

An Efficient SQL-based RDF Querying Scheme

 Eugene Inseok Chong Souripriya Das George Eadon Jagannathan Srinivasan

Oracle
One Oracle Drive, Nashua, NH 03062, USA

Abstract

Devising a scheme for efficient and scalable
querying of Resource Description Framework
(RDF) data has been an active area of current
research. However, most approaches define new
languages for querying RDF data, which has the
following shortcomings: 1) They are difficult to
integrate with SQL queries used in database
applications, and 2) They incur inefficiency as
data has to be transformed from SQL to the
corresponding language data format. This paper
proposes a SQL based scheme that avoids these
problems. Specifically, it introduces a SQL table
function RDF_MATCH to query RDF data. The
results of RDF_MATCH table function can be
further processed by SQL’s rich querying
capabilities and seamlessly combined with
queries on traditional relational data.
Furthermore, the RDF_MATCH table function
invocation is rewritten as a SQL query, thereby
avoiding run-time table function procedural
overheads. It also enables optimization of
rewritten query in conjunction with the rest of the
query. The resulting query is executed efficiently
by making use of B-tree indexes as well as
specialized subject-property materialized views.
This paper describes the functionality of the
RDF_MATCH table function for querying RDF
data, which can optionally include user-defined
rulebases, and discusses its implementation in
Oracle RDBMS. It also presents an experimental
study characterizing the overhead eliminated by
avoiding procedural code at runtime,
characterizing performance under various input
conditions, and demonstrating scalability using

80 million RDF triples from UniProt protein and
annotation data.

1. Introduction
Resource Description Framework (RDF) [1] is a language
for representing information (metadata) about resources in
the World Wide Web. The resources are not limited to
web pages but can also include things that can be
identified on web. The specification of metadata in the
generic RDF format makes it suitable for automatic
consumption by a diverse set of applications.

The RDF data represented as a collection of <subject,
property, object> triples, can easily be stored in a
relational database. The paper addresses the issue of
efficiently querying such RDF data. For querying RDF
data, most approaches define yet another query language,
which in turn issues SQL to process user requests. In
contrast, this paper proposes a SQL-based scheme for
querying RDF data. Specifically, it proposes an
RDF_MATCH table function with the following
functionality:
• The ability to search for an arbitrary pattern against

the RDF data including inferencing based on RDFS
[3] rules, and

• The ability to include a collection of user-defined
rules as an optional data source.

Figure 1: RDF data for reviewers model

To illustrate the basic functionality, consider RDF data
about research paper reviewers. The RDF classes and the
triple instances are shown in Figure 1. Assuming the RDF
data is stored in the database as the model 'reviewers', user

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment
Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

Subject Property Object
IDBC2005 rdf:type Conference
John Age 24
John rdf:type Student
John ReviewerOf IDBC2005
Mary rdf:type Faculty
Mary ChairpersonOf IDBC2005

Age

ChairpersonOf
Reviewer Conference ReviewerOf

Student Faculty

Person Literal (xsd:int)

University
EnrolledAt

1216

can issue the following query to find reviewers who are
students with age less than 25:

SELECT t.r reviewer
FROM TABLE(RDF_MATCH(
 ‘(?r ReviewerOf ?c)
 (?r rdf:type Student)
 (?r Age ?a)’,

RDFModels('reviewers'),
 NULL, NULL)) t
WHERE t.a < 25;

The various arguments to RDF_MATCH are as follows:
• The first argument captures the graph pattern to

search for. It uses SPARQL-like syntax [13] and
variables are prefixed with a ‘?’ character.

• The second argument specifies the model(s) to be
queried.

• The third argument specifies the rulebases (if any).
Here the NULL argument indicates absence of
rulebases.

• The fourth argument specifies user-defined
namespace aliases (if any). Here the NULL argument
indicates that no user-defined aliases are used,
however default aliases such as rdf: are always
available.

By processing RDF data using SQL the regular database
tables can be queried in a single query along with RDF
data. For example, a user can join results of RDF query
with a traditional employees table say to find the emailid
of the faculty reviewers:

SELECT t.r reviewer, e.emailid emailid
FROM TABLE(RDF_MATCH(
 ‘(?r ReviewerOf ?c)
 (?r rdf:type Faculty)’,

RDFModels('reviewers'),
 NULL, NULL)) t, employees e
WHERE t.r = e.name;

Providing RDF querying capability in SQL would enable
applications to easily process domain-specific semantics
stored as RDF data in a relational database. This becomes
even more important especially in the context of semantic
web applications, since RDF is an important building
block of the semantic web [4]. Also, in future, if the vast
amount of data stored in relational databases is made
available as RDF triples [1], then the RDF_MATCH
function can be used to query such data. Furthermore,
applications that need to handle large volumes of
metadata such as portals and e-marketplaces can also
benefit from this functionality.

The proposed SQL-based RDF querying scheme
involving the RDF_MATCH table function has been
designed to meet most of the requirements identified in
[5], including RDF Graph pattern matching, limiting
resulting subgraphs, and returning results that may contain
subgraphs from the graph entailed by input RDF graphs. It
also handles RDFS and user-defined rules in a seamless
manner along with the models.

With regards to implementation, the key aspects of our
approach are as follows:

• The RDF_MATCH functionality is introduced as a
SQL table function. Although this avoids kernel
changes, the approach is not suitable for class of
queries that return large result sets, where the
overhead of returning result via the RDBMS table
function infrastructure tends to dominate the query
costs (see Section 4.1 for details). To circumvent this
problem an extension to RDBMS table function
infrastructure is implemented, which allows a rewrite
of table function with a SQL query. With this
extension, processing of RDF_MATCH table
function query does not require any additional
language run-time system other than the SQL engine.

• The RDF data triples are stored after normalization in
two tables, namely IdTriples (triples in the identifier
format) and UriMap (uri to identifier mapping). Other
storage organizations are possible but are not
considered in this paper. This would be addressed in
future work. The storage representation supports
handling literal of multiple datatypes as well as
supports multiple representations of same literal
value.

• The core implementation of RDF_MATCH query
translates to a self-join query on IdTriples table. To
efficiently execute this query, a set of B-tree indexes
and materialized views are defined on the IdTriples
and UriMap Tables.

• A class of materialized views called subject-property
matrix materialized join views (SPMJVs) is
introduced to avoid the inefficiency resulting from
storing heterogenous data in the canonical triple
format table. Also, the statistics collected on these
SPMJVs serve as statistics for the corresponding
portions of the triple table.

