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Abstract

To answer user queries, a data integration sys-
tem employs a set of semantic mappings be-
tween the mediated schema and the schemas
of data sources. In dynamic environments
sources often undergo changes that invalidate
the mappings. Hence, once the system is
deployed, the administrator must monitor it
over time, to detect and repair broken map-
pings. Today such continuous monitoring is
extremely labor intensive, and poses a key
bottleneck to the widespread deployment of
data integration systems in practice.

We describe Maveric, an automatic solution
to detecting broken mappings. At the heart
of Maveric is a set of computationally inex-
pensive modules called sensors, which capture
salient characteristics of data sources (e.g.,
value distributions, HTML layout properties).
We describe howMaveric trains and deploys
the sensors to detect broken mappings. Next
we develop three novel improvements: per-
turbation (i.e., injecting artificial changes into
the sources) and multi-source training to im-
prove detection accuracy, and filtering to fur-
ther reduce the number of false alarms. Ex-
periments over 114 real-world sources in six
domains demonstrate the effectiveness of our
sensor-based approach over existing solutions,
as well as the utility of our improvements.

1 Introduction

The rapid growth of distributed data has fueled sig-
nificant interest in building data integration systems
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(e.g., [12, 22, 13, 15, 4, 2, 17]). Such a system provides
users with a uniform query interface to a multitude
of data sources, thereby freeing them from the tedious
task of manually querying each individual source.

To answer user queries, the system uses a set of se-
mantic mappings between the uniform interface (called
mediated schema) and the local schemas of the data
sources. Example mappings include “attribute cost of
mediated schema matches price of a source schema”,
and “location matches address”. The system uses the
mappings in order to reformulate a user query into a
set of queries on the data sources, then executes the
queries and returns the combined results to the user.

Today, these mappings are created by the builders
or administrators of the system, often in a labori-
ous and error-prone process [25]. In dynamic envi-
ronments, such as the Web, sources frequently change
their query interfaces, data formats, or presentation
styles [19, 21, 6]. Such changes often invalidate se-
mantic mappings, causing system failure. Hence, once
the system is deployed, the administrator must moni-
tor it over time, to detect and repair broken mappings.
Today such continuous monitoring is well-known to be
extremely labor intensive [6, 28, 30]. In the long run,
its cost often dominates the cost of system ownership
[6]. Hence, developing techniques to reduce the main-
tenance cost is critical for the widespread deployment
of data integration systems in practice.

In this paper we describe Maveric, an automatic
mapping verification approach. Maveric probes a
data integration system at regular intervals, and alerts
the administrator to potentially broken mappings. In
developing Maveric, we make the following innova-
tions:

Sensor Ensemble: Given a data source S in the
data integration system, we deploy multiple compu-
tationally inexpensive modules called sensors, each of
which captures certain characteristics of S, such as dis-
tributions of attribute values, layouts of presentations,
and integrity constraints over the data.

We probe source S while it is known to have the
correct semantic mappings (to the mediated schema),
then use the probe results to train the sensors. Subse-
quently, we apply the sensors to monitor the character-
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istics of S, and combine their predictions to verify the
semantic mappings. We empirically show that our sen-
sor ensemble approach significantly outperforms cur-
rent mapping verification solutions.

Learning from Synthetic & External Data:

Training over only the data of source S is often insuf-
ficient, because the sensors can only observe “normal”
data. To make the ensemble of sensors more robust,
we inject artificial changes into the source data, then
use the perturbed data as additional training data for
the sensors. We then extend the basic sensor frame-
work so that in monitoring the mappings, it can also
borrow training data from other sources in the data
integration system, whenever appropriate.

Filtering False Alarms: In the final step, if the
sensors report an alarm, we attempt to “sanity check”
it, before reporting to the administrator. In essence,
we take the data and compare it against known for-
mats and values stored in the system, data at other
sources, and data on the Web, to verify if it is still
semantically correct. These filtering steps are com-
putationally more expensive than the sensors, but are
invoked only when an alarm is raised.
We empirically evaluated Maveric over 114 real-

world sources in six domains. The results show
that Maveric significantly outperforms existing ap-
proaches. It also demonstrates the utility of each in-
dividual Maveric component.
The rest of this paper is organized as follows. The

next section defines the mapping verification problem
considered in this paper. Section 3 discusses related
work. Sections 4-7 describe the Maveric approach.
Sections 8-9 present and analyze the experiments, and
Section 10 concludes.

