
An Efficient and Scalable Approach to CNN Queries

in a Road Network

Hyung-Ju Cho Chin-Wan Chung

Dept. of Electrical Engineering & Computer Science
Korea Advanced Institute of Science and Technology

373-1 Kusong-dong, Yusong-gu, Taejon 305-701, Korea
{hjcho, chungcw}@islab.kaist.ac.kr

Abstract

A continuous search in a road network re-
trieves the objects which satisfy a query con-
dition at any point on a path. For example,
return the three nearest restaurants from all
locations on my route from point s to point
e. In this paper, we deal with NN queries as
well as continuous NN queries in the context of
moving objects databases. The performance
of existing approaches based on the network
distance such as the shortest path length de-
pends largely on the density of objects of in-
terest. To overcome this problem, we propose
UNICONS (a unique continuous search algo-
rithm) for NN queries and CNN queries per-
formed on a network. We incorporate the use
of precomputed NN lists into Dijkstra’s algo-
rithm for NN queries. A mathematical ratio-
nale is employed to produce the final results of
CNN queries. Experimental results for real-
life datasets of various sizes show that UNI-
CONS outperforms its competitors by up to
3.5 times for NN queries and 5 times for CNN
queries depending on the density of objects
and the number of NNs required.

1 Introduction

Due to the advances in mobile communication and
database technologies, diverse innovative mobile com-
puting applications are emerging. The ability to sup-
port continuous queries from mobile clients on a road

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

network is essential for a class of mobile applications.
In this paper, we investigate continuous nearest neigh-
bor (CNN) searches under the following two condi-
tions: (i) Moving objects such as cars or people run
on a road network and static objects such as gas sta-
tions or restaurants are located on the road network.
(ii) The distance measure is defined as the shortest
path length (network distance) on the network.

CNN searches on a road network are essential for
emerging location-based services and many real-life
GIS applications. Cars move according to a given path
on a road. In addition, with the development of mobile
devices such as PDAs and cellular phones, it is prac-
tically possible to track cars and people in real-time.
Such location-aware devices enable location-based ser-
vices that provide users with a variety of useful infor-
mation based on their current positions. Furthermore,
CNN searches on a road network constitute interest-
ing and intuitive problems from the practical as well as
theoretical point of view. Nevertheless, there is limited
previous work in the literature.

We present the following example of the CNN query
with real-life semantic on the map in Figure 1, where it
is assumed that a, b, c, d, and e are gas stations : Find
the 2 closest gas stations from all points on the path P

from n1 to n6 (i.e., P = {n1, n2, n3, n4, n5, n6}).

n1

n2
n3

n4

n5

n6

b

a

c d
e

Figure 1: Example continuous search

Unlike the output at a query point, the result of a
continuous search for a given path P contains a set of
(I, RI) tuples, where I ⊆ P is a valid interval over
which the same query result is generated and RI is

865

a set of objects satisfying the query condition at any
point on I. Two key requirements for good continuous
search algorithms are as follows: (i) Use as few static
queries required to answer the continuous search as
possible. (ii) Reduce the computational overhead in
determining valid intervals. The valid intervals specify
the locations that the k NNs of a moving query object
remains the same.

Existing approaches are largely affected by the den-
sity of objects of interest. Voronoi-based Network
Nearest Neighbor (VN3) [7] and Upper Bound Algo-
rithm (UBA) [8] developed by Kolahdouzan et al. for
NN queries and CNN queries, respectively, are efficient
for the case where objects are sparsely distributed in
the network. Hence, their approaches are negatively
affected by the increase in the density of objects. Con-
versely, Incremental Network Expansion (INE) [9] pre-
sented by Papadias et al. for NN queries suffers from
poor performance when objects are not densely dis-
tributed. To overcome this problem, we propose an
efficient continuous search algorithm called UNICONS
which deals with NN queries as well as CNN queries.
We improve the performance of NN queries with the
introduction of precomputed NN lists in using Dijk-
stra’s shortest path algorithm [3]. The technique di-
rectly contributes to the reduction of the NN query
cost of UNICONS. For CNN queries, the advantage
of UNICONS over UBA is that only two NN queries
are performed between adjacent nodes, independent of
the density of objects and the number of NNs required.
The mathematical rationale is presented to show how
we produce the final result (i.e., a set of (I, RI) tu-
ples). An advantage of UNICONS is the ease of im-
plementing it with an existing spatial access method,
such as the R*-tree [1], and the adjacency list struc-
ture to represent the graph structure both of which
are disk-based. Our contributions are summarized as
follows:

• We propose an efficient continuous search algo-
rithm called UNICONS for NN queries as well as
CNN queries in a road network.

• We incorporate the precomputed NN lists in us-
ing Dijkstra’s algorithm [3] for NN queries and in-
troduce techniques which avoid unnecessary disk
I/Os. UNICONS outperforms VN3 [7], which is
currently regarded as the best approach, by up to
3.5 times in a realistic experimental environment.

• UNICONS significantly reduces the number of
disk I/Os in processing CNN queries since static
queries are issued only at the intersection points
on a query path. UNICONS outperforms its com-
petitor, called UBA [8], in query response time by
up to 5 times depending on the number of NNs
required and the density of objects of interest.

The rest of the paper is structured as follows: Sec-
tion 2 gives the survey of previous methods for NN and

CNN queries. Section 3 presents the improved algo-
rithms for NN queries based on the network distance.
Section 4 presents algorithms for the CNN search. Sec-
tion 5 evaluates the proposed techniques with compre-
hensive experiments. Finally, Section 6 concludes the
paper.

2 Related Work

Several algorithms have been developed using the net-
work distance. Shahabi et al. proposed an embedding
technique to transform a road network into a higher
dimensional space in order to utilize computationally
simple metrics [10]. The main disadvantage of this
method is that it provides only an approximation of
the actual distance. Jensen et al. [6] propose a data
model and definition of abstract functionality required
for NN queries in spatial network databases. They
use algorithms similar to Dijkstra’s algorithm in order
to perform online calculations of the shortest distance
from a query point to an object. Shekhar et al. [11]
present four alternative techniques for finding the first
nearest neighbor to a moving query object on a given
path.

Papadias et al. [9] presented a solution called INE
for NN queries in spatial network databases by intro-
ducing an architecture that integrates network and
Euclidean information and captures pragmatic con-
straints. Since the number of links and nodes that
need to be retrieved and examined is inversely pro-
portional to the cardinality ratio of objects, the main
disadvantage of this approach is a dramatic degrada-
tion in performance when the above cardinality ratio is
very small, which is a usual case for real world scenar-
ios. In addition, it does not optimize primitive opera-
tions to facilitate an efficient network search since it is
designed to support both conventional spatial queries
based on the Euclidean distance and queries based on
the network distance.