• Our approach relies on the RDBMS cost-based
optimizer for optimizing the resulting query (that is,
after rewrite of table function invocation). This
approach has the advantage that RDBMS optimizer is
leveraged. However, a shortcoming is that optimizer
can generate sub-optimal plans. We plan to address
this problem in future by enhancing the optimizer to
better handle the class of self-join queries.

• Rulebases are in general handled by generating SQL
queries, which may optionally involve table
functions. Also we support the notion of indexing
rulebases, which allows pre-computing and storing
the data derived by applying rulebases to specified
RDF models.

This scheme has been implemented in Oracle RDBMS
using Oracle’s table function infrastructure. In addition,
the implementation uses Oracle’s B-tree indexes,
function-based indexes, and materialized views.

Performance experiments conducted using RDF data
for WordNet, the lexical database for English language
[8], and UniProt protein and annotation data [14] validate

1217

the feasibility of this scheme and demonstrate that it
scales well for large data sets.

The key contributions of the paper are:
• A SQL-based scheme for querying RDF data. No

changes are made to SQL. Instead, RDF_MATCH
table function is introduced. User can leverage all of
the SQL capability to process the result of the
RDF_MATCH table function.

• An efficient and scalable SQL based implementation
of RDF_MATCH table function, including querying
on data derived by applying rulebases..

• An extension to RDBMS table function infrastructure
that eliminates bulk of the runtime overheads for
class of table functions that can be expressed as a
SQL query.

• A study characterizing RDF query performance as
well as identifying overheads in various components.

1.1 Related Work

For querying RDF data, a number of query languages
have been developed. This includes RDQL [9], RDFQL
[10], RQL [11], SPARQL[13], SquishQL [1], and RSQL
[15]. These are declarative query languages with quite a
few similarities to SQL. However, the scheme proposed in
this paper differs from all of the above in that it allows
SQL itself to be used to query RDF data by introducing a
table function. The main advantage of this SQL-based
scheme is that it allows leveraging the rich functionality of
SQL and efficiently combining graph queries with queries
against traditional database tables.

With respect to handling rulebases, our scheme is quite
similar to RDFQL where one or more data sources or
rulebases can be specified.

With regards to implementation, query languages such
as RQL and SquishQL try to push as much of the
functionality as possible to underlying database by
formulating SQL queries against tables storing RDF data.
Our approach for implementing the RDF_MATCH table
function is somewhat similar. However, it is tightly
integrated with the SQL engine and with the table function
SQL rewrite functionality further optimization is possible
such as filter condition pushdown. Our approach uses
materialized views to speed up queries on RDF data. This
is in addition to the typical database indexes one can
define on the tables storing RDF data.

1.2 Organization of the Paper
Section 2 describes key concepts of supporting
RDF_MATCH based queries. Section 3 discusses the
design and implementation of the RDF_MATCH function
on top of Oracle RDBMS. Section 4 discusses an
RDBMS table function infrastructure enhancement that
can eliminate bulk of the mapping overhead for
RDF_MATCH queries. Section 5 describes the
performance experiments conducted using RDF data for

WordNet and UniProt. Section 6 concludes with a
summary and future work.

2. Key Concepts
This section gives the terminology used in the rest of the
paper, outlines the requirements for querying RDF data,
and describes how the SQL based RDF querying scheme
meets these requirements.

2.1 Terminology

RDF can be used to capture domain semantics. The basic
unit of information is a fact expressed as a <subject,
property (predicate), object> triple. For example, the fact,
‘John′s age is 24’, can be represented by <‘John’, ‘age’,
‘24’> triple. A collection of triples, typically pertaining to
a domain or sub-domain, constitutes an RDF model.

Triples in a model can be classified as schema triples
and data triples. Schema triples, specified using RDFS,
describe the schema-related information (for example,
<‘age’, ‘rdfs:domain’, ‘Person’>), whereas data triples
describe the instance data. Note that a triple’s subject and
property are always URIs while its object can be a URI or
literal.

An RDF model is also referred to as RDF graph,
where each triple forms a <property> edge that connects
the <subject> node to the <object> node.

An RDF data set can optionally include one or more
rulebases, each containing a collection of rules. A rule
when applied to a model yields additional triples. An
RDF model augmented with a rulebase is equivalent to the
original set of triples plus the triples inferred by applying
the rulebase to the model.

2.2 A SQL based RDF Querying Scheme

A table function is introduced to SQL as described below
to satisfy most of the requirements described in [5] by a
SQL-based RDF querying scheme.

RDF_MATCH Table Function: For data stored in a
database, an RDF_MATCH table function is introduced
with the ability to search for an arbitrary graph pattern
against the RDF data, including inferencing based on
RDFS and user-defined rules. The signature of the table
function is as follows:
 RDF_MATCH (

 Pattern VARCHAR,
 Models RDFModels,
 RuleBases RDFRules,
 Aliases RDFAliases,
)
RETURNS AnyDataSet;

The first parameter captures the graph pattern to be
matched. It is specified as a collection of one or more
<Subject, Property, Object> triple patterns. Typically,
each triple pattern contains some variables. Variables
always start with a '?' character.

Among the remaining parameters, the first two specify
a list of RDF models and (optional) rulebases, which

1218

together constitute the RDF data to be queried. The last
parameter specifies aliases for namespaces.

The result returned by RDF_MATCH is a table of
rows. Each resulting row contains values (bindings) for
the variables used in the graph pattern. Substituting the
values in the graph pattern would identify the
corresponding matching subgraph.

The exact definition of the result table, that is, the set
of columns and their data types, varies depending upon
the graph pattern used in an RDF_MATCH invocation.
(Use of the AnyDataSet data type allows us to define
RDF_MATCH with this flexibility.) Specifically, for each
variable in a given graph pattern, the result table has a
column with the same name as the variable (without the
starting ‘?’). These columns are used for returning the
lexical values for the corresponding variables. In addition,
the result table has additional columns (of form
<variable>$type) for returning data type information for
each variable that may be bound to literals as well. Note
that based upon current RDF restrictions (that subjects
and predicates in triples must be URIs and not literals),
only those variables that do not appear as subject and
predicate components of triples in a graph pattern can be
bound to literal values.

Example: Consider the following query (from Section 1)
to find student reviewers who are less than 25 year old:

SELECT t.r reviewer, t.c conf, t.a age
FROM TABLE(RDF_MATCH(
 ‘(?r rdf:type Student)
 (?r ReviewerOf ?c)
 (?r Age ?a)’,
 RDFModels (‘reviewers’),
 NULL, NULL)) t
WHERE t.a < 25;

The RDF_MATCH invocation returns the following table:
r c c$type a a$type

John IDBC2005 URI 24 xsd:int

Note that, since variable ?r appears as subject component,
the value of column r is always a URI and hence there is
no need for an additional column to return its data type.