2 Semantic Mapping Maintenance

In this section we first discuss how data integration
systems employ semantic mappings to answer user
queries. We then discuss the need to maintain valid
mappings, and define the mapping verification prob-
lem considered in the paper.

Mappings in Data Integration Systems: Fig-
ure 1.a shows a prototypical data integration system
over three online real estate sources. Given a user
query Q, the system translates it into queries over the
source schemas, then executes them with the help of
programs attached to the sources called wrappers. Fig-
ure 1.b illustrates this process in more detail, and high-
lights the role of semantic mappings and wrappers.
First, since query Q is posed over the mediated

schema, a system module called reformulator [22, 17]
consults the mappings between this schema and the
schemas of data sources, to translate Q into queries at
the sources. Suppose the query posed to a source S is
QS (Figure 1.b).
In the second step, the wrapper associated with

source S takes QS and executes it over the query inter-
face of source S. In reply to the query, S produces a set
of results in some presentation format, such as HTML
pages (see Figure 1.b). The wrapper (not shown in
the figure) converts these pages into a structured re-
sult set, say a relational table TS . The reformulator
then uses the semantic mappings again to convert TS

into a structured result set TG in the vocabulary of the
mediated schema. If TG is the desired result for user
query Q, then it is returned to the user. Otherwise, it
is further processed (e.g., by joining with data at other
sources [22]).

The Need to Maintain Valid Mappings: As de-
scribed, it is clear that the semantic mappings play a
crucial role in a data integration system. They are the
“semantic glue” that enables query reformulation and
data conversion. In dynamic environments, however,
sources often undergo changes and invalidate such se-
mantic mappings. Changes can happen with respect
to:
• Source availability or query interface: A source

can become unavailable or its query interface is re-
designed. In this case the wrapper fails to query the
source.
• Source data: A source may change the seman-

tic meaning or representation of its data. For example,
the meaning of price at a source changes from dollars
to units of one thousand dollars. This will likely cause
instances of price in the source results to be inconsis-
tent with the meaning of cost in the mediated schema.
Similarly, a source may choose to round all instances of
price to whole dollars. Wrappers are notoriously brit-
tle; a small change like this may prevent the wrapper
from correctly identifying price instances.
• Presentation format: For example, a Web source

may modify its template used to generate HTML re-
sult pages, by switching the order of attributes in each
tuple, or changing the presentation of price instances
from “$35,000” to “35,000 USD”. Such changes often
cause the wrapper to incorrectly extract query results.
Thus, when a source undergoes a change, the result

produced by the wrapper (e.g., table TS in Figure 1.b)
often contains garbage data, or data whose semantic
meaning has changed. This in turn makes the results
returned to the user incorrect.
Despite the many ways invalid mappings can cause

a data integration system to fail, there has been rel-
atively little research on maintaining them (see Sec-
tion 3). Currently integration systems are still main-
tained largely by hand, in an expensive and error-
prone process. Consequently, a more efficient solution
is needed to significantly reduce the cost of data inte-
gration systems.

The Mapping Verification Problem: Maintain-
ing mappings requires two capabilities: detecting when
a mapping becomes invalid, and repairing an invalid
mapping. In this paper we address the former prob-
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Figure 1: (a) A data integration system over three real estate sources, and (b) a closer look at querying a single
data source.

lem, mapping verification. We assume that all map-
pings are initially valid (which is true when the ad-
ministrator adds a source to the system for the first
time). Our problem is then to monitor the data in-
tegration system and detect when any mapping has
become invalid.
For ease of exposition, we will assume that sources

export data in HTML format, which is converted by
wrappers into relational tables. The solution we offer
here however carries over to other presentation and
structured data formats.

3 Related Work

Mapping and Wrapper Maintenance: The
works most closely related to ours are [19, 21], which
present solutions to wrapper verification. The work
[19] leverages syntactic features, such as the average
length of price instances. More recently, the work [21]
leverages the same syntactic features as well as pat-
tern features. For example, it learns that price has
format “$XXX,000” in 95% of the training examples.
The feature values and the number of matches for each
pattern on newly probed data are compared to those
on training data, and the wrapper is considered broken
if the difference is significant.
Both of these works detect only syntactic changes,

and are sensitive to small changes. For example, they
may report broken mappings when sources change the
syntactic representation of an attribute (e.g., from
“$185,000” to “$185K”) while preserving its semantics.
They also do not exploit HTML layout information, as
well as possible integrity constraints between multiple
attributes in a given tuple (e.g., beds ≥ baths), as we
do here.
Other works [24, 5, 31] focus on repairing a broken

wrapper or mapping, and thus are complementary to
Maveric.