Kolahdouzan et al. proposed a new approach for
NN queries in spatial network databases [7]. Their ap-
proach, called VN3, precalculates the network Voronoi
polygons (NVPs) and some network distances. VN3 is
based on the properties of the Network Voronoi dia-
grams. Their experiments with several real-world data
sets showed that VN3 outperforms INE [9] by up to an
order of magnitude. The intuition is that the NVPs
can directly be used to find the first nearest neigh-
bor of a query object q. Subsequently, the adjacency
information of NVPs can be utilized to provide a can-
didate set for other nearest neighbors of q. However, in
the case where the number of NNs required increases
and the number of objects of interest increases, VN3

suffers from the computational overhead of precalcu-
lating NVPs. Consequently, the performance of VN3

degenerates considerably for high densities of objects.
Feng et al. [4, 5] provide a solution for CNN queries

in road networks. Their solution is based on finding

866

the locations on a path where a NN query must be
performed. The main shortcoming of this approach
is that it only addresses the problem when the first
nearest neighbor is requested (i.e., continuous 1-NN)
and does not address the problem for continuous k

NN queries. Finally, Kolahdouzan et al. presented a
solution called UBA for CNN queries in spatial net-
work databases [8]. UBA restricts the computation
of NN queries to only the locations where they are
required and hence, provides better performance by
reducing the number of NN computations. UBA takes
advantage of VN3 for obtaining (k+1) NNs at a static
location. For this goal, UBA retrieves (k+1) NNs of
a query object q to compute the minimum distance
during which the query object can move without re-
quiring a new NN query to be issued. However, UBA
still requires a large number of NN queries to find split
points. The split points are the locations on the path
at which the k NNs of a moving query object change.
Consequently, the execution time increases sharply in
proportion to the number of NNs required and the
density of objects.

3 NN search

These algorithms enhance previous research results
and they are the basis of our CNN search algorithms.
To clarify the meanings of the terms used, we formally
define an edge, a node, a path, a query point, and an
object.

Definition 3.1 A road network consists of a set of
nodes, together with a set of edges, each of which di-
rectly connects two nodes. A path is a sequence of
successively neighboring edges where the terminating
points are distinct. A query point (e.g., the current
position of a user) is a location of interest on the road
network. An object (e.g., school or gas station) is a
point of interest which is located in the road network.

We briefly explain the network distance used in a road
network. Edges provide the connectivity of the origi-
nal road network. An edge connecting two nodes, ni

and nj , has the network distance d(ni, nj). If ni and
nj are not adjacent nodes, d(ni, nj) denotes the short-
est path length from ni to nj . The same concept is
applied to the network distance between a node and
an object and the distance between two objects. Some-
times, travel time may be used as the network distance,
which is very useful in many cases. Suppose that there
exists an edge between ni and nj . The travel time from
ni to nj following a narrow street may be larger than
that of a path going through some intermediate nodes.
In addition, the travel time may dynamically change
depending on traffic congestion and road conditions.

Network distances between objects depend on their
network connectivity and are computationally expen-
sive to calculate. Therefore, our approach for NN
searches introduces the utilization of precomputed

NNs. Lemma 1 states a simple but important fact
for our NN searches.

Lemma 1 Consider a query point q on an edge ninj.
Let Rq be the set of objects satisfying the query condi-
tion, Oninj

be the set of objects on ninj, and Rni
and

Rnj
be the sets of objects satisfying the same query

condition at ni and nj, respectively. Then,

Rq ⊆ (Oninj
∪Rni

∪Rnj
)

Proof) Lemma 1 is self-evident, so its proof is
omitted. �

If each node on a graph has k precomputed NNs
of its own, a k NN query result at any point on the
graph can be immediately obtained from objects on
an edge containing the query point and the k NNs
for the two nodes associated with the corresponding
edge. However, it is very difficult to maintain the k

NNs for all nodes when the value of k is very large or
the number of nodes is very large. For this reason, our
approach maintains precomputed NNs for only a small
portion of the nodes. We formally define intersections
and condensing points as follows:

Definition 3.2 A node where three or more edges
meet is called an intersection point and an intersec-
tion point which maintains precomputed NNs is called
a condensing point.

Each condensing point stores m (≥ 1) NNs where the
value of m is provided as a parameter. The perfor-
mance of our approach improves with an increase in
the number of condensing points and m, the size of
the precomputed NN lists. Naturally, our approach
shows the best performance if the number of condens-
ing points points equals that of intersection points and
the value of m is greater than or equal to the value of k,
where k is the number of NNs required in a query. In
case k > m, we can dynamically compute k NNs start-
ing from already precomputed m NNs. Query results
can be obtained from a combination of the precom-
puted information and the Dijkstra’s search method.
Particularly, in the case where objects are sparsely dis-
tributed, our approach is expected to show much bet-
ter performance than INE [9] which is simply based
on Dijkstra’s algorithm. This is because our approach
can compute the result of an NN query without visit-
ing the NNs directly. In addition, our algorithms can
avoid unnecessary disk I/Os by introducing two addi-
tional data structures, Evisited and Eempty as seen in
Figures 3 and 5 respectively, which keep useful infor-
mation from previously visited edges.

Figure 2 shows the algorithm for the NN search. If
the query location q on a network is given, our NN
search algorithm starts with find edges (q) on line 4 to
discover the set Eq of edges containing q. For exam-
ple, in the case where q is a node, adjacent edges of

867

the node belong to Eq. Originally, our guess for the
network distance kth dist from q to the kth nearest
object okth is infinity. Next, we explore the objects
on the edge nq1nq2 to retrieve the qualifying objects
whose network distances from q are within kth dist,
which is performed by explore (nq1nq2, q, kth dist) on
line 6. Objects on the edges which contain q are
first investigated in explore (nq1nq2, q, kth dist) and
their distances from q are computed in this function.
For a network expansion, we push (nq1, d(q, nq1)) and
(nq2, d(q, nq2)) to the priority queue PQ. If PQ is
empty or the network distance d(q, ntop) of the top
element in PQ is not less than kth dist, the algorithm
breaks out of the while loop and terminates. Other-
wise, the adjacent edges of ntop are explored repeat-
edly. Note that PQ is a priority queue, so d(q, ntop) on
line 12, which is popped from PQ is less than or equal
to the distance from q to any other node in PQ.

proc NN Search (q, k, kth dist)
/* q is a query point, k is the number of nearest
neighbors to be retrieved, and
kth dist is an initial distance
between the kth object and q. */
begin

1. /* R keeps objects satisfying the query predicate */
2. R := ?
3. /* find the set Eq of edges containing q */
4. Eq := find edges (q)
5. for each nq1nq2 ∈ Eq do

6. explore (nq1nq2, q, kth dist)
7. PQ.push (nq1, d(q, nq1))
8. PQ.push (nq2, d(q, nq2))
9. end-for

10. while PQ is not empty do

11. (ntop, d(q, ntop)) := PQ.pop ()
12. if d(q, ntop) ≤ kth dist then

13. Search Node (ntop, d(q, ntop), kth dist)
14. else

15. exit while loop
16. end-while

end

Figure 2: NN search algorithm

The Search Node algorithm shown in Figure 3 ex-
plores the precomputed NNs and the adjacent edges
of node ntop with an offset d(q, ntop). If node ntop

is a condensing point, the algorithm first scrutinizes
each oi−th

ntop
of ntop where oi−th

ntop
is the i-th NN of ntop.