SQL constructs may be used to extend the above
query, to do aggregation, grouping, and ordering, for
example:
 SELECT t.c conf,
 COUNT(*) row_count, AVG(t.a) avg_age
 FROM TABLE(RDF_MATCH(………)) t
 GROUP BY t.c
 ORDER BY avg_age;

Though the above examples show querying RDF data
only, users can also query the associated RDF schema, for
example, to obtain domains and ranges for a property.
Thus, the key benefits of using a table function for
querying RDF data is that the standard SQL constructs
can be used for further processing of the results. This
includes iterating over the results, constraining the results
using WHERE clause predicates, grouping the results
using GROUP BY clause, sorting the results using

ORDER BY clause, and limiting the results by using the
ROWNUM clause. Also, the SQL set operations can be
used to combine result sets of two or more invocations of
RDF_MATCH. With the table function SQL rewrite
functionality discussed in Section 4.2 the optimizer will
be able to optimize the whole SQL query including filter
condition pushdown.

Rule and Rulebases: A rule is identified by a name and
the rulebase to which it belongs. A rule consists of a left
hand side (LHS) pattern for the antecedents, an optional
filter condition that further restricts the subgraphs
matched by the LHS, an optional list of namespace
aliases, and a right hand side (RHS) pattern for the
consequents. For example, the rule that “chair person of a
conference is also a reviewer of the conference” is
represented as follows:

('rb', -- rulebase name
 'ChairpersonRule', -- rule name
 ‘(?r ChairPersonOf ?c)’,-- LHS pattern
 NULL, -- filter condition
 NULL, -- aliases
 ‘(?r ReviewerOf ?c)’) -- RHS pattern
The following query will return both John and Mary as
reviewers. The latter is implicitly inferred by applying
rulebase rb to the reviewers model.

SELECT t.r reviewer
FROM TABLE(RDF_MATCH(
 ‘(?r ReviewerOf ?c)’,
 RDFModels (‘reviewers’),
 RDFRules(‘rb’), NULL)) t;

A user can create rulebases and add rules by using APIs.
Once the rulebases are created and populated, they can be
specified in a RDF_MATCH query. Note that the RDFS
rulebase (named rdfs) is created by the system and is
implicitly available for users.

3. Design and Implementation
This section describes the design and implementation of
the SQL-based RDF Querying Scheme. This scheme is
implemented on top of Oracle RDBMS. Although the
description here assumes Oracle RDBMS, the scheme can
be supported in any RDBMS that supports table functions,
materialized join views, and B-tree indexes.

3.1 RDF Data Storage and Multiple Data Type
Hanlding

The RDF data must be stored compactly and the
storage format should be suitable for efficient query
processing. In our scheme, RDF data is stored (after
normalization) in two tables: IdTriples (ModelID,

SubjectID, PropertyID, ObjectID, …) and UriMap

(UriID, UriValue, …). This normalization is critical
because URIs (or literals) are typically repeated. Also, it
enables efficient query processing due to the compact
size. Given an RDF triple, its three URIs (or literals) are
first mapped to corresponding identifiers using table
UriMap. If no mapping is found for a URI (or literal), a
new unique UriID is generated and the new mapping is

1219

inserted into the UriMap table. A tuple comprising the
ModelID (for the RDF model) and the three UriIDs is
then stored into the IdTriples table.

A user view is created on the underlying tables holding
RDF data, which presents only selective portions (at
model granularity) of the RDF data to the users based on
their privileges. Also, the RDF_MATCH function is
executed with invoker’s privileges. Thus, this scheme
limits each invoker’s access via RDF_MATCH query to
only the appropriate portion of the RDF data.

Typed literals are stored in the UriMap table with their
type. To support matching between multiple
representations for the same value, such as the integer 123
and the float 12.3E+1, each literal is mapped to a
canonical literal. Literals that represent the same value
will map to the same canonical literal, and a literal may be
its own canonical literal. The canonical literal ID (which
is used when joining on the object column) and the exact
literal ID (which is used when returning the object to the
user) are both stored in IdTriples. For simplicity, queries
in this paper are written as if there was a single objectID
column in IdTriples.

The first literal entered for a value becomes the
canonical literal. To support mapping other equi-valued
literals to this canonical literal, there is a flag in UriMap
to indicate that the literal is a canonical literal. Further,
the pre-defined datatypes are partitioned into families,
where all types in a family are associated with a single
value space. For example, float and integer types both
belong to the numeric family. For each type family, there
is a function to convert the UriMap lexical representations
into a canonical form, such as a native database type. A
function-based index for this purpose is defined on
UriMap, so a canonical form can efficiently be mapped to
the corresponding canonical literal during querying.

3.2 RDF_MATCH Table Function

The RDF_MATCH functionality is implemented as a
SQL table function using Oracle’s table function
interfaces [6].

RDF Query Processing
- Compile Time Processing: At compile time, the form
of the table result, namely the set of columns is
determined. The kernel passes information regarding the
columns referenced in the outer SQL query to the table
function. This allows for optimization of table function
queries based on columns referenced in the SQL query
containing table function invocation.

- Execution Time Processing: Based on the input
arguments, namely, pattern, models, rules, and aliases, a
SQL query is generated against the IdTriples and UriMap
tables. Figure 2 shows the various layers of
implementation. There are two types of implementation:
conventional procedural processing (discussed in Section
4.1) and a new declarative rewrite-based processing

(discussed in Section 4.2). Due to overheads with the
procedural implementation, RDF_MATCH function uses
the rewrite-based implementation.

Figure 2: RDF_MATCH Implementation Overview

Consider as an example use of the RDF_MATCH table
function in the following SQL query:

SELECT t.r reviewer, t.c conf, t.a age
FROM TABLE(RDF_MATCH(

 ‘(?r ReviewerOf ?c)
 (?r rdf:type Student)
 (?r Age ?a)’,
 ………

First, aliases specified (if any) are substituted with the
namespaces to expand all alias-encoded URIs. Next, the
URIs and literals, such as 'ReviewerOf', 'rdf:type' are
converted into UriIDs using lookups on the UriMap table:
 FROM IdTriples t1, IdTriples t2. IdTriples t3
 WHERE t1.PropertyID = 14 AND t2.PropertyID = 11
 AND t2.ObjectID = 4 AND t3.PropertyID = 29

Then a self-join query is generated based on matching
variables across triples (e.g. '?r') in the pattern:

WHERE … t1.SubjectID = t2.SubjectID AND
 t2.SubjectID = t3.SubjectID

Next, the internal IDs are joined with the UriMap table to
generate the join result in the URI (and literal) format:

SELECT u1.UriValue r, u2.UriValue c,
u2.Type c$type, u3.UriValue a,
u3.Type a$type

FROM …… UriMap u1, UriMap u2, UriMap u3
WHERE …… t1.SubjectID = u1.UriID AND
 t1.ObjectID = u2.UriID AND
 t3.ObjectID = u3.UriID

Note that ‘r ’ is a URI, so there is no type associated,
whereas ‘c ’ and ‘a’ have a date type (c$type, a$type)
associated.