Schema Matching: There is a large body of work
on creating semantic mappings (e.g., [25, 9, 7, 14, 16]).
In [9] a learning ensemble is used, similar in spirit to
the sensor ensemble used in Maveric. The idea is
the same – to leverage multiple types of evidence for
evaluating attribute semantics. However, the learning
ensemble in [9] is performed once per source in an of-

fline setting and the learning algorithms are typically
too expensive for continuous verification of mappings
across an entire data integration system.

Activity Monitoring: Mapping verification is also
related to the broad topic of activity monitoring [11].
Well known problems in this area are fraud detection
[3], intrusion detection [27, 20, 29], and detecting sig-
nificant events such as recent news stories [1, 26]. The
general problem is to monitor a data source, such as a
stream of network packets or an online newspaper, and
detect when a notable event occurs. Mapping main-
tenance can be interpreted as activity monitoring in
which the source is a data integration system and no-
table events are invalid mappings. As such it is closest
to the work [29], which detects an unauthorized com-
puter user, and employs a sensor ensemble to model
authorized users. This setting however is significantly
different from ours. There, a continuous stream of fea-
ture values is monitored, such as CPU and network uti-
lization, allowing the exploitation of continuous trends
and reduction of false alarms by temporal filtering. For
example, an alarm is sounded only if 65% of the last
minute has been considered abnormal.
In our case, probing a data integration system is

much more costly, hence each source is only probed
periodically. Thus trends are not as useful and more
sophisticated filtering schemes are needed to evaluate
a distinct “batch” of data. We generalized the sensor
ensemble to exploit a richer set of evidence (e.g., page
layout and source constraints), as well as developed
a more expressive filtering scheme. Moreover, we de-
veloped two methods – perturbation and multi-source
training – to overcome the scarcity of training data.

4 The Maveric Architecture

We now describe the Maveric architecture, which
consists of four major modules: sensor ensemble, per-
turber, multi-source trainer, and filter. Maveric op-
erates in two phases: training and verification. Fig-
ures 2.a-b describe the process of training and verify-
ing a single data source S, respectively.
In training (Figure 2.a), Maveric starts by instan-

tiating a sensor ensemble (which consists of a set of
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Figure 2: Maveric applied to a single source (a) dur-
ing training and (b) during a verification time point.

sensors and a combiner) for source S. It then probes
(i.e., queries) S over n time points in which it knows
that the mappings of S are still correct. Next, it uses
the query results to train the sensor ensemble. It also
expands the training data using the perturber (to arti-
ficially change the probed query results) and the multi-
source trainer (to obtain data from other sources).
Once training is done, Maveric enters the verifi-

cation phase (Figure 2.b), in which it periodically ver-
ifies the correctness of the mappings of S. To do so,
it probes S to obtain a set of query results, then feds
the results to the sensor ensemble to compute a com-
bined score. If this score exceeds a pre-specified alarm
threshold, Maveric sends an alarm to the filter. The
filter employs additional means (e.g., attribute recog-
nizers, data from other sources, and the Web) to “san-
ity check” the alarm. If the alarm survives the checks,
it is sent to the system administrator.
In what follow we describe the core architecture of

Maveric: training and verification with the sensor
ensemble. Sections 5- 7 describe perturbation, multi-
source training, and filtering, respectively.

4.1 Sensor Ensemble: The Training Phase

Initialization: For each source S in the data inte-
gration system, Maveric begins by instantiating all
applicable sensors, chosen from a set of sensor tem-
plates that we discuss in detail in Section 4.3. The
result is an untrained sensor ensemble for S, consist-
ing of all instantiated sensors and a generic combiner
which combines the predictions of the individual sen-
sors (see top of Figure 2.a).

Probe S to Generate Training Examples: Next,
at each time point ti (i ∈ [1, n]) during which
Maveric knows that the mappings of S are still valid,
it queries S with a set of queries Q = {q1, . . . , qm} to
generate a training example Ri for the sensors.
Since we want the sensors to capture the charac-

teristics of source S, we design Q to retrieve repre-
sentative values for source attributes. For example, if
S is a real-estate source, then for attribute price we
may include three queries that retrieve houses priced
under $100K, between $100K and $200K, and over
$200K, respectively. While the three queries logically

return all houses, we retrieve only the first few pages
from the result of each query. For keyword attributes,
such as house-description, we include queries that look
for common words, such as “beautiful” and “view”.
We assume the set of probing queries Q is specified
by the system administrator. In Section 8 we show
thatMaveric’s accuracy is robust with respect to the
choice of Q. The training example Ri then consists of

• all HTML pages retrieved by queries in Q, as well
as the relational table returned by applying the
wrapper of source S to these HTML pages. The
sensors will examine both the HTML pages and
the relational table to form “profiles” of S (see
Section 4.3).

