 
query size, i.e., in the diagonal of the tables. Note that we 
compare in the rows the performance of different trees for 
a given query. Comparing different queries for the same 
tree here (i.e., looking at columns) only shows the obvi-
ous fact that smaller queries result in smaller numbers of 
I/Os than larger queries. Note that, if we would include 
the NoSplit and FullSplit trees, their performance would 
be shown in columns to the left, respectively right side of 
the tables, since they correspond to trees optimized for an 
even smaller, respectively larger query size than the given 
ones. Their performance is worse for every query than the 
values for the given trees, which are “intermediate” trees 
with respect to the degree of trajectory splitting.  

The performance of both algorithms on both datasets 
is qualitatively very similar. The best performance 
(shaded cells) occurs exactly where expected for the Op-
timalSplit (Tables 1 and 3). Even for LinearSplit (Tables 
2 and 4) this is true, except for surprisingly only one case 
when using GSTD data (Q2,2 in Table 4), since this data 
sets has by construction a very erratic behavior. Overall, 
the LinearSplit heuristic approximates the OptimalSplit 
very well not only in terms of where the optimum is but 
also in term of absolute numbers of I/Os, bu at a much 
lower computational cost. Furthermore, we can also ob-
serve that the query performance degrades on average 
only by 13% when queries were run against indices opti-
mized for queries two times smaller or larger than the 
used query size. This indicates that the algorithms are 
quite robust with respect to the assumed average query 
size, but looking at the performance of a query against 
even more different trees (which in practical worst cases 
could be the FullSplit or NoSplit tree), it is clear that the 
query size parameter offers a great opportunity for tuning 
an index to a particular workload of query sizes. We will 
explore this in more detail in the following experiments.  

Table 1. Robustness of OptimalSplit for Network Data 
Tree – optimized for S(%) and T (duration) 

# I/Os 
I1,1 I2,2 I4,4 I8,8 I16,16

Q1,1 0.56 0.64 1.01 2.11 5.59 
Q2,2 2.37 2.18 2.52 3.95 8.22 
Q4,4 13.02 9.97 8.73 10.1 15.9 
Q8,8 83.85 56.76 39.32 34.62 40.13 Q

ue
rie

s 

Q16,16 572.9 358.5 212.4 150.1 131.9 

Table 2. Robustness of LinearSplit for Network Data 
Tree – optimized for S(%) and T (duration) 

# I/Os 
I1,1 I2,2 I4,4 I8,8 I16,16

Q1,1 0.57 0.63 1.01 2.14 5.44 
Q2,2 2.65 2.23 2.57 3.99 7.97 
Q4,4 15.65 10.61 8.88 10.32 15.63 
Q8,8 105.27 62.15 40.28 35.33 39.95 Q

ue
rie

s 

Q16,16 738.6 400 218.9 155.1 135.3 

Table 3. Robustness of OptimalSplit forGSTD Data 
Tree – optimized for S(%) and T (duration) 

# I/Os 
I1,1 I2,2 I4,4 I8,8 I16,16

Q1,1 1.01 1.02 1.39 3.89 10.39 
Q2,2 2.96 2.95 3.33 6.27 13.71 
Q4,4 11.65 11.46 10.90 13.50 22.25 
Q8,8 59.63 57.9 48.59 40.60 47.56 Q

ue
rie

s 

Q16,16 355.5 342.4 264.8 162.9 137.3 

Table 4. Robustness of LinearSplit for GSTD Data 
Tree – optimized for S(%) and T (duration) 

# I/Os 
I1,1 I2,2 I4,4 I8,8 I16,16

Q1,1 1.07 1.11 1.93 3.40 6.91 
Q2,2 3.24 3.25 4.14 5.91 10.00 
Q4,4 13.59 13.24 12.88 13.90 18.50 
Q8,8 74.57 70.87 55.86 45.86 46.84 Q

ue
rie

s 

Q16,16 469.6 439.7 304.3 200.6 161.8 

5.2   Number of Disk I/Os 

5.2.1 Varying Query Size 

To study the performance of different query sizes we used 
again databases with 50,000 trajectories. The definition of 
the used queries, similarly to [7], is as following:  

