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Abstract 

Devising a scheme for efficient and scalable 
querying of Resource Description Framework 
(RDF) data has been an active area of current 
research. However, most approaches define new 
languages for querying RDF data, which has the 
following shortcomings: 1) They are difficult to 
integrate with SQL queries used in database 
applications, and 2) They incur inefficiency as 
data has to be transformed from SQL to the 
corresponding language data format. This paper 
proposes a SQL based scheme that avoids these 
problems. Specifically, it introduces a SQL table 
function RDF_MATCH to query RDF data. The 
results of RDF_MATCH table function can be 
further processed by SQL’s rich querying 
capabilities and seamlessly combined with 
queries on traditional relational data. 
Furthermore, the RDF_MATCH table function 
invocation is rewritten as a SQL query, thereby 
avoiding run-time table function procedural 
overheads. It also enables optimization of 
rewritten query in conjunction with the rest of the 
query. The resulting query is executed efficiently 
by making use of B-tree indexes as well as 
specialized subject-property materialized views. 
This paper describes the functionality of the 
RDF_MATCH table function for querying RDF 
data, which can optionally include user-defined 
rulebases, and discusses its implementation in 
Oracle RDBMS. It also presents an experimental 
study characterizing the overhead eliminated by 
avoiding procedural code at runtime, 
characterizing performance under various input 
conditions, and demonstrating scalability using 

80 million RDF triples from UniProt protein and 
annotation data. 

1.  Introduction   
Resource Description Framework (RDF) [1] is a language 
for representing information (metadata) about resources in 
the World Wide Web. The resources are not limited to 
web pages but can also include things that can be 
identified on web. The specification of metadata in the 
generic RDF format makes it suitable for automatic 
consumption by a diverse set of applications.  

The RDF data represented as a collection of <subject, 
property, object> triples, can easily be stored in a 
relational database. The paper addresses the issue of 
efficiently querying such RDF data. For querying RDF 
data, most approaches define yet another query language, 
which in turn issues SQL to process user requests. In 
contrast, this paper proposes a SQL-based scheme for 
querying RDF data. Specifically, it proposes an 
RDF_MATCH table function with the following 
functionality: 
• The ability to search for an arbitrary pattern against 

the RDF data including inferencing based on RDFS 
[3] rules, and  

• The ability to include a collection of user-defined 
rules as an optional data source. 

 

 

 

 

 

Figure 1: RDF data for reviewers model 

To illustrate the basic functionality, consider RDF data 
about research paper reviewers. The RDF classes and the 
triple instances are shown in Figure 1. Assuming the RDF 
data is stored in the database as the model 'reviewers', user 
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can issue the following query to find reviewers who are 
students with age less than 25: 

SELECT t.r reviewer 
FROM TABLE(RDF_MATCH( 
   ‘(?r  ReviewerOf  ?c)  
    (?r  rdf:type    Student) 
    (?r  Age         ?a)’, 

RDFModels('reviewers'),  
   NULL, NULL)) t 
WHERE t.a < 25;  

The various arguments to RDF_MATCH are as follows:  
• The first argument captures the graph pattern to 

search for. It uses SPARQL-like syntax [13] and 
variables are prefixed with a ‘?’ character.  

• The second argument specifies the model(s) to be 
queried.  

• The third argument specifies the rulebases (if any). 
Here the NULL argument indicates absence of 
rulebases.  

• The fourth argument specifies user-defined 
namespace aliases (if any).  Here the NULL argument 
indicates that no user-defined aliases are used, 
however default aliases such as rdf: are always 
available. 

By processing RDF data using SQL the regular database 
tables can be queried in a single query along with RDF 
data. For example, a user can join results of RDF query 
with a traditional employees  table say to find the emailid  
of the faculty reviewers: 

SELECT t.r reviewer, e.emailid emailid 
FROM TABLE(RDF_MATCH( 
   ‘(?r  ReviewerOf  ?c)  
    (?r  rdf:type    Faculty)’, 

RDFModels('reviewers'),  
   NULL, NULL)) t, employees e 
WHERE t.r = e.name;  

Providing RDF querying capability in SQL would enable 
applications to easily process domain-specific semantics 
stored as RDF data in a relational database. This becomes 
even more important especially in the context of semantic 
web applications, since RDF is an important building 
block of the semantic web [4]. Also, in future, if the vast 
amount of data stored in relational databases is made 
available as RDF triples [1], then the RDF_MATCH 
function can be used to query such data. Furthermore, 
applications that need to handle large volumes of 
metadata such as portals and e-marketplaces can also 
benefit from this functionality. 

The proposed SQL-based RDF querying scheme 
involving the RDF_MATCH table function has been 
designed to meet most of the requirements identified in 
[5], including RDF Graph pattern matching, limiting 
resulting subgraphs, and returning results that may contain 
subgraphs from the graph entailed by input RDF graphs. It 
also handles RDFS and user-defined rules in a seamless 
manner along with the models. 

With regards to implementation, the key aspects of our 
approach are as follows: 

• The RDF_MATCH functionality is introduced as a 
SQL table function. Although this avoids kernel 
changes, the approach is not suitable for class of 
queries that return large result sets, where the 
overhead of returning result via the RDBMS table 
function infrastructure tends to dominate the query 
costs (see Section 4.1 for details).  To circumvent this 
problem an extension to RDBMS table function 
infrastructure is implemented, which allows a  rewrite 
of table function with a SQL query. With this 
extension, processing of RDF_MATCH table 
function query does not require any additional 
language run-time system other than the SQL engine. 

• The RDF data triples are stored after normalization in 
two tables, namely IdTriples (triples in the identifier 
format) and UriMap (uri to identifier mapping). Other 
storage organizations are possible but are not 
considered in this paper. This would be addressed in 
future work. The storage representation supports 
handling literal of multiple datatypes as well as 
supports multiple representations of same literal 
value. 

• The core implementation of RDF_MATCH query 
translates to a self-join query on IdTriples table. To 
efficiently execute this query, a set of B-tree indexes 
and materialized views are defined on the IdTriples 
and UriMap Tables.  

• A class of materialized views called subject-property 
matrix materialized join views (SPMJVs) is 
introduced to avoid the inefficiency resulting from 
storing heterogenous data in the canonical triple 
format table. Also, the statistics collected on these 
SPMJVs serve as statistics for the corresponding 
portions of the triple table. 