The models argument is used to restrict the IdTriples
table based on the corresponding model identifiers in the
above self-join SQL query. After the transformation
phase, the generated single SQL query is optimized and
executed to obtain results.

In addition to the table function arguments, kernel
implicitly provides information regarding the columns
(which correspond to the variables in the graph pattern)
referenced elsewhere in the original SQL query. The
RDF_MATCH implementation has been optimized to
compute values only for these columns. This avoids
additional joins with UriMap table to get the
corresponding UriValue. In general, a query with n triple

RDF_MATCH Table function

SQL Query involving RDF_MATCH table function

SQL Query 2 (the self-join query,
including Internal ID � URI mapping)

SQL Query 1 (URI � Internal ID mapping)

1220

pattern and m variables will result in a query with (n+m-1)
joins, assuming m variables are projected (hence m joins
with UriMap table). Experiment IV (Section 5.6)
demonstrates the performance benefits of this
optimization.

The rules argument contains a list of rulebases to be
applied to infer new triples. This is discussed below.

Rule Processing: To handle rules, the RDF_MATCH
function replaces references to the IdTriples table in the
generated SQL with subqueries or table functions that
yield the relevant explicit and inferred triples. Subqueries
are used whenever the required inferencing can be done
conveniently within a SQL query (i.e., without explicitly
materializing intermediate results). These subqueries
generally take the form of a SQL UNION with one
UNION component for each rule that yields a relevant
triple, plus one component to select the explicit triples.
Table functions will be used when the subquery approach
is not feasible.

To support the RDFS inference rules, we must
compute a transitive closure for the two transitive RDFS
properties: rdfs:subClassOf (rule rdfs11) and
rdfs:subPropertyOf (rule rdfs5). In Oracle RDBMS, these
transitive closures can be computed using hierarchical
queries with the START WITH and CONNECT BY
NOCYCLE clauses. Note that CONNECT BY
NOCYCLE queries can handle graphs that contain cycles
by generating the row in spite of the loop in user data. The
remaining RDFS rules can be implemented with simple
SQL queries.

To ensure that RDFS inferencing can be done within a
single SQL query, the user is prohibited from extending
the built-in RDFS vocabulary. This means, for example,
that there cannot be a property that is a sub-property of
the rdfs:subPropertyOf property, nor can there be a user-
defined rule that yields rdfs:domain triples.

User-defined rules can be classified as follows based
upon the extent of recursion, if any, in the rule:

• Non-recursive rules: The antecedents cannot be
inferred by the given rule, or any rule that depends on
the given rule’s consequents.

• Simple recursive rules: These rules are used to
associate transitivity and symmetry characteristics
with user-defined properties.

• Rules that use arbitrary recursion unlike the other two
categories.

Non-recursive user-defined rules can be evaluated using
SQL (join) queries by formulating the FROM and
WHERE clauses based upon the antecedents and the
SELECT clause based on the consequents of the rule so as
to return the inferred triples. Note that the triples that
match the antecedents of a user-defined rule could
themselves be inferred, so the FROM clause may
reference subqueries to find inferred triples. The

ChairpersonRule given in Section 2.2 would translate into
SQL as follows:
SELECT ...
FROM (
-- (?x ChairpersonOf ?c) => (?x ReviewerOf ?c)
 SELECT t1.SubjectID, 14 PropertyID, t1.ObjectID
 FROM IdTriples t1
 WHERE t1.PropertyID = 56
 UNION
-- explicit ReviewerOf triples
 SELECT t1.SubjectID, t1.PropertyID, t1.ObjectID
 FROM IdTriples t1
 WHERE t1.PropertyID = 14
) t1;

Simple recursive rules involving transitivity and symmetry
can be evaluated as follows. Symmetry can be easily
handled with a simple SQL query. However, handling
transitivity with a single SQL query requires some type of
hierarchical query (e.g., using the START WITH and
CONNECT BY NOCYCLE clauses in Oracle RDBMS),
as in the case of transitive RDFS rules.
 Suppose the user's query is:
 ...
 RDF_MATCH(
 ‘(?a rdf:type Male)
 (?a AncestorOf ?b)’,
 ...

There is a user-defined rule to make AncestorOf
transitive, and for simplicity we assume that the RDFS
rulebase is not used. So after translation we have a join
between IdTriples (for the rdf:type triple) and a subquery
which computes the transitive closure using CONNECT
BY (for AncestorOf):
SELECT ...
FROM IdTriples t1, (
 SELECT DISTINCT
 CONNECT_BY_ROOT(t1.SubjectID) SubjectID,
 t1.PropertyID, t1.ObjectID
 FROM IdTriples t1
 START WITH t1.PropertyID = 43
 CONNECT BY NOCYCLE t1.PropertyID = 43 AND
 PRIOR ObjectID = SubjectID
) t2
WHERE t1.PropertyID = 11 AND t1.ObjectID = 17
 AND t1.SubjectID = t2.SubjectID;

The third class of rules involving arbitrary recursion is the
most complicated, and it has not been addressed in the
current implementation. These rules will be evaluated
using table functions, because an unknown number of
passes over the intermediate results are required to find all
inferred triples.

3.3 Speeding up RDF_MATCH Queries

The speed up is achieved by creating materialized join
views (MJVs) and creating appropriate B+-tree indexes on
them, and indexing RDF data and rulebases. Each of these
is described in detail below.
Generic Materialized Join Views: The query generated
by RDF_MATCH table function involves a self-join of
IdTriples table if the same variable is used in more than
one triple of the search pattern. Depending on how many
triples are specified, a multi-way join needs to be
executed. Since the join cost is a major portion of the total

1221

processing time, materialized join views can be defined to
speed up RDF_MATCH processing. The row size of
IdTriples table is small and hence the materialized join
view can be a good candidate for reducing the join cost.
In general, six materialized two-way join views, namely
joins between SubjectID-SubjectID, SubjectID-
PropertyID, SubjectID-ObjectID, PropertyID-

PropertyID, PropertyID-ObjectID , and ObjectID-

ObjectID can be defined as long as the storage
requirement is met. Most useful materialized join views
for typical queries, however, are joins between
SubjectID-SubjectID, SubjectID-ObjectID, and
ObjectID-ObjectID . Note that the individual materialized
join views could be created for a subset of data based on
the workload characteristics.