If d(q, ntop) + d(ntop, o
i−th
ntop

) is less than kth dist, a

tuple (oi−th
ntop

, d(q, ntop) + d(ntop, o
i−th
ntop

)) is added to
R and kth dist is updated to the network distance
d(q, okth) of the kth nearest object in R. If node ntop

is a condensing point and d(q, ntop) + d(ntop, o
m−th
ntop

)
is greater than or equal to kth dist, the Search Node
ends without searching adjacent edges. Otherwise,

the algorithm should scrutinize each adjacent edge
ntopni of node ntop. To avoid unnecessary visit
of the same edge, Evisited of line 11 maintains a
set of (nv1nv2, d

max(q, nv1nv2)) tuples where nv1nv2

is a previously visited edge and dmax(q, nv1nv2) =
min{d(q, nv1) + d(nv1, nv2), d(q, nv2) + d(nv2, nv1)}.

proc Search Node (ntop, d(q, ntop), kth dist)
/* ntop is a node popped from PQ, d(q, ntop) and
kth dist are as previously defined */
begin

1. /* let Pntop
= {o1st

ntop
, . . . , om−th

ntop
}

2. be the set of precomputed NNs of ntop */
3. if ntop is a condensing point then

4. for each oi−th
ntop

∈ Pntop
do

5. if d(q, ntop) + d(ntop, o
i−th
ntop

) < kth dist then

6. R := R∪ {(oi−th
ntop

, d(q, ntop) + d(ntop, o
i−th
ntop

))}
7. kth dist := d(q, okth) where okth ∈ R
8. end-for

9.
10. if ntop is not a condensing point or

11. d(q, ntop) + d(ntop, o
m−th
ntop

) < kth dist then

12. for each adjacent edge ntopni of ntop do

13. if (ntopni ∈ Evisited and d(q, ntop) ≥ dmax(q, ntopni)) then

14. skip the visit of this edge
15. else

16. Search Edge (ntopni, d(q, ntop), kth dist)
17. PQ.push (ni, d(q, ntop) + d(ntop, ni))
18. Evisited := Evisited ∪ {(ntopni, d(q, ntop) + d(ntop, ni)}

19. end-for

end

Figure 3: Search Node algorithm

Figure 4 shows that Evisited plays an important role
in avoiding unnecessary duplicate accesses to previ-
ously visited edges. Given a query point q, which
is node n1, we first explore adjacent edges, n1n2

and n1n3. Then, Evisited = {(n1n2, 3), (n1n3, 4)}.
Next, a search is executed with (n2, 3) popped from
PQ={(n2, 3), (n3, 4)}. Hence, n2n1 and n2n3 will be
visited. However, n2n1 is not visited since d(q, n2) = 3
is not less than dmax(q, n1n2) = 3 in Evisited. Edge
n2n3 is visited since this edge does not belong to
Evisited, and then (n2n3, 8) is added to Evisited. As
a result, Evisited = {(n1n2, 3), (n1n3, 4), (n2n3, 8)},
d(q, a) = d(q, n2) + d(n2, a) = 4 and d(q, b) = d(q, n2)
+ d(q2, b) = 7. Finally, n3 is explored. n3n1 is not vis-
ited due to the same reason that n2n1 was not visited.
However, n3n2 should be visited because d(q, n3) = 4
is less than dmax(q, n2n3) = 8 in Evisited. Therefore,
d(q, b) = 7 is updated to d(q, b) = d(q, n3) + d(n3, b)
= 5.

The Search Edge algorithm shown in Figure 5 in-
spects objects on the edge ntopni, where d(q, ni) =
d(q, ntop)+d(ntop, ni). To avoid duplicate accesses to
edges where no objects are located, Eempty keeps the

868

n1

n2 n3

3 4

b

q

1a1 3

Figure 4: d(q, a) = 4 and d(q, b) = 5

set of the previously visited edges without objects. It
is expected that Eempty is very effective when the ob-
jects are sparsely located. If d(q, oi) < kth dist, a tu-
ple (oi, d(q, oi)) is added to R and kth dist is updated
to the network distance d(q, okth) of the kth nearest
object in R. When the NN search algorithm ends, the
k NNs in R are returned.

proc Search Edge (ntopni, d(q, ntop), kth dist)
/* ntopni is an edge to be visited, d(q, ntop) and
kth dist are as previously defined. */
begin

1. if ntopni ∈ Eempty then

2. return

3. /* let Ontopni
be the set of objects on the edge ntopni */

4. if Ontopni
is empty then

5. Eempty := Eempty ∪ {ntopni}
6. return

7. for each object oi ∈ Ontopni

8. if d(q, ntop) + d(ntop, oi) < kth dist then

9. R := R∪ {(oi, d(q, ntop) + d(ntop, oi))}
10. kth dist := d(q, okth) where okth ∈ R
11. end-for

end

Figure 5: Search Edge algorithm

4 CNN search

We start with two basic concepts for continuous search
in Section 4.1. Section 4.2 presents algorithms for
CNN search.

4.1 Basic Ideas

We extend Lemma 1 to Lemma 2. Lemma 2 states
that the union of the set of objects on the query path
and the sets of objects satisfying the query predicate
at nodes on the query path is equivalent to the union
of sets of query results at all points on the query path.
This is the first basic concept of UNICONS.

Lemma 2 To perform a continuous search along a
path={ni, ni+1, . . . , nj}, it is sufficient to retrieve
objects on the query path and to run a static query at
each node nk (i ≤ k ≤ j). Let Rpath be the set of ob-
jects satisfying the continuous query condition at some
point on the query path, Opath be the set of objects on
the query path, and Rnk

(i ≤ k ≤ j) be the set of ob-
jects satisfying the query condition at nk (i ≤ k ≤ j).

Then,

Rpath = Opath ∪Rni
∪Rni+1

· · · ∪ Rnj

Proof) For any query point q ∈ path, Rq is defined
as the set of objects satisfying the query condition at
q. Without loss of generality, we can assume that q

belongs to an edge nknk+1 (i ≤ k ≤ j − 1). Thus, Rq

can be represented by Lemma 1 as follows:

Rq ⊆ Onknk+1
∪Rnk

∪Rnk+1

Thus,

Rpath =
⋃

q∈path

Rq ⊆ Opath∪Rni
∪Rni+1

· · ·∪Rnj
(1)

The following inverse formula which exchanges the
left side with the right of the equation (1) can be triv-
ially proved using the contradiction method.