• Our approach relies on the RDBMS cost-based 
optimizer for optimizing the resulting query (that is, 
after rewrite of table function invocation). This 
approach has the advantage that RDBMS optimizer is 
leveraged. However, a shortcoming is that optimizer 
can generate sub-optimal plans. We plan to address 
this problem in future by enhancing the optimizer to 
better handle the class of self-join queries.  

• Rulebases are in general handled by generating SQL 
queries, which may optionally involve table 
functions. Also we support the notion of indexing 
rulebases, which allows pre-computing and storing 
the data derived by applying rulebases to specified 
RDF models.  

This scheme has been implemented in Oracle RDBMS 
using Oracle’s table function infrastructure. In addition, 
the implementation uses Oracle’s B-tree indexes, 
function-based indexes, and materialized views.  

Performance experiments conducted using RDF data 
for WordNet, the lexical database for English language 
[8], and UniProt protein and annotation data [14] validate 
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the feasibility of this scheme and demonstrate that it 
scales well for large data sets.  

The key contributions of the paper are: 
• A SQL-based scheme for querying RDF data. No 

changes are made to SQL. Instead, RDF_MATCH 
table function is introduced. User can leverage all of 
the SQL capability to process the result of the 
RDF_MATCH table function. 

• An efficient and scalable SQL based implementation 
of RDF_MATCH table function, including querying 
on data derived by applying rulebases..   

• An extension to RDBMS table function infrastructure 
that eliminates bulk of the runtime overheads for 
class of table functions that can be expressed as a 
SQL query. 

• A study characterizing RDF query performance as 
well as identifying overheads in various components. 

1.1 Related Work 

For querying RDF data, a number of query languages 
have been developed. This includes RDQL [9], RDFQL 
[10], RQL [11], SPARQL[13], SquishQL [1], and RSQL 
[15]. These are declarative query languages with quite a 
few similarities to SQL. However, the scheme proposed in 
this paper differs from all of the above in that it allows 
SQL itself to be used to query RDF data by introducing a 
table function. The main advantage of this SQL-based 
scheme is that it allows leveraging the rich functionality of 
SQL and efficiently combining graph queries with queries 
against traditional database tables. 

With respect to handling rulebases, our scheme is quite 
similar to RDFQL where one or more data sources or 
rulebases can be specified.  

With regards to implementation, query languages such 
as RQL and SquishQL try to push as much of the 
functionality as possible to underlying database by 
formulating SQL queries against tables storing RDF data. 
Our approach for implementing the RDF_MATCH table 
function is somewhat similar. However, it is tightly 
integrated with the SQL engine and with the table function 
SQL rewrite functionality further optimization is possible 
such as filter condition pushdown.  Our approach uses 
materialized views to speed up queries on RDF data. This 
is in addition to the typical database indexes one can 
define on the tables storing RDF data. 

1.2 Organization of the Paper 
Section 2 describes key concepts of supporting 
RDF_MATCH based queries. Section 3 discusses the 
design and implementation of the RDF_MATCH function 
on top of Oracle RDBMS. Section 4 discusses an 
RDBMS table function infrastructure enhancement that 
can eliminate bulk of the mapping overhead for 
RDF_MATCH queries. Section 5 describes the 
performance experiments conducted using RDF data for 

WordNet and UniProt. Section 6 concludes with a 
summary and future work.  

2.  Key Concepts 
This section gives the terminology used in the rest of the 
paper, outlines the requirements for querying RDF data, 
and describes how the SQL based RDF querying scheme 
meets these requirements. 

2.1 Terminology  

RDF can be used to capture domain semantics. The basic 
unit of information is a fact expressed as a <subject, 
property (predicate), object> triple. For example, the fact, 
‘John′s age is 24’, can be represented by <‘John’, ‘age’, 
‘24’> triple. A collection of triples, typically pertaining to 
a domain or sub-domain, constitutes an RDF model.  

Triples in a model can be classified as schema triples 
and data triples. Schema triples, specified using RDFS, 
describe the schema-related information (for example, 
<‘age’, ‘rdfs:domain’, ‘Person’>),  whereas data triples 
describe the instance data. Note that a triple’s subject and 
property are always URIs while its object can be a URI or 
literal. 

An RDF model is also referred to as RDF graph, 
where each triple forms a <property> edge that connects 
the <subject> node to the <object> node. 

An RDF data set can optionally include one or more 
rulebases, each containing a collection of rules. A rule 
when applied to a model yields additional triples.  An 
RDF model augmented with a rulebase is equivalent to the 
original set of triples plus the triples inferred by applying 
the rulebase to the model. 

2.2 A SQL based RDF Querying Scheme 

A table function is introduced to SQL as described below 
to satisfy most of the requirements described in [5] by a 
SQL-based RDF querying scheme. 

RDF_MATCH Table Function: For data stored in a 
database, an RDF_MATCH table function is introduced 
with the ability to search for an arbitrary graph pattern 
against the RDF data, including inferencing based on 
RDFS and user-defined rules. The signature of the table 
function is as follows: 
  RDF_MATCH ( 

    Pattern    VARCHAR, 
    Models    RDFModels,  
    RuleBases   RDFRules, 
    Aliases    RDFAliases,   
  )  
RETURNS AnyDataSet; 

The first parameter captures the graph pattern to be 
matched. It is specified as a collection of one or more 
<Subject, Property, Object> triple patterns. Typically, 
each triple pattern contains some variables. Variables 
always start with a '?'  character. 

Among the remaining parameters, the first two specify 
a list of RDF models and (optional) rulebases, which 
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together constitute the RDF data to be queried. The last 
parameter specifies aliases for namespaces.  

The result returned by RDF_MATCH is a table of 
rows. Each resulting row contains values (bindings) for 
the variables used in the graph pattern. Substituting the 
values in the graph pattern would identify the 
corresponding matching subgraph.  

The exact definition of the result table, that is, the set 
of columns and their data types, varies depending upon 
the graph pattern used in an RDF_MATCH invocation. 
(Use of the AnyDataSet  data type allows us to define 
RDF_MATCH with this flexibility.) Specifically, for each 
variable in a given graph pattern, the result table has a 
column with the same name as the variable (without the 
starting ‘?’ ). These columns are used for returning the 
lexical values for the corresponding variables. In addition, 
the result table has additional columns (of form 
<variable>$type ) for returning data type information for 
each variable that may be bound to literals as well. Note 
that based upon current RDF restrictions (that subjects 
and predicates in triples must be URIs and not literals), 
only those variables that do not appear as subject and 
predicate components of triples in a graph pattern can be 
bound to literal values. 