Snapshot Query 
Sizes 

Spatial extent in 
each dim. (S%) 

Duration  
(T) 

Small (SS)  1 – 3 1 
Medium (SM)  3 – 9 1 
Large (SL)  9 – 27 1 

Range Query 
Sizes 

Spatial extent in 
each dim. (S%) 

Duration  
(T) 

Small (RS)  3 – 9 1 – 3 
Medium (RM)  3 – 9 3 – 9 
Large (RL)  3 – 9 9 – 27 
To provide a thorough and realistic performance 

analysis we now measure the number of I/Os at both the 
directory and the data level, and we assume a query load 
of queries with varying sizes, where each spatial extent 
and duration within the limits of a query type is equally 
frequent within that query type. 

Two different approaches are used with respect to our 
algorithms. In the multiple tree approach, we built an 
index for each query type separately (i.e., 6 per algo-
rithm), using the average size of a query type as input 
parameter (e.g., for the RS query type, the average query 
size is S=6% and T=2).6 A query was then run against the 
tree that was optimized for the query’s query type. In the 
single tree approach, we built only one index for all query 
types per algorithm, i.e., we determine the average query 
size over all given query types (i.e., S=7.3% and T=4.83), 
and use this query size as parameter for the cost models. 
The resulting index is then used to answer all queries.  

Figure 6(a)–(d) show the average number of I/Os per 
query for different data sets and approaches. Note that 
                                                           
6 Note that the trajectory data does not have to be replicated; 
only different index directory structures were created. 
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using multiple trees or just a single tree affects only Op-
timalSplit and LinearSplit, and the values for other algo-
rithms are consequently the same for the same dataset. 
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Figure 6. Average #I/Os for different query types. 

Each bar in the figures represents the average number of 
I/Os per query and consists of two parts: the bottom 
(shaded) part corresponds to the average number of hits 
on the data level while the top (blank) part corresponds to 
the average number of hits on the directory levels of the 
indices –except for the FullSplit algorithm where the tra-
jectory information is completely stored in the directory 
and consequently all hits are directory level hits. 

In all scenarios, our approaches consistently outper-
form all others, and LinearSplit shows performance close 
to OptimalSplit, confirming again the suitability of the 
linear split heuristic. For SS and RL queries on the Net-
work data, the FullSplit algorithm performs competitively 
to our approaches, however for other query types the per-
formance can be much worse.  

Our approaches have a significantly lower number of 
I/Os on the data level than the other algorithms (except 
FullSplit which has no separate data level).7 Note also that 
our algorithms in general result in less directory I/Os than 
the NoSplit and the HKTG-k% algorithms even though 
our trees are typically larger since we introduce more 
splits (except FullSplit which always has the largest tree). 

The performance of our algorithms using multiple 
trees is very close to the performance of using only a sin-
gle tree for a workload of all query types, confirming 
again the robustness of our approach.  

5.2.2 Varying Database Size 

To measure sclability, we created indices for different 
datasets with 10,000, 20,000, and 50,000 trajectories. We 
ran medium sized range queries of type RM against all 
indices, where our indices where built for the average RM 
query size. The results are shown in Figure 7(a) and (b). 
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Figure 7. Average #I/Os per query, varying DB size 

The I/O performance or our algorithms is always sig-
nificantly better than the NoSplit and the HKTG-k% algo-
rithms. For the smaller datasets FullSplit performs com-
                                                           
7 Reducing data level I/Os also reduces false hits, which also 
saves CPU time for computationally intensive algorithms that 
are invoked to determine whether a trajectory segment approxi-
mated by an intersected MBRs actually intersects a given query. 
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(a) Multiple Trees – Network Data 