Opath ∪Rni
∪Rni+1

· · · ∪ Rnj
⊆ Rpath (2)

From the above equations (1) and (2),

Rpath = Opath ∪Rni
∪Rni+1

· · · ∪ Rnj�
Lemma 2 provides an insight into how we can com-

pute the continuous query result by combining objects
on the query path and static query results at nodes on
the query path.

Figure 6 shows the change in network distance be-
tween a dynamic query point q and three static ob-
jects a, b, and c when q moves on the query path P
= {n1, n2, n3, n4, n5}. Let x be the total movement
length of q while q moves along the query path. For
instance, in Figure 6(a), x = 0 when q is located at n1,
x = 1 when q reaches a, and so forth. The path can
be viewed as a line segment with a length of 6. As q
moves from n1 to n5 along the query path, x changes
from 0 to 6. Then, for x ∈ [0, 6], d(q, a) = |x − 1| as
depicted in Figure 6(b). q reaches b via n3. Therefore,
d(q, b) = d(q, n3)+d(n3, b) = |x−3|+1. d(q, c) can be
computed in the same way as d(q, a) in that both a and
c are on the query path. Hence, d(q, c) = |x − 5|. In
this way, the change in the network distance d(q, obj)
between a moving query point q and a static object
obj on a network can be expressed as a piecewise lin-
ear equation. This is the second basic concept of our
continuous search algorithms. Therefore, without re-
lying on issuing queries, mathematical analysis can be
used in determining NNs.

We can extend the second concept to paths with
one way traffic. Suppose that the same path (i.e.,
{n1, n2, n3, n4, n5}) in Figure 6(a) is given for the net-
work of Figure 7(a). The difference from Figure 6(a)
is that the two edges n2n3 and n3n4 can be traversed

869

n1

n6

a

b

1 1
11 1

1

n2 n3 n4

n5

1

c

(a) path = {n1, n2, n3, n4, n5}

1 2 3 4 5 6(0,0)

1

2

3

4

5

x

d(q,obj)

a

b

c

(b) d(q, a)=|x−1|, d(q, b)=|x−3|+1, d(q, c)=|x−5|

Figure 6: d(q, a), d(q, b), and d(q, c)

n1

n6

a

b

1 1
11 1

1

n2 n3 n4

n5

1

c

(a) Path = {n1, n2, n3, n4, n5}

1 2 3 4 5 6(0,0)

1

2

3

4

5

x

d(q,obj)

a

b

c

one-way

(b) d(q, a), d(q, b), and d(q, c)

Figure 7: d(q, obj) for the query path with one-way
traffic

in only one direction. That is, d(n2, n3) = d(n3, n4) =
1 and d(n3, n2) = d(n4, n3) = ∞.

Figure 7(b) illustrates the impact of the query path
with one-way traffic on d(q, a), d(q, b), and d(q, c). Un-
like the query path with bi-directional traffic in Fig-
ure 6, a path with one-way traffic should be managed
carefully since the direction of movement is fixed in a
one-way road. For instance, there is no way to move
from n3 to a and from n4 to b. Thus, d(n3, a) = ∞
and d(n4, b) = ∞ in Figure 7(a). In the case object a

is located before the beginning of a one-way road, it
is not possible for q to return to a after q has passed
node n2. That is, d(q, a) = ∞ for x ∈ [2,6]. Simi-
larly, after q passes n3, there is no way for q to reach
b. Thus, d(q, b) = ∞ for x ∈ [3,6]. Since c is located
after the one-way edges, it is not affected by n2n3 and
n3n4. After q goes past c, it is possible to return to c.
As shown in Figure 7(b), d(q, a) = |x−1| for x ∈ [0,2],

d(q, a) = ∞ for x ∈ (2,6], d(q, b) = |x − 3|+ 1 for x ∈
[0,3], d(q, b) = ∞ for x ∈ (3,6], and d(q, c) = |x − 5|
for x ∈ [0,6].

4.2 Algorithms

Step 1: Divide query path into subpaths

Step 2: Determine valid intervals of each subpath

Step 3: Merge valid intervals of adjacent subpaths

Figure 8: Sketch of CNN Search algorithm

As shown in Figure 8, our CNN search algorithm
consists primarily of three subtasks. In Step 1, we
divide a query path into multiple subpaths, where in-
tersection points on the query path become the start
and end points of each subpath. In Step 2, the al-
gorithm computes valid intervals for the subpaths ob-
tained in Step 1. The details are explained in Figure 9.
Finally, in Step 3, the algorithm combines the valid
intervals and the query results for their adjacent sub-
paths to obtain the final result. Since Step 1 and Step
3 can be conducted without difficulty, we focus on Step
2. Among intersection points, the points with larger
fanouts are selected and used as condensing points.
The reason for this is because, as the fanouts increase,
the number of edges to be visited also increases.

Let sSP and eSP be the start and the end points of
subpath SP , respectively. Let SSP and ESP be the sets
of k NNs at the two points sSP and eSP , respectively.
Let OSP be the set of objects on subpath SP . The
use of (k+1) NNs at sSP makes it possible to quickly
determine whether SSP is equal to ESP . Lemma 3
shows this fact.

Lemma 3 Let ok and ok+1 be the k-th and (k+1)-th
NNs from point sSP , respectively. Let LSP be the
length of the subpath SP . Then, the following is
satisfied.
d(sSP , ok+1) − d(sSP , ok) ≥ 2 · LSP →
SSP = ESP and OSP ⊂ SSP

Proof) Let oi (1 ≤ i ≤ N) be the i-th NN
from point sSP where N is the total number
of objects. Then, SSP = {o1, o2, . . . , ok}. Let
MIN(d(a, b)) and MAX(d(a, b)) be the minimum
and maximum values of d(a, b), respectively. For
d(eSP , oi), MIN(d(eSP , oi)) is d(sSP , oi) − LSP and
MAX(d(eSP , oi)) is d(sSP , oi) + LSP . We first
show that SSP = ESP . It suffices to show that
MIN(d(eSP , ok+1)) ≥ MAX(d(eSP , ok)) due to the
fact that MIN(d(eSP , oi)) ≤ MAX(d(eSP , oi)),
MIN(d(eSP , oi)) ≤ MIN(d(eSP , oi+1)), and

870

MAX(d(eSP , oi)) ≤ MAX(d(eSP , oi+1)).
d(sSP , ok+1) − d(sSP , ok) − 2 · LSP ≥ 0 ↔
{d(sSP , ok+1) − LSP)} − {LSP + d(sSP , ok)} ≥
0 ↔ MIN(d(eSP , ok+1)) − MAX(d(eSP , ok)) ≥ 0.
Therefore, MIN(d(eSP , ok+1)) ≥ MAX(d(eSP , ok)).
Consequently, ESP = {o1, o2, . . . , ok}. Next, we show
that OSP ⊂ SSP . Since oj (k + 1 ≤ j ≤ N) cannot be
on SP under the given condition, OSP is a subset of
SSP . �

Lemma 4 enables the algorithm to determine
whether a subpath has two or more valid intervals.