Example: Consider the following query (from Section 1) 
to find student reviewers who are less than 25 year old: 

SELECT t.r reviewer, t.c conf, t.a age 
FROM TABLE(RDF_MATCH( 
  ‘(?r rdf:type  Student) 
   (?r ReviewerOf  ?c) 
   (?r Age    ?a)’, 
  RDFModels (‘reviewers’), 
  NULL, NULL)) t 
WHERE t.a < 25; 

The RDF_MATCH invocation returns the following table: 
r c c$type a a$type 

John IDBC2005 URI 24 xsd:int 

Note that, since variable ?r  appears as subject component, 
the value of column r  is always a URI and hence there is 
no need for an additional column to return its data type.  

SQL constructs may be used to extend the above 
query, to do aggregation, grouping, and ordering, for 
example: 
  SELECT t.c conf,  
         COUNT(*) row_count, AVG(t.a) avg_age 
  FROM TABLE(RDF_MATCH(………)) t 
  GROUP BY t.c 
  ORDER BY avg_age;   

Though the above examples show querying RDF data 
only, users can also query the associated RDF schema, for 
example, to obtain domains and ranges for a property. 
Thus, the key benefits of using a table function for 
querying RDF data is that the standard SQL constructs 
can be used for further processing of the results. This 
includes iterating over the results, constraining the results 
using WHERE clause predicates, grouping the results 
using GROUP BY clause, sorting the results using 

ORDER BY clause, and limiting the results by using the 
ROWNUM clause. Also, the SQL set operations can be 
used to combine result sets of two or more invocations of 
RDF_MATCH. With the table function SQL rewrite 
functionality discussed in Section 4.2 the optimizer will 
be able to optimize the whole SQL query including filter 
condition pushdown.  

Rule and Rulebases: A rule is identified by a name and 
the rulebase to which it belongs. A rule consists of a left 
hand side (LHS) pattern for the antecedents, an optional 
filter condition that further restricts the subgraphs 
matched by the LHS, an optional list of namespace 
aliases, and a right hand side (RHS) pattern for the 
consequents. For example, the rule that “chair person of a 
conference is also a reviewer of the conference” is 
represented as follows: 

('rb',                    -- rulebase name 
   'ChairpersonRule',        -- rule name 
   ‘(?r  ChairPersonOf  ?c)’,-- LHS pattern 
   NULL,                     -- filter condition 
   NULL,                     -- aliases 
   ‘(?r  ReviewerOf  ?c)’)   -- RHS pattern  
The following query will return both John  and Mary  as 
reviewers. The latter is implicitly inferred by applying 
rulebase rb  to the reviewers  model. 

SELECT t.r reviewer 
FROM TABLE(RDF_MATCH( 
  ‘(?r ReviewerOf  ?c)’, 
  RDFModels (‘reviewers’), 
  RDFRules(‘rb’), NULL)) t;  

A user can create rulebases and add rules by using APIs.  
Once the rulebases are created and populated, they can be 
specified in a RDF_MATCH query. Note that the RDFS 
rulebase (named rdfs ) is created by the system and is 
implicitly available for users. 

3. Design and Implementation 
This section describes the design and implementation of 
the SQL-based RDF Querying Scheme. This scheme is 
implemented on top of Oracle RDBMS. Although the 
description here assumes Oracle RDBMS, the scheme can 
be supported in any RDBMS that supports table functions, 
materialized join views, and B-tree indexes. 

3.1 RDF Data Storage and Multiple Data Type 
Hanlding 

The RDF data must be stored compactly and the 
storage format should be suitable for efficient query 
processing. In our scheme, RDF data is stored (after 
normalization) in two tables: IdTriples (ModelID, 

SubjectID, PropertyID, ObjectID, …)  and UriMap 

(UriID, UriValue, …).  This normalization is critical 
because URIs (or literals) are typically repeated. Also, it 
enables efficient query processing due to the compact 
size. Given an RDF triple, its three URIs (or literals) are 
first mapped to corresponding identifiers using table 
UriMap. If no mapping is found for a URI (or literal), a 
new unique UriID is generated and the new mapping is 
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inserted into the UriMap table. A tuple comprising the 
ModelID (for the RDF model) and the three UriIDs is 
then stored into the IdTriples table.  

A user view is created on the underlying tables holding 
RDF data, which presents only selective portions (at 
model granularity) of the RDF data to the users based on 
their privileges. Also, the RDF_MATCH function is 
executed with invoker’s privileges. Thus, this scheme 
limits each invoker’s access via RDF_MATCH query to 
only the appropriate portion of the RDF data. 

Typed literals are stored in the UriMap table with their 
type. To support matching between multiple 
representations for the same value, such as the integer 123 
and the float 12.3E+1, each literal is mapped to a 
canonical literal. Literals that represent the same value 
will map to the same canonical literal, and a literal may be 
its own canonical literal. The canonical literal ID (which 
is used when joining on the object column) and the exact 
literal ID (which is used when returning the object to the 
user) are both stored in IdTriples. For simplicity, queries 
in this paper are written as if there was a single objectID 
column in IdTriples. 

The first literal entered for a value becomes the 
canonical literal. To support mapping other equi-valued 
literals to this canonical literal, there is a flag in UriMap 
to indicate that the literal is a canonical literal. Further, 
the pre-defined datatypes are partitioned into families, 
where all types in a family are associated with a single 
value space. For example, float and integer types both 
belong to the numeric family. For each type family, there 
is a function to convert the UriMap lexical representations 
into a canonical form, such as a native database type. A 
function-based index for this purpose is defined on 
UriMap, so a canonical form can efficiently be mapped to 
the corresponding canonical literal during querying. 

3.2 RDF_MATCH Table Function 

The RDF_MATCH functionality is implemented as a 
SQL table function using Oracle’s table function 
interfaces [6]. 

RDF Query Processing 
-  Compile Time Processing: At compile time, the form 
of the table result, namely the set of columns is 
determined. The kernel passes information regarding the 
columns referenced in the outer SQL query to the table 
function. This allows for optimization of table function 
queries based on columns referenced in the SQL query 
containing table function invocation.  

- Execution Time Processing: Based on the input 
arguments, namely, pattern, models, rules, and aliases, a 
SQL query is generated against the IdTriples and UriMap 
tables. Figure 2 shows the various layers of 
implementation. There are two types of implementation: 
conventional procedural processing (discussed in Section 
4.1) and a new declarative rewrite-based processing 

(discussed in Section 4.2). Due to overheads with the 
procedural implementation, RDF_MATCH function uses 
the rewrite-based implementation. 