• the label “negative”, meaning that the mappings
are still valid. (In Section 5 we show how to create
positive training examples with perturbation.)

The entire training set is then R = {R1, . . . , Rn}.

Train the Sensors: Next, Maveric trains the sen-
sors using the set of training examples R. Intuitively,
each sensor inspects R and builds an internal profile
of valid query results for source S. The training pro-
cess and thus the profiles are specific to each sensor
type, and are discussed in Section 4.3. But the key to
remember is that once trained, given any example R
(which is the result of querying source S with queries
in Q), a sensor si can inspect R and issue a confidence
score on R being invalid (and thus the mappings of S
being invalid).

Train the Sensor Combiner: Finally, Maveric

trains the sensor combiner by computing for each sen-
sor a weight that measures its verification ability. For
this task, we use a variant of the Winnow algorithm
[23]. This is a popular and fast weight-learning method
[8] that has been successfully applied to related prob-
lems in combining predictions of “experts” of varying
quality [8, 29]. Figure 3 describes the training algo-
rithm. Briefly, it initializes the weight of each sensor
to 1, then iterates. In each iteration it asks the re-
sulting sensor ensemble to make a prediction for each
training example inR. If the ensemble prediction is in-
correct, then it halves the weight of each sensor which
also makes an incorrect prediction. In practice, Win-
now is often run for a fixed number of iterations (e.g.,
to avoid overfitting) [8, 29].

4.2 Sensor Ensemble: The Verification Phase

Maveric verifies the mappingsMS of source S accord-
ing to a pre-specified schedule (e.g., daily or weekly,
as specified by the system administrator). We now de-
scribe the verification procedure at a single time point,
tn+1, as shown in Figure 2.b.
First, Maveric probes S with the same set of

queries Q (described in Section 4.1 on training), to
obtain a set of query results Rn+1.
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Train the Sensor Combiner
Input: examples R1,...,Rn labeled with + or − ,  alarm threshold 

�

sensors s1,...,sm (already trained on R1,...,Rn)
Output: sensor weights w1,…,wn

1. Initialize each weight wi to 1
2. Repeat:  for each example Ri

for each sensor sj, scorej � the score of sj when applied to Ri (Section 4.3)
scorecomb � the combined score of all sensors using w1,…,wn (Section 4.2)
if (scorecomb �

�
and Ri.label = −)           // false alarm

wj � wj / 2 for each scorej �  
�

else if (scorecomb < 
�

and Ri.label = +)   // missed alarm
wj � wj / 2 for each scorej < 

�

until a stopping criterion is reached
3. Return w1,…,wn

Figure 3: Training the sensor combiner in Maveric.

Next, each sensor si examines Rn+1 and produces
a score scorei. The higher this value, the higher con-
fidence si has that mapping MS is invalid. Section 4.3
describes scoring functions for each sensor type.
Assume source S has m sensors, in the next step

Maveric computes the weighted “vote” that MS is
invalid: voteinvalid =

∑m

i=1
wi · scorei, where the wi

are sensor weights learned with the Winnow algo-
rithm (see Figure 3). It then computes the valid vote:
votevalid =

∑m

i=1
wi · (1− scorei). Finally, it computes

the ensemble score as the normalized invalid vote:

scorecomb = voteinvalid/(voteinvalid + votevalid),

and outputs an alarm if scorecomb ≥ θ, the alarm
threshold used in Winnow (Figure 3).

4.3 The Sensors

Maveric uses the following types of sensors.

4.3.1 Value Sensors

These sensors monitor the value distributions of real-
valued attribute characteristics. For each attribute A
of source S, we instantiate seven sensors that respec-
tively monitor (1) the number of instances of A in a
result set, (2) the average number of characters per in-
stance, (3) the average number of tokens per instance,
(4) the average token length, (5) the percentage of nu-
meric tokens, (6) the percentage of alphabetic tokens,
and (7) the percentage of alphanumeric tokens.