Lemma 4 SSP is equal to ESP and OSP is a subset
of SSP if and only if there is no split point in SP .

Proof) Consider a query point q on subpath SP . Ac-
cording to Lemma 1,

Rq ⊆ (SSP ∪OSP ∪ ESP)

If SSP is equal to ESP and OSP is a subset of SSP ,
the union of SSP , OSP , and ESP has k elements.
Therefore, for any point q ∈ SP , Rq is forced to have
the same k NNs. That is, there is no split point in
SP . Conversely, if there is no split point in SP , Rq

has the same k NNs for all points on SP . That is,
the union of SSP , OSP , and ESP has k elements. To
satisfy this condition, SSP equals ESP and OSP is a
subset of SSP . �

Lemmas 3 and 4 are expected to be more effective
when objects are populated sparsely in the network.
This is because the distances among objects in a low
density data set are longer than those in a high density
data set.

Unlike NN queries, CNN queries require the exe-
cution of subsequent NN queries at adjacent locations
on the query path. The k NNs obtained from sSP

can be used as initial candidate NNs at eSP . Let oi

(1 ≤ i ≤ k) be the i-th NN at sSP . Suppose that
d(sSP , oi) is specified. Then, d(eSP , oi) is determined
as follows: If oi is on the subpath SP , d(eSP , oi) is
LSP − d(sSP , oi). If the shortest path from sSP to
oi goes through eSP , d(eSP , oi) is d(sSP , oi) − LSP .
Otherwise, d(eSP , oi) is d(sSP , oi) + LSP . Other can-
didates can be found by expanding from eSP

Figure 9 presents the Step 2 of the CNN search
algorithm in Figure 8 which determines valid intervals
for a subpath. The inputs to the Step 2 of the CNN
search algorithm are k and subpath, where the names
are self descriptive. Algorithms for Filter Tuples and
Find Split Points are described in detail in Figures 11
and 12, respectively.

The result R in this algorithm is the set of (obj, x, y)
tuples where obj is a qualifying object for the continu-
ous search. Then, x and y are calculated to determine
the points of a chart such as the one shown in Figure 6
according to the following conditions:

proc CNN Search (k, subpath SP)
/* k is the number of NNs requested and
SP is a query subpath */
begin

1. /* R keeps objects satisfying the NN query */
2. /* Step 2.1. scanning the subpath */
3. OSP := Scan Subpath (SP)
4. R := OSP

5.
6. /* Step 2.2. issuing two NN queries */
7. SSP := NN Search (sSP , k, kth dist)
8. /* Lemma 3 */
9. if d(sSP , ok+1) − d(sSP , ok) ≥ 2 · LSP then

10. return /* no split point is on SP */
11. else

12. ESP := NN Search (eSP , k, kth dist)
13. R := R∪ SSP ∪ ESP

14.
15. /* Lemma 4 */
16. if SSP = ESP and OSP ⊂ ESP then

17. return /* no split point is on SP */
18.
19. /* Step 2.3. filtering tuples */
20. Filter Tuples (k, R)
21.
22. /* Step 2.4. finding split points on SP */
23. Find Split Points (k, R)
end

Figure 9: CNN search algorithm for the subpath

1. If obj is an object on a given subpath, x :=
d(sSP , obj) and y := 0.

2. If obj is an object satisfying the query predicate
at sSP , x := 0 and y := d(sSP , obj).

3. If obj is an object satisfying the query predicate
at eSP , x := LSP and y := d(eSP , obj).

In the following, we provide further details of the
four steps of the CNN search algorithm for a subpath.

Step 2.1. Scanning Subpath from sSP toward

eSP

In the first step, the algorithm retrieves the objects
on the subpath and adds their corresponding tuples
in the form of (oi, xoi

, 0) to R where oi is an object
on the query path, and xoi

:= d(sSP , obj).

Step 2.2. Issuing two NN Queries at sSP and

eSP

In the second step, the CNN search algorithm
issues two NN queries at sSP and eSP on the subpath.
This step is conducted using the NN search algorithm
of Figure 2 and Lemmas 3 and 4. In line 13, the
k NNs obtained at sSP and eSP are added to R.
In the case of the k NNs obtained at sSP , a tuple

871

(os, 0, d(sSP , os)) for os is added to R. For the k
NNs obtained at eSP , a tuple (oe, LSP , d(eSP , oe))
for oe is added to R. The k NNs obtained from sSP

are used as candidate NNs of a current NN query.
Note that eSP of the current subpath corresponds
to sSP of the next subpath. If SSP is equal to ESP

and OSP is a subset of ESP , the subpath is simply
a valid interval and it has the same k NNs by Lemma 4.

Step 2.3. Filtering Tuples

In the third step, among the tuples obtained in the
first and second steps, some tuples with the same ob-
ject in R are removed using the cover relationship.

(0,0)

d(q,obj)

x1

y1

t2= (obj, x2, y2)

t1= (obj, x1, y1)

x2

y2

x

Figure 10: t1 covers t2 iff y2 ≥ |x2 − x1| + y1

For two tuples t1 and t2, let d(q, t1.obj) and
d(q, t2.obj) be the network distances from q to the ob-
ject obj in t1 and the object obj in t2, respectively.
However, note t1.obj and t2.obj denote the same ob-
ject.

Definition 4.1 For two tuples t1 and t2 contain-
ing the same object obj, t1 is said to cover t2 if
d(q, t1.obj) ≤ d(q, t2.obj).

For two tuples t1 = (obj, x1, y1) and
t2 = (obj, x2, y2) in R, t1 covers t2 if and only
if y2 ≥ |x2 − x1| + y1. Using the second concept in
Section 4.1, the network distance from q to t1.obj is
d(q, t1.obj) = |x − x1| + y1 and the distance to t2.obj
is d(q, t2.obj) = |x − x2| + y2 as shown in Figure 10.
To satisfy the cover condition, a point (x2, y2) should
satisfy the inequality y ≥ |x−x1|+y1 as shown in Fig-
ure 10. That is, y2 ≥ |x2 − x1| + y1. Since d(q, t1.obj)
and d(q, t2.obj) denote the different network distances
from q to obj, if d(q, t1.obj) ≤ d(q, t2.obj), the tuple
t2 is found to be unnecessary and removed. Figure 11
presents the algorithm which filters redundant tuples
from R.