 

 

 

 

 

       
 

Figure 2: RDF_MATCH Implementation Overview  

Consider as an example use of the RDF_MATCH table 
function in the following SQL query: 

SELECT t.r reviewer, t.c conf, t.a age 
FROM TABLE(RDF_MATCH( 

       ‘(?r ReviewerOf   ?c) 
        (?r rdf:type  Student)  
        (?r Age    ?a)’, 
 ……… 

First, aliases specified (if any) are substituted with the 
namespaces to expand all alias-encoded URIs. Next, the 
URIs and literals, such as 'ReviewerOf', 'rdf:type' are 
converted into UriIDs using lookups on the UriMap table: 
 FROM IdTriples t1, IdTriples t2. IdTriples t3 
 WHERE t1.PropertyID = 14 AND t2.PropertyID = 11 
  AND  t2.ObjectID = 4    AND t3.PropertyID = 29 

Then a self-join query is generated based on matching 
variables across triples (e.g. '?r') in the pattern: 

WHERE … t1.SubjectID = t2.SubjectID AND 
        t2.SubjectID = t3.SubjectID  

Next, the internal IDs are joined with the UriMap table to 
generate the join result in the URI (and literal) format: 

SELECT u1.UriValue r, u2.UriValue c,           
u2.Type c$type, u3.UriValue a,  
u3.Type a$type 

FROM …… UriMap u1, UriMap u2, UriMap u3 
WHERE …… t1.SubjectID = u1.UriID AND  
         t1.ObjectID =  u2.UriID AND  
         t3.ObjectID =  u3.UriID  

Note that ‘r ’ is a URI, so there is no type associated, 
whereas ‘c ’ and ‘a’ have a date type (c$type, a$type ) 
associated. 

The models argument is used to restrict the IdTriples 
table based on the corresponding model identifiers in the 
above self-join SQL query. After the transformation 
phase, the generated single SQL query is optimized and 
executed to obtain results.  

In addition to the table function arguments, kernel 
implicitly provides information regarding the columns 
(which correspond to the variables in the graph pattern) 
referenced elsewhere in the original SQL query. The 
RDF_MATCH implementation has been optimized to 
compute values only for these columns. This avoids 
additional joins with UriMap table to get the 
corresponding UriValue. In general, a query with n triple 

RDF_MATCH Table function  

SQL Query involving RDF_MATCH table function 

SQL Query 2 (the self-join query, 
including Internal ID � URI mapping) 

SQL Query 1  (URI � Internal ID mapping) 
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pattern and m variables will result in a query with (n+m-1) 
joins, assuming m variables are projected (hence m joins 
with UriMap table). Experiment IV (Section 5.6) 
demonstrates the performance benefits of this 
optimization. 

The rules argument contains a list of rulebases to be 
applied to infer new triples. This is discussed below. 

Rule Processing: To handle rules, the RDF_MATCH 
function replaces references to the IdTriples table in the 
generated SQL with subqueries or table functions that 
yield the relevant explicit and inferred triples. Subqueries 
are used whenever the required inferencing can be done 
conveniently within a SQL query (i.e., without explicitly 
materializing intermediate results). These subqueries 
generally take the form of a SQL UNION with one 
UNION component for each rule that yields a relevant 
triple, plus one component to select the explicit triples. 
Table functions will be used when the subquery approach 
is not feasible. 

To support the RDFS inference rules, we must 
compute a transitive closure for the two transitive RDFS 
properties: rdfs:subClassOf (rule rdfs11) and 
rdfs:subPropertyOf (rule rdfs5). In Oracle RDBMS, these 
transitive closures can be computed using hierarchical 
queries with the START WITH and CONNECT BY 
NOCYCLE clauses. Note that CONNECT BY 
NOCYCLE queries can handle graphs that contain cycles 
by generating the row in spite of the loop in user data. The 
remaining RDFS rules can be implemented with simple 
SQL queries. 

To ensure that RDFS inferencing can be done within a 
single SQL query, the user is prohibited from extending 
the built-in RDFS vocabulary. This means, for example, 
that there cannot be a property that is a sub-property of 
the rdfs:subPropertyOf property, nor can there be a user-
defined rule that yields rdfs:domain triples. 

User-defined rules can be classified as follows based 
upon the extent of recursion, if any, in the rule:  

• Non-recursive rules: The antecedents cannot be 
inferred by the given rule, or any rule that depends on 
the given rule’s consequents.  

• Simple recursive rules: These rules are used to 
associate transitivity and symmetry characteristics 
with   user-defined properties.  

• Rules that use arbitrary recursion unlike the other two 
categories. 

Non-recursive user-defined rules can be evaluated using 
SQL (join) queries by formulating the FROM and 
WHERE clauses based upon the antecedents and the 
SELECT clause based on the consequents of the rule so as 
to return the inferred triples. Note that the triples that 
match the antecedents of a user-defined rule could 
themselves be inferred, so the FROM clause may 
reference subqueries to find inferred triples. The 

ChairpersonRule given in Section 2.2 would translate into 
SQL as follows: 
SELECT ... 
FROM ( 
-- (?x ChairpersonOf ?c) => (?x ReviewerOf ?c) 
 SELECT t1.SubjectID, 14 PropertyID, t1.ObjectID 
 FROM IdTriples t1 
 WHERE t1.PropertyID = 56 
 UNION 
-- explicit ReviewerOf triples 
 SELECT t1.SubjectID, t1.PropertyID, t1.ObjectID 
 FROM IdTriples t1 
 WHERE t1.PropertyID = 14 
) t1; 

Simple recursive rules involving transitivity and symmetry 
can be evaluated as follows. Symmetry can be easily 
handled with a simple SQL query. However, handling 
transitivity with a single SQL query requires some type of 
hierarchical query (e.g., using the START WITH and 
CONNECT BY NOCYCLE clauses in Oracle RDBMS), 
as in the case of transitive RDFS rules. 
     Suppose the user's query is: 
   ... 
   RDF_MATCH( 
         ‘(?a  rdf:type    Male) 
          (?a  AncestorOf  ?b)’, 
   ... 