Training: Let s be a value sensor that monitors
feature (i.e., characteristic) f of attribute A. Training
s over a set of examples R means using R to build a
profile of common values of f when A is valid.
In this work we use a Gaussian distribution for this

profile. Specifically, we set the mean and variance of
our profile to be equal to the sample mean and vari-
ance of f of A over the training examples. We chose
the Gaussian family of distributions due to its success
in related work ([19, 29]), even in cases where it was
observed that this model did not fit the training ex-
amples very well. Investigating additional models is
an important direction for future research.

Verification: During the verification phase, given
a new set of query results R, recall from Section 4.2
that we must compute scores, the confidence of sensor

s that A is invalid in R (and thus the mappings have
also become invalid). We can compute scores in two
ways (in Section 8 we experimented with both):
• Density Scoring: scores = 1− P (v), where v is

the value of feature f of A in R and P is the density
function of the Gaussian profile. Intuitively, the more
frequent v is according to the profile of valid instances
of A, the lower scores is.
This scoring method is simple to understand, but

it fails to reflect the interpretation that a sensor score
above 0.5 indicates that A is believed to be invalid
in R′ and a score below 0.5 signifies that A is valid
(recall the real-valued voting scheme employed by the
combiner in Section 4.2). For example, suppose that
P (v) = 0.2. The above method yields scores = 0.8,
which is well above 0.5, indicating that A is invalid.
However, it may be the case that v was the most com-
mon value of f in the training set and should be con-
sidered a strong indication that A is valid. Thus a
better scores would be below 0.5.
• Normalized Density Scoring: To address this

issue, we also investigate a normalized density scoring
method. The idea is to compute a score based not
solely on P (v), but rather on how P (v) compares to
the densities for all other possible feature values.
Given v, we compute scores = Pr[P (v′) ≥ P (v)]

where v′ is also distributed by P . That is, scores is
the probability that a random valid example will have
a value v′ for feature f with a higher density than v of
the current example R. This method of scoring has the
desired property that a “more common than average”
feature value will output a low score (i.e., indicate that
A is valid), a strictly “average” value will output a
score of 0.5 (i.e., indicate complete uncertainty), and
a “less common than average” value will output a high
score (i.e., indicate that A is invalid).
For the Gaussian profile, scores can be computed

as 1− 2 ·Pr[v′ ≤ µ− |µ− v|] using a look-up table for
the cumulative Gaussian distribution.

4.3.2 Trend Sensors

These sensors monitor the trends in value fluctua-
tion of attribute features. Specifically, for every value
sensor sv that monitors a feature f of attribute A,
Maveric instantiates a trend sensor st that monitors
[f(R)−f(R′)], the difference in the value of f between
the current set of results R and the set of results R′

obtained from the previous, last probing. The train-
ing and verification procedures for trend sensors are
the same as those for value sensors (see Section 4.3.1),
but with f(R) being replaced by [f(R)− f(R′)].

4.3.3 Layout Sensors

These sensors monitor the physical layout of query re-
sults (e.g., in HTML format). For each source S that
produces HTML pages,Maveric instantiates two lay-
out sensors st and sa, which monitor the tuple ordering
and the attribute ordering, respectively.
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To use these two sensors, during the training
and verification phases, Maveric modifies the
wrapper for source S so that when it extracts
data fragments from an HTML page (to populate
tuples in a relational table), it inserts wrapper
tags into the HTML page to indicate the loca-
tions of those fragments. For example, the string
“<WRAP:price 1>$185,000</WRAP:price 1>” in
an HTML page indicates that “$185,000” is the value
of price in the first tuple (of the relational table).

Monitor Tuple Ordering: The first layout sensor,
st, requires no training. During verification, it exam-
ines the HTML pages marked up by the wrapper, as
discussed above. If the markups show that distinct
tuples overlap on the HTML pages (e.g., price for the
second tuple is found between category and price for
the first tuple), then the sensor outputs 1, indicating
a broken mapping. Otherwise it outputs 0.
Intuitively, st exploits the tendency of tuples to be

“horizontally separable” on HTML pages. If the newly
probed HTML pages are not separable in this man-
ner, the source presentation format might have been
redesigned, causing the wrapper to incorrectly mark
up data instances.
In the rarer cases where the correct HTML format

is indeed not separable, sensor st will be “silenced”
during the process of training the sensor combiner. If
st causes the sensor ensemble to output false alarms,
the training algorithm will detect the sensor’s consis-
tently high scores and exponentially quickly drive its
weight toward zero. Thus st will have little effect on
the output of the sensor ensemble during verification.