The materialized join views are incrementally
maintained on demand by the user using the
DBMS_MVIEW.REFRESH API . A procedural API is provided
to analyze IdTriples table to estimate the size of various
materialized views, based on which a user can define a
subset of materialized views.
Subject-Property Matrix Materialized Join Views: To
minimize the query processing overheads that are inherent
in the canonical triples-based representation of RDF,
subject-property matrix based materialized join views can
be used. These materialized views can be designed using
the following basic ideas:
• For a group of subjects, choose a set of single-valued

properties that occur together. These can be direct
properties of these subjects or nested properties. A
property p1 is a direct property of subject x1 if there is
a triple (x1, p1, x2). A property pm is a nested property
of subject x1 if there is a set of triples such as, (x1, p1,
x2), …, (xm, pm, xm+1), where m >1. For example, if
we have a set of triples, (John, address, addr1),
(addr1, zip, 03062), then zip is a nested property of
John.

• Create a (subject-property matrix) materialized join
view each of whose rows contains values of these
properties for a subject in the group.

Query performance can be improved significantly through
the use of such materialized join views because a number
of joins can be eliminated. For example, Table 1 shows a
sample RDF data and Table 2 shows a matrix materialized
join view created for subjects who are Student s with their
direct property age and nested property city (named in
the view as studiesAt to denote the city where his/her
university is located).

This subject-property matrix can be exploited by an
RDBMS optimizer to process an RDF query using the
following query pattern to retrieve the age and studiesAt
info for each student :
 ‘(?r rdf:type Student)
 (?r enrolledAt ?u)
 (?r age ?a)
 (?u city ?city)’

and retrieving values of variables ?r , ?city , and ?a.

Table 1: Student Info RDF Data
Subject Property Object

John rdf:type Student

John EnrolledAt Univ1

John Age 24

Pam rdf:type Student

Pam EnrolledAt Univ2

Pam Age 22

Univ1 UnivName NYU

Univ1 City New York

Univ2 City Los Angeles

Table 2: Student Matrix
Subject StudiesAt Age

John New York 24
Pam Los Angeles 22

This query will normally require a 4-way self-join on
the IdTriples table (leaving out the conversion between
IDs and URIs, for simplicity). However, by using the
matrix in Table 2, the query can be processed by simply
selecting all the rows from the materialized join view.
Thus, self-joins can be completely eliminated in this case.
This can lead to significant speed-up in query processing.

In general, for the type of queries shown above a query
requiring an n-way join could potentially be processed
using a matrix with m-properties with (n – m) joins.

In typical usage of such matrices, each subject in the
group will have one value for each of the chosen
properties. Usage may involve sparseness to some extent
to allow expanding the group of subjects to include those
subjects that may have no values for a few of the
properties in the selected subset.

It may be noted that use of these matrices as
materialized join views for performance gain needs to be
evaluated against the workload for potential benefits
versus the space overhead incurred for additional storage.
The issue of which views to materialize is dependent upon
the search pattern and it is up to the user to decide which
is frequent search pattern.

The problems of obtaining property-specific statistics
for a triple store with heterogeneous data can be mitigated
with the use of statistics computed on the matrix
materialized views because those can serve as statistics
for the corresponding portions of the vertical table.

Finally, Jena2’s [12] property tables (clustering
multiple properties) are in many ways similar to subject-
property matrices. The main differences include the
following:
• Subject-property matrix is an auxiliary structure, not

a primary storage structure. So, these matrices may be
dropped or redefined as necessary without requiring a
data re-loading.

• The definition of subject-property matrix allows use
of nested properties and hence allows more ways of

1222

creating useful materialized views for optimizing
performance of a variety of queries in a workload.

Indexing Rulebases: Rulebases specified in
RDF_MATCH query are applied, by default, during query
processing to the specified list of models. However, if a
rulebase is used frequently then that rulebase can be
indexed using a set of APIs provided for this purpose.
Indexing a rulebase for an RDF model refers to pre-
computing the triples that can be inferred with respect to
the specified model. These pre-computed triples are
stored in a separate table and are used subsequently
during RDF_MATCH query processing to speed up query
execution. In general, a pre-computing may need to be
done for a combination of models and rulebases, that is,
applying a set of rules from the union of rulebases to a
triples from the union of a set of RDF models.

However, these pre-computed results cannot be used
directly to process RDF_MATCH queries that reference
additional rulebases or models. Currently for such cases,
all inferencing must be done at query execution time.
Notice that inferencing can only add triples to the graph,
so the pre-computed triples are always valid for the larger
set of rulebases and models, though the pre-computed
results are not necessarily complete. We plan to explore
handling these cases by analyzing the rulebases and
models so we can avoid re-computing portions of the pre-
computed results that are complete.

Indexing RDF Data: As mentioned earlier, the core
processing involves performing self-joins on IdTriples
table. Thus, creating the right set of indexes on IdTriples
is critical for performance improvement. There are
typically two types of query patterns: 1) given a property,
joining subject with subject, or object with object, and 2)
given a property, joining subject with object, as shown
below:

 ‘(?r ReviewerOf ?c)
 (?r Age ?a)’

or
 ‘(?r ReviewerOf ?c)
 (?c rdf:type Conference)’

Since property is typically specified as a URI value, index
key with property as the first column may allow pruning
the search space to a single range in the B-tree index.
Further, having all the three columns (namely
PropertyID, SubjectID , and ObjectID) as part of the
key may allow index-only access provided the additional
storage space required for three column indexes can be
accommodated. Based upon these observations, we have
used two three column indexes with the following keys in
all of our performance experiments described in Section 5
: <PropertyID, SubjectID, ObjectID > and
<PropertyID, ObjectID, SubjectID >. Use of key-
prefix compression in indexes allowed reducing the
storage space required for the indexes.

The choice for indexes may depend on the actual RDF
data and workload characteristics. We need to explore
further to see how any algorithm for choosing indexes
may need to be customized to exploit constraints such as
row formats used for RDF triples storage and typical RDF
queries that involve multi-way self joins.