Step 2.4. Dividing the subpath into valid

intervals

In the fourth step, we first divide the subpath
into valid intervals. This is based on the divide and
conquer method. Next, to retrieve the k NNs for each
valid interval, all we have to do is to simply determine
the k smallest d(q, t.obj) values at a point in the
corresponding interval, where d(q, t.obj) denotes the

proc Filter Tuples (k, R)
begin

1. while there are distinct tuples ti, tj ∈ R do

2. if ti.obj = tj .obj and d(q, ti.obj) ≤ d(q, tj .obj) then

3. R := R− {tj}
4. end-while

end

Figure 11: Filter Tuples algorithm

network distance from q to obj in tuple t. Lemma 1
shows that query result Rq at any point q ∈ SP
is a subset of the union of OSP , SSP , and ESP .
Consequently, valid intervals of SP can be determined
using objects which belong to OSP , SSP , and ESP .
To divide a subpath into valid intervals, the algorithm
computes all cross points of line segments drawn
for d(q, t.obj)s where t.obj belongs to the union of
OSP , SSP , and ESP . Then, it adds their x values
to X , the set of x values for the cross points. The
x values in X are sorted in ascending order. Each
pair of neighboring values in X , xk and xk+1, is used
to identify a valid interval. Note that k NN queries
are not issued to retrieve the k NNs for each pair of
neighboring values. In each valid interval, the k NNs
with the k smallest d(q, t.obj)s are the query result.
If adjacent valid intervals have the same query result,
they are merged into a single valid interval. Figure 12
presents the algorithm which determines the split
points on the subpath.

Example 1: For an effective explanation, we proceed
with an exemplary CNN query which is “for static ob-
jects a to e on the road network of Figure 13, continu-
ously display the two closest objects from any position
on the query path = {n3, n5, n7, n8}.”
Step 1 First, we divide the entire query path into
multiple subpaths on the basis of intersection points
of the query path. Then, we obtain two subpaths SP1

= {n3, n5, n7} and SP2 = {n7, n8}.
Step 2 We determine the valid intervals for the two
subpaths. For simplicity, we focus on computing valid
intervals for SP1 = {n3, n5, n7}.
Step 2.1 We scan subpath SP1 to collect the objects
on SP1. Let OSP1

be the set of (obj, x, y) tuples con-
taining the objects on SP1, where obj, x, and y are
defined previously. Then, OSP1

= {(c, 2, 0)}. This
means that the distance to c from the start point n3

of SP1 is 2.
Step 2.2 Let SSP and ESP be the sets of (obj, x, y)
tuples for the objects satisfying the query condition
at the start point and the end point of subpath SP
respectively, where obj, x, and y are defined previously.

Two NN queries are executed at the start point
n3 and the end point n7 of SP1. Then, SSP1

=
{(a, 0, 1), (b, 0, 1)} and ESP1

= {(e, 4, 1), (c, 4, 2)}. Note
that in ESP1

, the tuple (c, 4, 2) may be replaced with

872

proc Find Split Points (k, R)
begin

1. while there are distinct tuples ti, tj ∈ R do

2. (x+, y+) := Compute Cross Points(ti, tj)
3. /* let X be the set of x values of cross points */
4. X := X ∪ {x+}
5. end-while

6.
7. RSP = ∅ /* RSP is a set of (I, RI) tuples */
8. /* obtain k NNs for each valid interval */
9. /* let xi and xi+1 be two adjacent x values
10. and R[a,b] be the set of k NNs in [a, b] */
11. for xi, xi+1 (xi, xi+1 ∈ X and xi ≤ xi+1) do

12. {([xi, xi+1], R[xi,xi+1])}
13. := Compute k NN Objects (R, [xi, xi+1])
14. RSP = RSP ∪ {([xi, xi+1], R[xi,xi+1])}
15. end-for

16.
17. while adjacent intervals have the same k NNs do

18. if R[xi,xj] = R[xj,xk] then

19. R[xi,xk] := R[xi,xj]

20. RSP = RSP − {([xi, xj], R[xi,xj]), ([xj , xk], R[xj,xk])}
21. RSP = RSP ∪ {([xi, xk], R[xi,xk])}
22. end-while

23. return RSP

end

Figure 12: Find Split Points algorithm

n1

n2

n3

n4

n5

n6

n7

n8

n9

a
b

c e1 1 22 1 1

2

1

d
1

Figure 13: Example road network

the tuple (d, 4, 2) since d(n7, c) is equal to d(n7, d)
and object d can also be contained in the query re-
sult at n7 instead of object c. As a result, R becomes
the union of OSP1

, SSP1
, and ESP1

as follows: R =
{(obj, x, y)|(c,2,0),(a,0,1),(b,0,1),(c,4,2),(e,4,1)}. Fig-
ure 14 shows the result of mapping 5 tuples in R on
5 points where the second and third attributes of tu-
ples are used as x and y coordinates of the points on a
2-dimensional chart. The x-axis represents the move-
ment length of q from the start position n3 of the CNN
search. The y-axis represents the network distance
from q on the query path to all objects a, b, c, d, and e

in R. This can be explained by the second basic con-
cept of Section 4.1. For instance, when x = 0, d(q, a)
= d(q, b) = 1, d(q, c) = 2, d(q, c) = 6 and d(q, e) = 5,
when x = 2, d(q, a) = d(q, b) = 3, d(q, c) = 0, d(q, c)
= 4 and d(q, e) = 3, etc.

1 2 3 4 5(0,0)

1

2

3

4

5

x

d(q,obj)

a,b
c

e

c

Figure 14: Plotting tuples in R on the chart

Step 2.3 Some tuples in Figure 14 are removed by
using the cover relationship. Figure 15 shows the re-
sult after removing a redundant tuple {(c, 4, 2)} in Fig-
ure 14.

d(q,obj)

1 2 3 4 5(0,0)

1

2

3

4

5

x
a,b

c

e

Figure 15: Filtering tuples

Step 2.4 As stated previously, a tuple (obj, x1, y1) on
the chart gives the network distance from q to obj as
follows: d(q, obj) = |x − x1| + y1 for x ∈ [0, 4] where
4 is the length of the subpath. In Figure 15, since
d(q, a) = d(q, b) = |x|+ 1, d(q, c) = |x− 2|, and d(q, e)
= |x − 4| + 1, Two NNs are a and b when x = 0, two
NNs are c and e when x = 3, and so forth. Therefore,
to find two NNs at any point on the query path, we
simply examine the chart to identify the k smallest
d(q, obj) values at the corresponding point. This is
similar to a well-known skyline problem [2] such as
drawing the skyline of a city given the locations of the
buildings in the city. The first skyline to be drawn with
the smallest d(q, obj) values at each point becomes the
set CNN1st of the closest neighbors from any point on
the query path. That is, CNN1st = {(I, RI)|([0, 1

2],

{a or b)}), ([12 , 3 1
2], {c}), ([3 1

2 , 4], {e})}.
Based on the divide and conquer method, the sub-

path is broken into valid intervals which are deter-
mined by cross points of line segments on the chart.
Cross points are easily obtained using linear equations.
As shown in Figure 16, the query path is divided into 4
valid intervals as follows: I1=[0, 1