There is a user-defined rule to make AncestorOf 
transitive, and for simplicity we assume that the RDFS 
rulebase is not used. So after translation we have a join 
between IdTriples (for the rdf:type triple) and a subquery 
which computes the transitive closure using CONNECT 
BY (for AncestorOf): 
SELECT ... 
FROM IdTriples t1, ( 
  SELECT DISTINCT 
     CONNECT_BY_ROOT(t1.SubjectID)  SubjectID, 
     t1.PropertyID, t1.ObjectID 
  FROM IdTriples t1 
  START WITH t1.PropertyID = 43 
  CONNECT BY NOCYCLE t1.PropertyID = 43 AND  
             PRIOR ObjectID = SubjectID 
  ) t2 
WHERE t1.PropertyID = 11 AND t1.ObjectID = 17 
      AND t1.SubjectID = t2.SubjectID; 

The third class of rules involving arbitrary recursion is the 
most complicated, and it has not been addressed in the 
current implementation. These rules will be evaluated 
using table functions, because an unknown number of 
passes over the intermediate results are required to find all 
inferred triples. 

3.3 Speeding up RDF_MATCH Queries 

The speed up is achieved by creating materialized join 
views (MJVs) and creating appropriate B+-tree indexes on 
them, and indexing RDF data and rulebases. Each of these 
is described in detail below. 
Generic Materialized Join Views: The query generated 
by RDF_MATCH table function involves a self-join of 
IdTriples table if the same variable is used in more than 
one triple of the search pattern. Depending on how many 
triples are specified, a multi-way join needs to be 
executed. Since the join cost is a major portion of the total 
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processing time, materialized join views can be defined to 
speed up RDF_MATCH processing. The row size of 
IdTriples table is small and hence the materialized join 
view can be a good candidate for reducing the join cost. 
In general, six materialized two-way join views, namely 
joins between SubjectID-SubjectID, SubjectID-
PropertyID, SubjectID-ObjectID, PropertyID-

PropertyID, PropertyID-ObjectID , and ObjectID-

ObjectID  can be defined as long as the storage 
requirement is met. Most useful materialized join views 
for typical queries, however, are joins between 
SubjectID-SubjectID, SubjectID-ObjectID,  and 
ObjectID-ObjectID . Note that the individual materialized 
join views could be created for a subset of data based on 
the workload characteristics. 

The materialized join views are incrementally 
maintained on demand by the user using the 
DBMS_MVIEW.REFRESH API . A procedural API is provided 
to analyze IdTriples table to estimate the size of various 
materialized views, based on which a user can define a 
subset of materialized views. 
Subject-Property Matrix Materialized Join Views: To 
minimize the query processing overheads that are inherent 
in the canonical triples-based representation of RDF,    
subject-property matrix based materialized join views can 
be used. These materialized views can be designed using 
the following basic ideas: 
• For a group of subjects, choose a set of single-valued 

properties that occur together. These can be direct 
properties of these subjects or nested properties. A 
property p1 is a direct property of subject x1 if there is 
a triple (x1, p1, x2). A property pm is a nested property 
of subject x1 if there is a set of triples such as, (x1, p1, 
x2), …, (xm, pm, xm+1), where m >1. For example, if 
we have a set of triples, (John, address, addr1), 
(addr1, zip, 03062), then zip is a nested property of 
John. 

• Create a (subject-property matrix) materialized join 
view each of whose rows contains values of these 
properties for a subject in the group. 

Query performance can be improved significantly through 
the use of such materialized join views because a number 
of joins can be eliminated.  For example, Table 1 shows a 
sample RDF data and Table 2 shows a matrix materialized 
join view created for subjects who are Student s with their 
direct property age  and nested property city  (named in 
the view as studiesAt  to denote the city where his/her 
university is located).  

This subject-property matrix can be exploited by an 
RDBMS optimizer to process an RDF query using the 
following query pattern to retrieve the age  and studiesAt  
info for each student : 
    ‘(?r rdf:type   Student) 
     (?r enrolledAt   ?u) 
     (?r age     ?a) 
     (?u city     ?city)’ 

and retrieving values of variables ?r , ?city , and ?a. 

Table 1: Student Info RDF Data  
Subject  Property  Object  

John  rdf:type  Student  

John  EnrolledAt  Univ1  

John  Age 24 

Pam rdf:type  Student  

Pam EnrolledAt  Univ2  

Pam Age 22 

Univ1  UnivName  NYU 

Univ1  City  New York  

Univ2  City  Los Angeles  

Table 2: Student Matrix  
Subject  StudiesAt  Age 

John  New York  24 
Pam Los Angeles  22 

This query will normally require a 4-way self-join on 
the IdTriples table (leaving out the conversion between 
IDs and URIs, for simplicity). However, by using the 
matrix in Table 2, the query can be processed by simply 
selecting all the rows from the materialized join view. 
Thus, self-joins can be completely eliminated in this case. 
This can lead to significant speed-up in query processing. 

In general, for the type of queries shown above a query 
requiring an n-way join could potentially be processed 
using a matrix with m-properties with (n – m)  joins. 

In typical usage of such matrices, each subject in the 
group will have one value for each of the chosen 
properties.  Usage may involve sparseness to some extent 
to allow expanding the group of subjects to include those 
subjects that may have no values for a few of the 
properties in the selected subset. 

It may be noted that use of these matrices as 
materialized join views for performance gain needs to be 
evaluated against the workload for potential benefits 
versus the space overhead incurred for additional storage. 
The issue of which views to materialize is dependent upon 
the search pattern and it is up to the user to decide which 
is frequent search pattern. 

The problems of obtaining property-specific statistics 
for a triple store with heterogeneous data can be mitigated 
with the use of statistics computed on the matrix 
materialized views because those can serve as statistics 
for the corresponding portions of the vertical table. 

Finally, Jena2’s [12] property tables (clustering 
multiple properties) are in many ways similar to subject-
property matrices. The main differences include the 
following:  
• Subject-property matrix is an auxiliary structure, not 

a primary storage structure. So, these matrices may be 
dropped or redefined as necessary without requiring a 
data re-loading. 

• The definition of subject-property matrix allows use 
of nested properties and hence allows more ways of 
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creating useful materialized views for optimizing 
performance of a variety of queries in a workload. 

Indexing Rulebases: Rulebases specified in 
RDF_MATCH query are applied, by default, during query 
processing to the specified list of models. However, if a 
rulebase is used frequently then that rulebase can be 
indexed using a set of APIs provided for this purpose. 
Indexing a rulebase for an RDF model refers to pre-
computing the triples that can be inferred with respect to 
the specified model. These pre-computed triples are 
stored in a separate table and are used subsequently 
during RDF_MATCH query processing to speed up query 
execution. In general, a pre-computing may need to be 
done for a combination of models and rulebases, that is, 
applying a set of rules from the union of rulebases to a 
triples from the union of a set of RDF models. 