4. Minimizing Overheads by an
Enhancement to RDBMS
This section discusses an enhancement to Oracle RDBMS
table function infrastructure that can minimize table
function processing overheads.

4.1 RDF Query Processing Components

The RDF query processing time using RDF_MATCH
table function (ttotal), without the kernel enhancement
discussed in Section 4.2, can be represented as follows:

ttotal = tcore + tsql2proc + tproc2canonical + tcanonical2sql
Here tcore represents the core processing time, that is, the
cost of SQL query that performs the self-joins on
IdTriples table and any additional joins with UriMap
table. Once the results are computed, they are copied into
variables of the table function procedure (tsql2proc), and
subsequently it is converted to canonical format
(tproc2canonical) so it can be returned to via RDBMS table
function infrastructure, and finally transformed back
(tcanonical2sql) so it can be consumed by the outer SQL
query.

The component, ttotal - tcore , is dependent on the result
computed by table function (note: not on the overall
result) and hence it will dominate the query costs when
the table function result set size is large. The Experiment I
(described in Section 5.3) demonstrates the overheads
incurred for varying number of result rows. To avoid this
overhead an enhancement to RDBMS is implemented as
discussed below.

4.2 A New Table Function Interface

The following extension of RDBMS table function
infrastructure is implemented, that would allow a simple
rewrite of table function with a SQL query.

As an alternative to the current TableStart(),
TableFetch(), and TableClose() interfaces, RDBMS
should support a new table function interface:
 TableRewriteSQL(arg1, …, argn) RETURNS VARCHAR;

This function takes the arguments specified in the table
function and generates a SQL string. For table functions
defined using this interface, RDBMS table function
infrastructure does the following processing:
• Invoke the corresponding routine to generate the SQL

string,
• Substitute the generated SQL string into the original

SQL query, and
• Reparse and execute the resulting query.

1223

The net effect is same as if the user typed in the generated
SQL query in place of the table function. However, the
general function mechanism cannot be used here because
of the FROM clause. It has to be the table function.

Suppose the RDF_MATCH table function be defined
using the TableRewriteSQL() interface. Consider the
following query:

SELECT t.a age
FROM TABLE(RDF_MATCH(
 ‘(?r Age ?a)’,
 RDFModels('reviewers'),
 NULL, NULL)) t
WHERE t.a < 25;

The resulting query after rewriting the table function is as
follows:
SELECT t.a age
FROM (SELECT u1.UriValue a, u1.Type a$type

 FROM IdTriples t1, UriMap u1
 WHERE t1.PropertyID = 29 AND t1.ModelID = 1

 AND u1.UriID = t1.SubjectID) t
WHERE t.a < 25;

Note that the subquery in bold font is the SQL fragment
that is returned from TableRewriteSQL() for the above
RDF_MATCH invocation. Now, the whole SQL query is
optimized and executed. For example, the filter condition
is pushed inside the subquery for further optimization.

The advantage of such a scheme is that it avoids the
overhead of copying the results into table function
variables, as well as eliminates the table function
infrastructure overhead of transforming the result to
canonical form and re-transforming it back to present in
the appropriate datatype format. However, such a scheme
is applicable only when the table function can be defined
declaratively using SQL (as is the case for
RDF_MATCH).

5. Performance Study
This section describes the performance experiments

conducted using RDF_MATCH table function.

5.1 Experimental Setup
The experiments are conducted using Oracle10g Release
1 (10.1.0.2.0) on a Red Hat Enterprise Linux AS 3 system
with one 3.06GHz Pentium 4 CPU and 2048 MB of main
memory. A database buffer cache of 256 MB, shared pool
of 256 MB, and database block size of 8 KB is used.
 The timings reported below are the mean result from
ten or more trials with warm caches.
5.2 Dataset

The experiments I through IV are conducted using an
RDF representation of WordNet [11], a lexical database
for the English language, which organizes English words
into synonym sets, categorizes these synonym sets
according to part of speech (noun, verb, etc.), and
enumerates linguistic relationships (antonymOf,
similarTo, etc.) between these synonym sets. In the RDF
representation, each part of speech is modeled as an
rdfs:Class, and each linguistic relationship is modeled as

an rdf:Property. This RDF Schema for WordNet is shown
in Figure 3.

Figure 3: WordNet RDF Schema

The hyponymOf property is used to denote that the
subject represents a specialization of the object. For
example, skyscraper is a hyponym of building.

Table 3. Property and Resource Statistics of WordNet

The relevant logical statistics for the experimental
configuration is shown in Table 3. The logical statistics
can be computed simply with the RDF_MATCH table
function. For example, to find number of resources typed
as 'verb', a user use RDF_MATCH table function with the
pattern ‘(?w rdf:type wn:verb)’. This type of
query is expected to run efficiently as it results in a single
table query. For example, the above query took less than
0.01 seconds.

The data is stored in the normalized form in two tables,
namely, IdTriples table of size 14 MB and UriMap table
of size 34 MB. The indexes on IdTriples table and
UriMap table are of size 22 MB and 26 MB respectively.

 Experiments V and VI use large-scale UniProt data
with 80 million triples (see Section 5.7 for more details).
5.3 Experiment I: Overhead Estimation
This experiment characterizes the benefit of the
TableRewriteSQL() enhancement described in Section 4.
Four configurations are tested:
1) RDF_MATCH with the current table function

interface (TableStart(), TableFetch(), and
TableClose()). Execution time of this table function
corresponds to the ttotal term in Section 4.1.

2) SQL query equivalent to RDF_MATCH with the
enhanced interface (TableRewriteSQL()). Execution

Property Count
Resources

(explicit rdf:type)
Count

WordForm 174,002 Verb 12,127

Rdf:type 99,653 Noun 66,025

glossaryEntry 99,642 AdjectiveSatellite 10,912

hyponymOf 78,445 Adjective 7,003

SimilarTo 21,858 Adverb 3,575

Others 26 Others 11

Total 473,626 Total 99,653

LexicalConcept

Adjective Adverb Verb Noun

AdjectiveSatellite

similarTo

hyponymOf
antonymOf

Literal

glossaryEntry
wordForm

1224

time of this query corresponds to the tcore term in
Section 4.1.

3) Table function (using the current interface) that
fetches from a SQL query, but does not return any
rows. The SQL query is simple and its execution time
is negligible. Execution time of this table function
corresponds to the tsql2proc term in Section 4.1.

4) Table function (using the current interface) that
returns rows, but does not execute any SQL.
Execution time of this table function corresponds to
tproc2canonical + tcanonical2sql in Section 4.1.