2], I2=[12 , 2], I3=[2,

3 1
2], and I4=[3 1

2 , 4]. In each valid interval, we just
find the k objects with the k smallest d(q, obj) values.
For example, for I1 = [0, 1

2], a and b are the 2 near-
est neighbors and their network distances from q are
d(q, a) = d(q, b) = |x| + 1. Similarly, for I2 = [12 ,2],

873

c and a are the two NNs and their network distances
are d(q, c) = |x − 2| and d(q, a) = |x| + 1. For all
valid intervals, their query results are shown in Fig-
ure 17(a) and the final CNN search result is shown in
Figure 17(b) since I3 and I4 are merged into I ′3 = [2, 4]
since they all have the same qualifying objects c and e.
Hence, RSP1

= {(I, RI)| ([0, 1
2], {a, b}), ([12 , 2], {a, c}),

([2, 4], {c, e})}.

d(q,obj)

1 2 3 4 5(0,0)

1

2

3

4

5

x
a,b

c

e

I1 I2 I3 I4

Figure 16: Dividing the query path into valid intervals

I RI

I1=[0, 1
2] {a, b}

I2=[12 , 2] {c, a}
I3=[2, 3 1

2] {c, e}
I4=[3 1

2 , 4] {c, e}

(a) Initial result

I RI

I1=[0, 1
2] {a, b}

I2=[12 , 2] {a, c}
I ′3=[2, 4] {c, e}

(b) Final result

Figure 17: CNN search result for SP1 = {n3, n5, n7}

Step 3 In Step 2, we obtained the CNN query result
for SP1 = {n3, n5, n7}. That is, RSP1

= {(I, RI)|
([0, 1

2], {a, b}), ([12 , 2], {a, c}), ([2, 4], {c, e})}. In the
same way, if we compute the CNN query result for
SP2 = {n7, n8}, RSP2

= {(I, RI)| ([4, 7], {d, e})}. In
Step 3, we simply merge RSP1

and RSP2
for SP1 and

SP2, respectively, in order to the final query result for
the entire query path P = {n3, n5, n7, n8}. Conse-
quently, RP = {(I, RI)| ([0, 1

2], {a, b}), ([12 , 2], {a, c}),
([2, 4], {c, e}), ([4, 7], {d, e})}.

5 Performance Study

In Section 5.1, we experimentally compare our algo-
rithms and other algorithms for NN queries in terms
of I/O cost using a system running Windows on a 2.7
GHz processor and 512 MB memory. In Section 5.2,
we explore the performance of CNN queries in terms
of disk I/O and execution time using the same sys-
tem. In most cases, the costs of NN queries are disk
I/O bound and the computational cost is considered
to be trivial in comparison to the I/O cost while the
computational cost is non-trivial for CNN queries.

To represent a road network, we use real road data
for Wisconsin in the United States from Tiger/Line

data [12]. We set the page size to 4 KB and employ
an LRU buffer of 16 MB which accommodates approx-
imately 10% of the road data. The road data descrip-
tion is as follows: |N | = 1,469,468 and |E| = 1,594,867,
where N is the set of nodes and E is the set of edges.
The working space is fixed to the two-dimensional unit
space [0,1)2. For simplicity, we consider bidirectional
edges. However, this does not affect the interpretabil-
ity and value of the results. The number of intersec-
tion points is 223,569. Among them, we have chosen
64,748 (about 4.4% of total number of nodes) nodes
as condensing points where four or more edges meet.
Each condensing point maintains the NN list which
consists of 10 precomputed NNs. Naturally, if the size
of the precomputed NN list is larger, the query cost
decreases while the maintenance cost increases. Due
to the high maintenance cost, we do not employ more
than 10 precomputed NNs.

We use real-world data sets also from Tiger/Line
data that represent shopping centers, campgrounds,
parks, schools, and lakes or ponds in Wisconsin. The
sets contain 178, 423, 1154, 2979, and 5177 objects,
respectively. In order to simulate a large dataset
such as that of restaurants, which is not available in
Tiger/Line data, we make a composite data set which
consists of the points from the sets for shopping cen-
ters, campgrounds, parks, schools, and lakes or ponds.
According to the response of the Wisconsin State Gov-
ernment to our inquiry, there are 11,215 restaurants
in Wisconsin. To investigate the performance of NN
queries, we execute workloads of 200 queries whose
locations are randomly selected on the network. Sim-
ilarly, we also perform workloads of 100 CNN queries
whose initial locations are also randomly distributed
in a road network and next edges are selected with
even probability.

5.1 NN queries

We compare query costs of UNICONS for NN queries
with those of VN3 [7], which is currently regarded as
the best approach for NN queries on the road network.

Figure 18 shows the number of disk I/Os incurred
by each of the two methods for the value of k rang-
ing from 1 to 64. As the dataset cardinality increases,
the number of page accesses drops quickly. When the
value of k is 1, VN3 generates the result set with con-
stant cost, regardless of the density of objects. This is
expected because the implementation of VN3 is based
on the Voronoi diagram which is efficient to find the
first NN. UNICONS shows performance as good as
VN3 for NN queries which require less than 10 NNs be-
cause it maintains the NN lists of precomputed 10 NNs
at the condensing points. As shown in Figures 18(a)
and 18(b), VN3 is more efficient than UNICONS since
UNICONS requires a larger portion of network to be
retrieved due to the very low density of objects. VN3

also requires precomputed values to be retrieved from

874

the database and the number of these precomputed
values required increases for lower densities and larger
values of k. However, UNICONS suffers more than
VN3 from the lower densities due to the increase in
the search space.

On the other hand, as shown in Figures 18(c),
18(d), 18(e), and 18(f), UNICONS outperforms VN3

with the increase in the density of objects. Since both
methods process queries by using precomputed infor-
mation, the performance gap between UNICONS and
VN3 is closely associated with the density of objects.
In the case where objects (e.g., shopping centers) are
distributed sparsely, VN3 has an advantage over UNI-
CONS since the number of NVPs is as small as that
of objects. Conversely, in the case where objects (e.g.,
composite data) are distributed densely, UNICONS is
in a stronger position than VN3 due to the reduced
search space and the help of condensing points. Addi-
tionally, in UNICONS, objects sharing the same edge
have the same search key and therefore, fewer disk
I/Os are required. As a whole, the experimental re-
sults indicate that except for the particular cases with
lower object densities, UNICONS outperforms VN3 by
up to a factor of 3.5 and the performance difference be-
tween the two approaches increases with the density of
objects and the value of k.