However, these pre-computed results cannot be used 
directly to process RDF_MATCH queries that reference 
additional rulebases or models. Currently for such cases, 
all inferencing must be done at query execution time. 
Notice that inferencing can only add triples to the graph, 
so the pre-computed triples are always valid for the larger 
set of rulebases and models, though the pre-computed 
results are not necessarily complete. We plan to explore 
handling these cases by analyzing the rulebases and 
models so we can avoid re-computing portions of the pre-
computed results that are complete. 

Indexing RDF Data: As mentioned earlier, the core 
processing involves performing self-joins on IdTriples 
table.  Thus, creating the right set of indexes on IdTriples 
is critical for performance improvement. There are 
typically two types of query patterns: 1) given a property, 
joining subject with subject, or object with object, and 2) 
given a property, joining subject with object, as shown 
below: 

    ‘(?r ReviewerOf   ?c) 
     (?r Age     ?a)’ 

or  
    ‘(?r ReviewerOf   ?c) 
     (?c rdf:type   Conference)’   

Since property is typically specified as a URI value, index 
key with property as the first column may allow pruning 
the search space to a single range in the B-tree index. 
Further, having all the three columns (namely 
PropertyID, SubjectID , and ObjectID ) as part of the 
key may allow index-only access provided the additional 
storage space required for three column indexes can be 
accommodated. Based upon these observations, we have 
used two three column indexes with the following keys in 
all of our performance experiments described in Section 5 
: <PropertyID, SubjectID, ObjectID > and 
<PropertyID, ObjectID, SubjectID >. Use of key-
prefix compression in indexes allowed reducing the 
storage space required for the indexes. 

The choice for indexes may depend on the actual RDF 
data and workload characteristics. We need to explore 
further to see how any algorithm for choosing indexes 
may need to be customized to exploit constraints such as 
row formats used for RDF triples storage and typical RDF 
queries that involve multi-way self joins. 

4. Minimizing Overheads by an 
Enhancement to RDBMS 
This section discusses an enhancement to Oracle RDBMS 
table function infrastructure that can minimize table 
function processing overheads. 

4.1 RDF Query Processing Components 

The RDF query processing time using RDF_MATCH 
table function (ttotal), without the kernel enhancement 
discussed in Section 4.2, can be represented as follows: 

ttotal =  tcore +    tsql2proc   + tproc2canonical   + tcanonical2sql 
Here tcore represents the core processing time, that is, the 
cost of SQL query that performs the self-joins on 
IdTriples table and any additional joins with UriMap 
table. Once the results are computed, they are copied into 
variables of the table function procedure (tsql2proc), and 
subsequently it is converted to canonical format 
(tproc2canonical) so it can be returned to via RDBMS table 
function infrastructure, and finally transformed back 
(tcanonical2sql) so it can be consumed by the outer SQL 
query.  

The component, ttotal - tcore , is dependent on the result 
computed by table function (note: not on the overall 
result) and hence it will dominate the query costs when 
the table function result set size is large. The Experiment I 
(described in Section 5.3) demonstrates the overheads 
incurred for varying number of result rows.  To avoid this 
overhead an enhancement to RDBMS is implemented as 
discussed below. 

4.2 A New Table Function Interface 

The following extension of RDBMS table function 
infrastructure is implemented, that would allow a simple 
rewrite of table function with a SQL query.  

As an alternative to the current TableStart(), 
TableFetch(), and TableClose() interfaces,  RDBMS 
should support a  new table function interface: 
   TableRewriteSQL(arg1, …, argn) RETURNS VARCHAR; 

This function takes the arguments specified in the table 
function and generates a SQL string. For table functions 
defined using this interface, RDBMS table function 
infrastructure does the following processing: 
• Invoke the corresponding routine to generate the SQL 

string, 
• Substitute the generated SQL string into the original 

SQL query, and  
• Reparse and execute the resulting query. 
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The net effect is same as if the user typed in the generated 
SQL query in place of the table function.  However, the 
general function mechanism cannot be used here because  
of the FROM clause. It has to be the table function. 

Suppose the RDF_MATCH table function be defined 
using the TableRewriteSQL()  interface.  Consider the 
following query: 

SELECT t.a age 
FROM TABLE(RDF_MATCH( 
  ‘(?r  Age  ?a)’, 
  RDFModels('reviewers'),  
  NULL, NULL)) t 
WHERE t.a < 25; 

The resulting query after rewriting the table function is as 
follows:  
SELECT t.a age  
FROM (SELECT u1.UriValue a, u1.Type a$type  

   FROM IdTriples t1, UriMap u1  
   WHERE t1.PropertyID = 29 AND t1.ModelID = 1 

           AND u1.UriID = t1.SubjectID)  t 
WHERE t.a < 25; 

Note that the subquery in bold font is the SQL fragment 
that is returned from TableRewriteSQL() for the above 
RDF_MATCH invocation. Now, the whole SQL query is 
optimized and executed. For example, the filter condition 
is pushed inside the subquery for further optimization. 

The advantage of such a scheme is that it avoids the 
overhead of copying the results into table function 
variables, as well as eliminates the table function 
infrastructure overhead of transforming the result to 
canonical form and re-transforming it back to present in 
the appropriate datatype format. However, such a scheme 
is applicable only when the table function can be defined 
declaratively using SQL (as is the case for 
RDF_MATCH).  

5. Performance Study  
This section describes the performance experiments 

conducted using RDF_MATCH table function. 

5.1 Experimental Setup 
The experiments are conducted using Oracle10g Release 
1 (10.1.0.2.0) on a Red Hat Enterprise Linux AS 3 system 
with one 3.06GHz Pentium 4 CPU and 2048 MB of main 
memory. A database buffer cache of 256 MB, shared pool 
of 256 MB, and database block size of 8 KB is used.
 The timings reported below are the mean result from 
ten or more trials with warm caches.  
5.2 Dataset 

The experiments I through IV are conducted using an 
RDF representation of WordNet [11], a lexical database 
for the English language, which organizes English words 
into synonym sets, categorizes these synonym sets 
according to part of speech (noun, verb, etc.), and 
enumerates linguistic relationships (antonymOf, 
similarTo, etc.) between these synonym sets. In the RDF 
representation, each part of speech is modeled as an 
rdfs:Class, and each linguistic relationship is modeled as 

an rdf:Property. This RDF Schema for WordNet is shown 
in Figure 3. 

Figure 3: WordNet RDF Schema 

The hyponymOf property is used to denote that the 
subject represents a specialization of the object. For 
example, skyscraper is a hyponym of building. 