Figure 4 shows the query processing time for these
components as the number of rows returned is varied:
from the bottom, Core SQL, SQL to Proc, Proc to SQL,
and Other in that order.

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 5000 9000 13000 17000 21000

Number of Rows Returned

T
im

e
(s

ec
on

ds
)

Core SQL SQL to Proc
Proc to SQL Other

Figure 4: RDF_MATCH Query Processing

Components (standard deviation σσσσ ≤≤≤≤ 0.0838)

The results demonstrate that tsql2proc and tproc2canonical +
tcanonical2sql are linear in the number of rows returned, and
that these overheads dominate the core SQL processing
time when a large number of rows are returned. The
enhanced table function interface avoids this per-row
overhead, and therefore it is preferred over the current
table function interface. In all of the remaining
performance experiments, we run the queries with the
enhanced RDF_MATCH table function interface.

5.4 Experiment II: Varying Number of Triples in the
Search Pattern

As the number of triples in the RDF_MATCH search
pattern increases, RDF_MATCH performs an increasing
number of self-joins on the Triples table. To characterize
how the varying number of self-joins impacts
performance, queries are run to find 'hyponymOf' paths of
varying length. For example, the query to find two-triple
'hyponymOf' paths is:

SELECT AVG(LENGTH(a))
FROM TABLE(RDF_MATCH(

‘(?a wn:hyponymOf ?b)
 (?b wn:hyponymOf ?c)’,
RDFModels('WordNet'),
NULL, NULL));

The queries are run without materialized views, and with a
generic SubjectID-ObjectID materialized view, as

described in Section 3.3. Figure 5 shows the query
processing time as the number of triples in the search
pattern varies. Note that the number of matches declines
as the number of triples increase, from 78,445 matches for
the one-triple query to 45,619 matches for the six-triple
query.

Figure 5: RDF_MATCH Performance For Various
Searches (σσσσ ≤≤≤≤ 0.0881)

As expected, processing time increases with the
number of triples due to corresponding increase in the
number of self-joins. The materialized view generally
improves performance, except for 1-triple and 5-triple
case. For 1-triple case, no benefit is expected, as the
resulting query does not involve any self-joins. For the 5-
triple case, the benefit derived due to usage of
materialized view is offset because the optimizer chooses
a sub-optimal plan.

5.5 Experiment III: Varying Filter Conditions

This experiment characterizes the impact of SQL
predicates that filter the results found by RDF_MATCH.
The following search pattern is used for this experiment:

 ‘(?c0 wn:wordForm ?word)
 (?c0 wn:wordForm ?syn1)
 (?c0 wn:wordForm ?syn2)
 (?c1 wn:wordForm ?syn1)
 (?c2 wn:wordForm ?syn2)
 (?c1 rdf:type wn:Adverb)
 (?c2 rdf:type wn:Verb)’

This query is executed with four different equality filters
(e.g., word = 'clear') and four different range filters (e.g.,
(word >= 'bat' AND word < 'bounce')) to yield
approximately 350, 1050, 2000, and 3125 matches with
each type of filter. Figure 6 shows the query processing
time for these filters. Note that this query finds 79,885
matches in 8 seconds when there is no filter predicate. As
expected, less selective filters require greater processing
time. Notice that equality filters are more efficient than
range filters. This is because the equality filter is
implemented with a single lookup in the UriMap table to
find the UriID for the literal given in the filter. In contrast,
range predicates require a join between the IdTriples and
UriMap table to get the values needed for filter
evaluation.

0

0.5

1

1.5

2

0 2 4 6 8

of Triples in the Pattern

T
im

e
(s

ec
on

ds
)

Without MJV With MJV

1225

0
0.1
0.2
0.3
0.4
0.5
0.6

0 1000 2000 3000 4000

Number of Rows

T
im

e
(s

ec
on

ds
)

Equality Predicate Range Predicate

Figure 6: RDF_MATCH Performance with Filter
Conditions (equality: σσσσ ≤≤≤≤ 0.0029; range: σσσσ ≤≤≤≤ 0.0619)

5.6 Experiment IV: Varying Projection List

This experiment characterizes the benefit of the
projection list optimization done by RDF_MATCH. The
following search pattern is used for this experiment:

 ‘(?c0 wn:wordForm ?word)
 (?c0 wn:wordForm ?syn1)
 (?c1 wn:wordForm ?syn1)
 (?c0 rdf:type wn:Adverb)
 (?c1 rdf:type wn:Adjective)’

0

0.1

0.2

0.3

0.4

0 1 2 3 4 5
Projection List Size

T
im

e
(s

ec
on

ds
)

Figure 7: RDF_MATCH Performance For Varying
Projection Lists (σσσσ ≤≤≤≤ 0.0724)

This search pattern, which involves 4 variables and yields
1,470 matches, is used in queries with varying sets of
variables referenced in the SELECT list. Figure 7 shows
the query processing time as the projection lists are
changed.

The projection list optimization eliminates joins with
the UriMap table for variables that are not referenced
outside of RDF_MATCH. It is clear that large
performance gains are possible from this optimization.

5.7 Experiment V: Large-Scale RDF Data

This experiment characterizes RDF_MATCH
performance for querying large-scale data. UniProt
protein and annotation data in RDF format [14] is used for
this experiment. To study scalability we created several
datasets using varying subsets (from 10 million to 80
million triples) of the UniProt data. The largest dataset,
corresponding to 5.2 GB of RDF/XML data, occupies 2.5
GB for IdTriples table, 1.7 GB for UriMap table, 3.6 GB
for IdTriples indexes, and 1.2 GB for UriMap indexes.
Six queries adapted from examples given with the UniProt

data (shown in Table 4) are then run against these
datasets.

Each query includes a ROWNUM predicate to limit
the number of result rows so that the number of matches
remains constant even as the dataset size changes. Also,
aggregate functions are used in the SELECT list to avoid
the overhead of returning multiple rows to the client.

The RDF_MATCH search pattern for Query 1, for
example, is as follows:
SELECT AVG(LENGTH(protein)), AVG(LENGTH(begin)),
 AVG(LENGTH(end))
FROM TABLE(RDF_MATCH(
 ‘(?p rdf:type up:Protein)
 (?p up:annotation ?a)
 (?a rdf:type
 up:Transmembrane_Annotation)
 (?a up:range ?range)
 (?range up:begin ?begin)
 (?range up:end ?end)’
 RDFModels('UniProt'), NULL, NULL))
WHERE rownum <= 15000;
Execution times (in seconds) for these queries (see Table
5) remain almost the same even as dataset size changes.