0

80

160

240

320

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

VN3

(a) Shopping centers (178)

0

25

50

75

100

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

VN3

(b) Campgrounds (423)

0

12.5

25

37.5

50

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

VN3

(c) Parks (1154)

0

10

20

30

40

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

VN3

(d) Schools (2979)

0

8

16

24

32

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

VN3

(e) Lakes or ponds (5177)

0

7

14

21

28

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

VN3

(f) Composite data (9911)

Figure 18: Performance comparison for NN queries

5.2 CNN queries

We conducted several experiments to compare the per-
formance of UNICONS with its competitor, the UBA
approach presented in [8]. We calculated the number
of page accesses and the required times for different
values of k.

0

200

400

600

800

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

UBA

(a) Shopping centers (178)

0

80

160

240

320

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

UBA

(b) Campgrounds (423)

0

70

140

210

280

1 2 4 8 16 32 64

Number of Neighbors : k
Pa

ge
 A

cc
es

se
s

UNICONS

UBA

(c) Parks (1154)

0

60

120

180

240

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

UBA

(d) Schools (2979)

0

40

80

120

160

1 2 4 8 16 32 64

Number of Neighbors : k

Pa
ge

 A
cc

es
se

s

UNICONS

UBA

(e) Lakes or ponds (5177)

0

20

40

60

80

1 2 4 8 16 32 64

Number of Neighbors : k
Pa

ge
 A

cc
es

se
s

UNICONS

UBA

(f) Composite data (9911)

Figure 19: Page accesses for CNN queries

Figure 19 depicts the number of page accesses for
UNICONS and UBA approaches when the length of
query paths is fixed to 0.05 and the value of k varies
from 1 to 64. As shown in Figure 19, UNICONS al-
ways outperforms UBA. When the objects of interest
are distributed densely in the network (e.g., compos-
ite data), the performance of UNICONS is up to 5
times better than that of UBA. The reason for this
is that UBA requires a large number of NN queries.
Such a trend is striking, particularly when the value
of k is large. The advantage of UNICONS over UBA
is minimal when the objects of interest are distributed
sparsely (e.g., shopping centers). In these cases, UBA
can filter out several adjacent nodes from the compu-
tation of NNs. Based on Lemmas 3 and 4, UNICONS
can also avoid the execution of NN queries from inter-
section points on the query path. The use of condens-
ing points is very helpful for answering CNN queries.
This is due to the fact that the CNN search algorithms

875

of UNICONS require the execution of consecutive NN
queries at intersection points only regardless of the
density of objects and the value of k.

0

400

800

1200

1600

1 2 4 8 16 32 64

Number of Neighbors : k

E
xe

cu
ti

on
 T

im
e

(S
ec

)

UNICONS

UBA

(a) Shopping centers (178)

0

150

300

450

600

1 2 4 8 16 32 64

Number of Neighbors : k

E
xe

cu
ti

on
 T

im
e

(S
ec

)

UNICONS

UBA

(b) Campgrounds (423)

0

80

160

240

320

1 2 4 8 16 32 64

Number of Neighbors : k

E
xe

cu
ti

on
 T

im
e

(S
ec

)

UNICONS

UBA

(c) Parks (1154)

0

60

120

180

240

1 2 4 8 16 32 64

Number of Neighbors : k

E
xe

cu
ti

on
 T

im
e

(S
ec

)

UNICONS

UBA

(d) Schools (2979)

0

40

80

120

160

1 2 4 8 16 32 64

Number of Neighbors : k

E
xe

cu
ti

on
 T

im
e

(S
ec

)

UNICONS

UBA

(e) Lakes or ponds (5177)

0

30

60

90

120

1 2 4 8 16 32 64

Number of Neighbors : k

E
xe

cu
ti

on
 T

im
e

(S
ec

)

UNICONS

UBA

(f) Composite data (9911)

Figure 20: Execution time for CNN queries

Figure 20 illustrates the query execution times for
UNICONS and UBA when the length of query paths
is fixed to 0.05 and the value of k varies from 1 to 64.
Naturally, the execution time of UBA increases greatly
with the value of k. The increase in the value of k gen-
erates more split points and leads to the execution of a
large number of (k+1) NN queries on the query path.
However, UNICONS issues NN queries at intersection
points on the query path regardless of the density of
objects. The experiments for traveling paths of length
between 0.01 and 0.1 show similar trends. The exper-
imental results confirm that UNICONS is superior to
UBA and it is optimized for CNN queries.

6 Conclusions

In this paper, we developed new continuous search al-
gorithms which answer NN queries at any point of a
given path. We also verified that our continuous search
algorithms require a small number of static queries
in producing the continuous search result. Experi-
mental results with TIGER/Line data demonstrated
that UNICONS outperforms its competitors for vari-

ous numbers of NNs and data sets.

7 Acknowledgments

This research was supported in part by the Agency
for Defense Development, Korea, through the Image
Information Research Center at Korea Advanced In-
stitute of Science and Technology, and in part by the
Ministry of Information and Communications, Korea,
under the Information Technology Research Center
(ITRC) Support Program.

References

[1] N. Beckmann, H. Kriegel, R. Schneider, and B.
Seeger: The R*-Tree: An Efficient and Robust Ac-
cess Method for Points and Rectangles. In Proc. of
the ACM SIGMOD, 1990.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker: The
Skyline Operator. In Proc. of ICDE, 2001.

[3] E. Dijkstra: A Note on Two Problems in Con-
nection with Graphs. Numeriche Mathematik, Vol-
ume(1), 1959.

[4] J. Feng and T. Watanabe: A Fast Method for Con-
tinuous Nearest Target Objects Query on Road
Network. In Proc. of Virtual Systems and Multi-
Media, 2002.

[5] J. Feng and T. Watanabe: Search of Continuous
Nearest Target Objects along Route on Large Hi-
erarchical Road Network. In Proc. of the Data En-
gineering Workshop, 2003.

[6] C. Jensen, J. Kolarvr, T. Pedersen, and I. Timko:
Nearest neighbor queries in road networks. In Proc.
of ACM GIS, 2003.

[7] M. Kolahdouzan and C. Shahabi: Voronoi-Based
K Nearest Neighbor Search for Spatial Network
Databases. In Proc. of VLDB, 2004.

[8] M. Kolahdouzan and C. Shahabi: Continuous
K-Nearest Neighbor Queries in Spatial Network
Databases. In Proc. of STDBM, 2004.

[9] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao:
Query Processing in Spatial Network Databases.
In Proc. of VLDB, 2003.

[10] C. Shahabi, M. Kolahdouzan, and M. Shar-
ifzadeh: A road network embedding technique
for k-nearest neighbor search in moving object
databases. In Proc. of ACM GIS, 2002.

[11] S. Shekhar and J. Yoo: Processing in-route near-
est neighbor queries: a comparison of alternative
approaches. In Proc. of ACM GIS, 2003.

[12] US Bureau of the Census: Technical Documenta-
tion. TIGER/Line Files. 1995.

876