Table 3. Property and Resource Statistics of WordNet 

The relevant logical statistics for the experimental 
configuration is shown in Table 3. The logical statistics 
can be computed simply with the RDF_MATCH table 
function. For example, to find number of resources typed 
as 'verb', a user use RDF_MATCH table function with the 
pattern ‘(?w rdf:type wn:verb)’. This type of 
query is expected to run efficiently as it results in a single 
table query. For example, the above query took less than 
0.01 seconds. 

The data is stored in the normalized form in two tables, 
namely, IdTriples table of size 14 MB and UriMap table 
of size 34 MB.  The indexes on IdTriples table  and 
UriMap table are of size 22 MB and 26 MB respectively. 

  Experiments V and VI use large-scale UniProt data 
with 80 million triples  (see Section 5.7 for more details). 
5.3 Experiment I: Overhead Estimation 
This experiment characterizes the benefit of the 
TableRewriteSQL() enhancement described in Section 4. 
Four configurations are tested: 
1) RDF_MATCH with the current table function 

interface (TableStart(), TableFetch(), and 
TableClose()). Execution time of this table function 
corresponds to the ttotal term in Section 4.1. 

2) SQL query equivalent to RDF_MATCH with the 
enhanced interface (TableRewriteSQL()). Execution 

Property Count  
Resources 

(explicit rdf:type) 
Count 

WordForm 174,002  Verb 12,127 

Rdf:type 99,653  Noun 66,025 

glossaryEntry   99,642  AdjectiveSatellite 10,912 

hyponymOf   78,445  Adjective   7,003 

SimilarTo   21,858  Adverb   3,575 

Others          26  Others        11 

Total  473,626  Total  99,653 

LexicalConcept 

Adjective Adverb Verb Noun 

AdjectiveSatellite 

similarTo 

 

hyponymOf 
antonymOf 

Literal 

glossaryEntry 
wordForm 
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time of this query corresponds to the tcore term in 
Section 4.1. 

3) Table function (using the current interface) that 
fetches from a SQL query, but does not return any 
rows. The SQL query is simple and its execution time 
is negligible. Execution time of this table function 
corresponds to the tsql2proc term in Section 4.1. 

4) Table function (using the current interface) that 
returns rows, but does not execute any SQL. 
Execution time of this table function corresponds to 
tproc2canonical + tcanonical2sql in Section 4.1. 

Figure 4 shows the query processing time for these 
components as the number of rows returned is varied: 
from the bottom, Core SQL, SQL to Proc, Proc to SQL, 
and Other in that order.  
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Figure 4: RDF_MATCH Query Processing 

Components (standard deviation σσσσ  ≤≤≤≤  0.0838)  

The results demonstrate that tsql2proc and tproc2canonical + 
tcanonical2sql are linear in the number of rows returned, and 
that these overheads dominate the core SQL processing 
time when a large number of rows are returned. The 
enhanced table function interface avoids this per-row 
overhead, and therefore it is preferred over the current 
table function interface. In all of the remaining 
performance experiments, we run the queries with the 
enhanced RDF_MATCH table function interface. 

5.4 Experiment II: Varying Number of Triples in the  
Search Pattern 

As the number of triples in the RDF_MATCH search 
pattern increases, RDF_MATCH performs an increasing 
number of self-joins on the Triples table. To characterize 
how the varying number of self-joins impacts 
performance, queries are run to find 'hyponymOf' paths of 
varying length. For example, the query to find two-triple 
'hyponymOf' paths is: 

SELECT AVG(LENGTH(a)) 
FROM TABLE(RDF_MATCH( 

‘(?a  wn:hyponymOf  ?b) 
 (?b  wn:hyponymOf  ?c)’, 
RDFModels('WordNet'),  
NULL, NULL));  

The queries are run without materialized views, and with a 
generic SubjectID-ObjectID  materialized view, as 

described in Section 3.3. Figure 5 shows the query 
processing time as the number of triples in the search 
pattern varies. Note that the number of matches declines 
as the number of triples increase, from 78,445 matches for 
the one-triple query to 45,619 matches for the six-triple 
query. 

Figure 5: RDF_MATCH Performance For Various 
Searches (σσσσ  ≤≤≤≤  0.0881) 

As expected, processing time increases with the 
number of triples due to corresponding increase in the 
number of self-joins. The materialized view generally 
improves performance, except for 1-triple and 5-triple 
case. For 1-triple case, no benefit is expected, as the 
resulting query does not involve any self-joins. For the 5-
triple case, the benefit derived due to usage of 
materialized view is offset because the optimizer chooses 
a sub-optimal plan. 

5.5 Experiment III: Varying Filter Conditions 

This experiment characterizes the impact of SQL 
predicates that filter the results found by RDF_MATCH. 
The following search pattern is used for this experiment: 

 ‘(?c0  wn:wordForm  ?word) 
  (?c0  wn:wordForm  ?syn1) 
  (?c0  wn:wordForm  ?syn2) 
  (?c1  wn:wordForm  ?syn1) 
  (?c2  wn:wordForm  ?syn2) 
  (?c1  rdf:type   wn:Adverb) 
  (?c2  rdf:type   wn:Verb)’ 

This query is executed with four different equality filters 
(e.g., word = 'clear') and four different range filters (e.g., 
(word >= 'bat' AND word < 'bounce')) to yield 
approximately 350, 1050, 2000, and 3125 matches with 
each type of filter. Figure 6 shows the query processing 
time for these filters. Note that this query finds 79,885 
matches in 8 seconds when there is no filter predicate. As 
expected, less selective filters require greater processing 
time. Notice that equality filters are more efficient than 
range filters. This is because the equality filter is 
implemented with a single lookup in the UriMap table to 
find the UriID for the literal given in the filter. In contrast, 
range predicates require a join between the IdTriples and 
UriMap table to get the values needed for filter 
evaluation. 
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Figure 6: RDF_MATCH Performance with Filter 
Conditions (equality: σσσσ  ≤≤≤≤  0.0029; range: σσσσ  ≤≤≤≤  0.0619)   

5.6 Experiment IV: Varying Projection List 

This experiment characterizes the benefit of the 
projection list optimization done by RDF_MATCH. The 
following search pattern is used for this experiment: 

 ‘(?c0  wn:wordForm  ?word) 
  (?c0  wn:wordForm  ?syn1) 
  (?c1  wn:wordForm  ?syn1) 
  (?c0  rdf:type     wn:Adverb) 
  (?c1  rdf:type     wn:Adjective)’ 
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Figure 7: RDF_MATCH Performance For Varying 
Projection Lists (σσσσ  ≤≤≤≤  0.0724) 

This search pattern, which involves 4 variables and yields 
1,470 matches, is used in queries with varying sets of 
variables referenced in the SELECT list. Figure 7 shows 
the query processing time as the projection lists are 
changed. 