(b) Multiple Trees – GSTD Data 

(c) Single Tree – Network Data 
(a) Network Data 

(d) Single Tree – GSTD Data 
(b) GSTD Data 

From left to right: 1) NoSplit, 2) HKTG-50%, 3) HKTG-100%, 
4) HKTG-150%, 5) OptimalSplit, 6) LinearSplit, 7) FullSplit;  
Shaded bottom parts of bars: leaf level I/Os;  
Blank upper parts of bars: directory level I/Os 

From left to right: 1) NoSplit, 2) HKTG-50%, 3) HKTG-100%, 
4) HKTG-150%, 5) OptimalSplit, 6) LinearSplit, 7) FullSplit;  
Shaded bottom parts of bars: leaf level I/Os;  
Blank upper parts of bars: directory level I/Os 
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petitively to our approaches, but its performance degrades 
much faster with increasing database size.  

Note that, even though the OptimalSplit always re-
sults, by design, in the smallest number of data level I/Os, 
this does not guarantee the best overall performance. In 
some cases LinearSplit exhibits the best performance due 
to a smaller number of directory level I/Os, which is due 
to the heuristic nature of directory node splitting policies.  

5.3   Index Building Time 

5.3.1 Varying Query Size 
The index building times for all algorithms are shown in 
Figure 8(a) and (b), where we use a tree for every query 
type. NoSplit is clearly the fastest since it has to insert 
only one MBR per trajectory. For the HKTG-k% algo-
rithms, most of the time is spent splitting the trajectories. 
FullSplit has to insert one MBR per elementary segment 
of each trajectory consuming also a significant amount of 
time. Our algorithms exhibit a good balance between tra-
jectory splitting time and insertion time, outperformed 
only by the trivial NoSplit. Obviously, as the query size 
increases, our index building times decrease since trajec-
tories are split less and fewer MBRs are inserted. 
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Figure 8. Preprocessing time in seconds. 

5.3.2 Varying Database Size 
To measure the scalability of the index building time with 
respect to database size, we used again our indices for the 
databases containing 10,000, 20,000, and 50,000 trajecto-
ries, where our indices where built for the average RM 
query size. The results are shown in Figure 9. As expected 
the index building time for all algorithms increases as the 
database size increases. Our algorithms scale linearly at a 
much slower rate than all other ones (again with the ex-
ception of the trivial NoSplit algorithm). 

P r e p r o c e ss in g  R u n n in g  T im e  (se c . )  (N e tw o r k  D a ta )

0

2 0 0 0 0

4 0 0 0 0

6 0 0 0 0

1 0 K 2 0 K 5 0 K
D B  S iz e  

 
 

Figure 9. Preprocessing time in seconds 

6.   Related Work 
Most spatio-temporal index structures proposed in the 
literature are based in one way or another on R-trees [9]. 
They can be classified into three main approaches. In the 
first approach, time is simply treated as an additional spa-
tial dimension [16]. For trajectories, this leads to ineffi-
cient indices since the MBRs tend to be very large, cover-
ing large portions of empty space and leading to a high 
degree of overlap among the MBRs. Another structure 
under this approach is the TB-tree [12]. Its insertion split 
strategy is oriented towards trajectory preservation so that 
leaf nodes only contain segments that belong to the same 
trajectory. The main disadvantage, however, is that “con-
cessions to the most important R-tree property, node over-
lap” must be made. Indeed, experimental results show that 
it is outperformed by a regular R-tree for spatio-temporal 
range queries, in particular for small queries. 

In the second approach, time and space are treated dif-
ferently within a combined indexing scheme, e.g., [4] and 
[14]. In [4] a two level index is proposed. Where the 
space is first partitioned into non-overlapping cells, and 
for each cell, an R-tree is used to index the temporal in-
tervals at which objects were in those cells. In [14], the 
space is first partitioned into zones, and the locations of 
objects are only represented by zone ids, resulting in a 
less accurate but more efficient representation, managed 
by the SEB tree. These types of approaches are not com-
patible with our cost models since they don’t use MBRs. 
The third approach also treats time differently from space. 
The idea is to have virtual and incrementally maintained 
2-dimensional R-trees for each point in time [10]. This 
approach, however, suffers from a prohibitively large 
overhead when indexing very dynamic scenarios, and is 
not suited for trajectory data.  