This shows that RDF_MATCH based query
performance is scalable, that is, retrieval cost per result
row remains almost the same as the dataset size changes.

5.8 Experiment VI: Subject-Property MJVs
To see potential benefits from use of Subject-Property
MJVs (SPMJVs), we used the following query pattern
against the 80M triple UniProt dataset:

 ‘(?s up:name ?n)
 (?s rdf:type up:Protein)
 (?s up:curated true)
 (?s up:created ?cre)
 (?s up:modified ?mod)’

Table 4. Queries adapted from UniProt sample queries
Description Pattern Projection Result

limit
Q1: Display the ranges of
transmembrane regions

6 triples
5 vars

3 vars 15000 rows

Q2: List proteins with
publications by authors
with matching names

5 triples
5 vars
1 LIKE pred.

3 vars 10 rows

Q3: Count the number of
times a publication by a
specific author is cited

3 triples
2 vars

0 vars 32 rows

Q4: List resources that
are related to proteins
annotated with a specific
keyword

3 triples
2 vars

1 var 3000 rows

Q5: List genes associated
with human diseases

7 triples
5 vars

3 vars 750 rows

Q6: List recently
modified entries

2 triples
2 vars
1 range pred.

2 vars 8000 rows

Table 5. RDF_MATCH Performance Scalability
 Q1 Q2 Q3 Q4 Q5 Q6
10 M Triples 0.86 < 0.01 < 0.01 0.03 0.18 0.46
20 M Triples 0.95 < 0.01 < 0.01 0.03 0.19 0.47
40 M Triples 0.96 < 0.01 < 0.01 0.03 0.18 0.47
80 M Triples 1.03 < 0.01 < 0.01 0.03 0.20 0.49
Maximum σ .054 0.002 0.002 .011 .065 0.07

1226

An SPMJV was created for rdf:type , up:curated ,
up:created , and up:modified properties. This SPMJV
contained 489,695 rows and occupied 39 MB; there was a
single B+tree index on the subject, which occupied 19
MB.

Two queries were tested: (#1) a COUNT(*) query, and
(#2) a query that selects ?n, ?cre, and ?mod. Each query
was posed with and without use of the SPMJV. The
results in Table 6 shows that this can lead to significant
performance benefits.

Table 6: RDF_MATCH Performance with and
without SPMJVs

Query Time (sec)

#1 w/o SPMJV 4.87

#1 w/ SPMJV 1.79

#2 w/o SPMJV 13.68

#2 w/ SPMJV 9.05

6. Conclusions and Future Work
The paper proposed a SQL based scheme for querying
RDF data. Specifically, the RDF_MATCH table function
is introduced with the ability to perform pattern-based
match against RDF data (graph) that can optionally
include triples inferred by applying RDFS or user-defined
rules. Users can do further processing (iterate over,
constrain using filter conditions, limit the results, etc.)
using standard SQL constructs.

The RDF_MATCH table function itself is
implemented by generating a SQL query against tables
holding RDF data. For efficient query processing, generic
and subject-property matrix materialized join views, and
indexes (on RDF data and rulebases) are used.
Furthermore, a kernel enhancement is implemented that
eliminates RDF_MATCH table function run-time
processing overheads.

The experimental study conducted using RDF data for
WordNet and UniProt demonstrates that the SQL based
scheme is efficient and scalable.

We expect that providing RDF querying capability as
part of SQL will enable a database system to support
wider range of applications as well as facilitate building
semantically rich applications. The RDF querying
capability can also be used in conjunction with data
mining techniques on RDF data collected from diverse
applications to discover interesting semantic relationships.

In future, we plan to consider alternate storage
representations for RDF triples. A promising storage
representation is partial normalization, where only the
namespaces are normalized. That is, URIs are represented
by the (namespace identifier, URI suffix). Also, we plan
to enhance RDBMS optimizer to improve its capabilities
in optimizing the class of self-join queries that typically
occur while querying RDF data. The selection of suitable
join method, join order, and subject-property matrix

materialized join views is critical in generating an optimal
plan. Allowing users to specify hints to influence the
optimization process will also be explored.

Acknowledgments

We thank Jay Banerjee for his useful comments on earlier
drafts of this paper.

References

[1] RDF Primer. W3C Recommendation, 10 February
2004, http://www.w3.org/TR/rdf-primer.

[2] L. Miller, A. Seaborne, A. Reggiori. Three
Implementations of SquishQL, a Simple RDF Query
Language. First International Semantic Web
Conference (ISWC2002), June 2002.

[3] RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation 10 February 2004,
http://www.w3.org/TR/rdf-schema.

[4] T. Berners-Lee, J, Handler, O Lassila. The Semantic
Web. Scientific American, May 2001.

[5] RDF Data Access Use Cases and Requirements. W3C
Working Draft, 2 June 2004,
http://www.w3.org/TR/rdf-dawg-uc/.

[6] Pipelined and Parallel Table Function. Data Cartridge
Developer's Guide Release 2 (9.2) Part No. A96595-
01, Oracle Corporation, March 2002.

[7] R. G. Bello, et al. Materialized Views in Oracle. In
Proceedings of the 24th Int. Conf. on Very Large Data
Bases, (1998), 659-664.

[8] WordNet, The Lexical Database for English
Language, http://www.cogsci.princeton.edu/~wn.

[9] RDQL - A Query Language for RDF, W3C Member
Submission 9 January 2004,
http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109.

[10] RDFQL Database Command Reference,
http://www.intellidimension.com/default.rsp?topic=/pa
ges/rdfgateway/reference/db/default.rsp.

[11] G. Karvounarakis, S. Alexaki, V. Christophides, D.
Plexousakis, M. Scholl. RQL: A Declarative Query
Language for RDF. WWW2002, May 7-11, 2002,
Honolulu, Hawaii, USA.

[12] Kevin Wilkinson, Craig Sayers, and Harumi Kuno.
Efficient RDF Storage and Retrieval in Jena2. First
International Workshop on Semantic Web and
Databases, pp. 131-151, 2003.

[13] SPARQL Query Language for RDF, W3C Working
Draft, 12 October 2004,
http://www.w3.org/TR/2004/WD-rdf-sparql-query-
20041012/.

[14] UniProt Data Set, http://www.isb-sib.ch/~ejain/rdf/.
[15] Li Ma, Zhong Su, Yue Pan, Li Zhang, Tao Liu.

RStar: An RDF Storage and Querying System for
Enterprise Resource Management. CIKM, pp. 484-491,
2004.

1227