The projection list optimization eliminates joins with 
the UriMap table for variables that are not referenced 
outside of RDF_MATCH. It is clear that large 
performance gains are possible from this optimization. 

5.7 Experiment V: Large-Scale RDF Data 

This experiment characterizes RDF_MATCH 
performance for querying large-scale data. UniProt 
protein and annotation data in RDF format [14] is used for 
this experiment. To study scalability we created several 
datasets using varying subsets (from 10 million to 80 
million triples) of the UniProt data. The largest dataset, 
corresponding to 5.2 GB of RDF/XML data, occupies 2.5 
GB for IdTriples table, 1.7 GB for UriMap table, 3.6 GB 
for IdTriples indexes, and 1.2 GB for UriMap indexes. 
Six queries adapted from examples given with the UniProt 

data (shown in Table 4) are then run against these 
datasets. 

Each query includes a ROWNUM predicate to limit 
the number of result rows so that the number of matches 
remains constant even as the dataset size changes. Also, 
aggregate functions are used in the SELECT list to avoid 
the overhead of returning multiple rows to the client. 

The RDF_MATCH search pattern for Query 1, for 
example, is as follows: 
SELECT AVG(LENGTH(protein)), AVG(LENGTH(begin)), 
       AVG(LENGTH(end)) 
FROM TABLE(RDF_MATCH( 
   ‘(?p    rdf:type   up:Protein) 
    (?p    up:annotation  ?a) 
    (?a    rdf:type 
               up:Transmembrane_Annotation) 
    (?a    up:range    ?range) 
    (?range  up:begin    ?begin) 
    (?range  up:end     ?end)’ 
   RDFModels('UniProt'), NULL, NULL)) 
WHERE rownum <= 15000;  
Execution times (in seconds) for these queries (see Table 
5) remain almost the same even as dataset size changes.  

This shows that RDF_MATCH based query 
performance is scalable, that is, retrieval cost per result 
row remains almost the same as the dataset size changes. 

5.8 Experiment VI: Subject-Property MJVs 
To see potential benefits from use of Subject-Property 
MJVs (SPMJVs), we used the following query pattern 
against the 80M triple UniProt dataset: 

 ‘(?s    up:name       ?n) 
  (?s    rdf:type      up:Protein) 
  (?s    up:curated    true) 
  (?s    up:created    ?cre) 
  (?s    up:modified   ?mod)’ 

Table 4. Queries adapted from UniProt sample queries 
Description  Pattern Projection Result 

limit 
Q1: Display the ranges of 
transmembrane regions  

6 triples 
5 vars 

3 vars 15000 rows 

Q2: List proteins with 
publications by authors 
with matching names 

5 triples 
5 vars 
1 LIKE pred. 

3 vars 10 rows 

Q3: Count the number of 
times a publication by a 
specific author is cited 

3 triples 
2 vars 

0 vars 32 rows 

Q4: List resources that 
are related to proteins 
annotated with a specific 
keyword 

3 triples 
2 vars 

1 var 3000 rows 

Q5: List genes associated 
with human diseases 

7 triples 
5 vars 

3 vars 750 rows 

Q6: List recently 
modified entries 

2 triples 
2 vars 
1 range pred. 

2 vars 8000 rows 

Table 5. RDF_MATCH Performance Scalability 
 Q1 Q2 Q3 Q4 Q5 Q6 
10 M Triples 0.86 < 0.01 < 0.01 0.03 0.18 0.46 
20 M Triples 0.95 < 0.01 < 0.01 0.03 0.19 0.47 
40 M Triples 0.96 < 0.01 < 0.01 0.03 0.18 0.47 
80 M Triples 1.03 < 0.01 < 0.01 0.03 0.20 0.49 
Maximum σ .054 0.002 0.002 .011 .065 0.07 
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An SPMJV was created for  rdf:type , up:curated , 
up:created , and up:modified  properties. This SPMJV 
contained 489,695 rows and occupied 39 MB; there was a 
single B+tree index on the subject, which occupied 19 
MB. 

Two queries were tested: (#1) a COUNT(*) query, and 
(#2)  a query that selects ?n, ?cre, and ?mod. Each query 
was posed with and without use of the SPMJV. The 
results in Table 6 shows that this can lead to significant 
performance benefits.  

Table 6: RDF_MATCH Performance with and 
without SPMJVs 

Query Time (sec) 

#1 w/o  SPMJV 4.87 

#1 w/   SPMJV 1.79 

#2 w/o  SPMJV 13.68 

#2  w/  SPMJV 9.05 

6. Conclusions and Future Work 
The paper proposed a SQL based scheme for querying 
RDF data. Specifically, the RDF_MATCH table function 
is introduced with the ability to perform pattern-based 
match against RDF data (graph) that can optionally 
include triples inferred by applying RDFS or user-defined 
rules. Users can do further processing (iterate over, 
constrain using filter conditions, limit the results, etc.) 
using standard SQL constructs.   

The RDF_MATCH table function itself is 
implemented by generating a SQL query against tables 
holding RDF data. For efficient query processing, generic 
and subject-property matrix materialized join views, and 
indexes (on RDF data and rulebases) are used.  
Furthermore, a kernel enhancement is implemented that 
eliminates RDF_MATCH table function run-time 
processing overheads.  

The experimental study conducted using RDF data for 
WordNet and UniProt demonstrates that the SQL based 
scheme is efficient and scalable.   

We expect that providing RDF querying capability as 
part of SQL will enable a database system to support 
wider range of applications as well as facilitate building 
semantically rich applications. The RDF querying 
capability can also be used in conjunction with data 
mining techniques on RDF data collected from diverse 
applications to discover interesting semantic relationships. 

In future, we plan to consider alternate storage 
representations for RDF triples. A promising storage 
representation is partial normalization, where only the 
namespaces are normalized. That is, URIs are represented 
by the (namespace identifier, URI suffix). Also, we plan 
to enhance RDBMS optimizer to improve its capabilities 
in optimizing the class of self-join queries that typically 
occur while querying RDF data. The selection of suitable 
join method, join order, and subject-property matrix 

materialized join views is critical in generating an optimal 
plan. Allowing users to specify hints to influence the 
optimization process will also be explored. 
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