Recent work aiming at improving the first approach 
has proposed two orthogonal strategies: replacing MBRs 
by different approximations, and splitting trajectories. In 
[19], the authors propose to trim the corners of trajecto-
ries’ MBRs in order to obtain a bounding octagon prism, 
instead of a bounding hyper-rectangle, which is a tighter 
approximation. The experimental results, however, do not 
provide clear evidence that a considerable gain is obtained 
for spatio-temporal range queries, when compared to an 

(a) Network Data 

(b) GSTD Data 

Network Data 

From left to right: 1) NoSplit, 2) HKTG-50%, 3) HKTG-100%, 
4) HKTG-150%, 5) OptimalSplit, 6) LinearSplit, 7) FullSplit 

From left to right: 1) NoSplit, 2) HKTG-50%, 3) HKTG-100%, 
4) HKTG-150%, 5) OptimalSplit, 6) LinearSplit, 7) FullSplit 
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R*-tree using MBRs. The work presented in [7] proposes 
several algorithms to find split points for trajectories, with 
the goal of reducing the amount of the approximations’ 
empty space, given a total number of allowed splits for a 
whole set of trajectories. (see Section 2 for more detail).  

In [5], the authors present a trajectory splitting heuris-
tic for trails of one-dimensional time-series in a multidi-
mensional feature space. Trajectories are split “incremen-
tally” whenever the latest point increases the “marginal 
cost” (~the expected I/Os per point) in the current sub-
trail. This heuristic is similar in spirit to a split heuristic 
for spatio-temporal trajectories that would simply split a 
trajectory whenever Equation 15 evaluates to true.  

Apart from the problem of indexing spatio-temporal 
trajectories, several other types of spatio-temporal data 
and queries have been investigated, and are loosely re-
lated to this paper. The work presented in [13], [14] and 
[8] studies answering queries with respect to the future. 
Nearest neighbor queries have also received attention in 
the spatio-temporal domain (e.g., [18] and [2]); the prob-
lem of reverse nearest neighbor queries in spatio-temporal 
setting has been addressed in [2].  

7.   Conclusions 
In this paper we investigated the problem of splitting spa-
tio-temporal trajectories in order to improve the perform-
ance of queries using MBR-based access structures to 
index these trajectories. We argued that splitting trajecto-
ries with the goal of minimizing the volume of the result-
ing MBRs alone is not the best strategy. A better solution 
is obtained when taking into account average query sizes. 
We presented a cost model for predicting the number of 
data page accesses, and a trajectory splitting algorithm 
based on this model, which minimizes the expected data 
page accesses, given an average query size. Using our 
cost model and approximating trajectories by constant-
slope segments, we formally derived a linear time split-
ting algorithm, which can be applied in dynamic cases. 

Using the R-tree as the underlying access structure, 
our experimental results show that, overall, our proposed 
trajectory split policies consistently outperform other pre-
viously proposed policies, up to 6 times less disk I/Os 
than FullSplit and up to 5 times less disk I/Os than the 
approaches proposed in [7]. Although our indices are built 
assuming a pre-determined query size, They are robust in 
the sense that the built indices efficiently support a much 
wider range of query sizes. Having a query size as a pa-
rameter of the model allows tuning indexes according to 
application requirements and query loads. In some cases, 
if the range of query sizes varies dramatically, or or if 
certain types of queries should run as fast as possible (e.g. 
because of organizational reasons), different directory 
structures for different query types can easily be con-
structed for an underlying data set. 

Our algorithms scale well with respect to database size 
for both query performance and index building time. Fi-

nally, we also confirmed in our experiments that the Lin-
earSplit algorithm performs similarly to the OptimalSplit 
algorithm, at a much lower computational cost, and can be 
used on dynamic environments. 

Directions for future research include extending our 
cost model to better understand the effect of directory 
level page accesses and designing optimized split policies 
for directory pages of spatio-temporal indices. For this, 
we also will explore the effect of different distributions of 
trajectories in space and time.  
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