Monitor Attribute Ordering: The second layout
sensor, sa, monitors the attribute order within each
extracted tuple. The sensor learns this order from the
training tuples, again using the HTML pages marked
up by the wrapper. Then during verification, it out-
puts 1 if the order has been changed, and 0 otherwise.
Intuitively, this sensor exploits the tendency of at-

tributes to be consistently ordered in HTML pages.
For example, Deep Web sources typically insert query
results into an HTML page template where attribute
order is fixed by a static set of “slots”. However, for
the same reason as discussed for st, this sensor will not
harm the verification performance of the entire sensor
ensemble for a source where the correct attribute order
is not consistent.

4.3.4 Constraint Sensors

These sensors exploit domain integrity constraints that
often are available over the mediated schema and
source schemas. Example constraints include “house-

area ≤ lot-area” and “price ≥ 10,000”. Recent works
have exploited such constraints for query optimization
and schema matching purposes (e.g., [9]).
For each constraint C that is specified on the data

source S, Maveric instantiates a constraint sensor.

This sensor requires no training. During verification, it
inspects the results of the probed queries, then outputs
1 if constraint C is violated, and 0 otherwise. C may
be specified directly on the schema of S, or derived
from one that is specified over the mediated schema
(using the semantic mappings between the mediated
and source schemas).

5 Perturbation to Improve Training

We have described how to train a sensor ensemble on a
set of examples R retrieved from source S. This train-
ing process has two important shortcomings. First,
the set R contains only “negative” examples, i.e., data
where the mapping MS is known to be correct. Hav-
ing also “positive” examples, i.e., data where MS is
incorrect, can help make the sensor ensemble detect
future positive cases more accurately.
Second, even the set of negative training examples

in R is often not “sufficiently expressive”. For in-
stance, if until now a source has only displayed prices
in the format “$185,000”, then a trained sensor en-
semble can only recognize this price format. If later
the source changes its price format to “$185K”, then
the sensor ensemble will not recognize the new format,
and will issue a false alarm.
To address these problems (which also arise in prior

works [19, 21]), we propose to generate additional syn-
thetic training data for the sensor ensemble, by per-
turbing the original training data R using common
source changes. Example changes include reformat-
ting instances of price from “$185,000” to “$185K”,
and switching the order of price and address in HTML
pages. Maveric then trains the sensor ensemble on
both the original and synthetic examples. We now de-
scribe this process in more detail.

5.1 Generate Synthetic Training Data

Recall from Section 2 that a data source can change its
query interface, underlying data, or presentation for-
mat. In what follows we describe generating examples
that model these changes.

Change the Query Interface: The query inter-
face of S can become unavailable or redesigned. We
approximate this change by assuming that the wrap-
per cannot submit queries to S, returning an empty
result set. Thus, we form a single training example
with empty data and a positive label, indicating that
mapping MS is invalid. (This is reasonable because if
MS is valid, a source will return empty result only if
all probing queries return empty result, a very unlikely
event.)

Change Source Data: S can change its data in
two ways. First, it can add or remove tuples from the
data. To model this change, for each original example
R ∈ R, we take its relational table T , then randomly
remove and add some tuples to form new synthetic
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examples R1 and R2, respectively. (Adding tuples to
T is approximated by sampling tuples that already are
in T .) Synthetic examples R1 and R2 receive the same
label as that of R (which is “negative”).

Second, S can change the underlying semantics of
its data. For example, it may change the unit of price

from dollars to thousands of dollars. We model this
change as follows. Recall from Section 4.1 that each
example R ∈ R consists of a set of HTML pagesH and
a relational table T (obtained by applying the wrapper
to the HTML pages). We convert the HTML pages
H into a new set of pages H ′, by changing all price
values in H to reflect the new semantic meaning. For
example, price value 23400 will be changed to 23.4, to
reflect the unit change. Next, we apply the wrapper
to H ′ to obtain a new relational table T ′. H ′ and T ′

will form a new example R′.

Note that we cannot perturb table T directly to ob-
tain table T ′. When a source changes its data values or
formats, we simply do not know how the wrapper will
“behave” (i.e., what it will extract). Hence we must
explicitly incorporate the wrapper behavior, by first
simulating the changes on HTML pages H, thereby
obtaining the set H ′, then simulating the wrapper be-
havior on H ′ to obtain T ′.

Regardless of what the wrapper outputs for T ′, we
already know that mapping MS no longer holds, be-
cause the semantic meaning of price has been changed
(from dollars to thousands of dollars). Hence example
〈H ′, T ′〉 is assigned label “positive”.

Maveric assigns to each attribute Ai of source S a
set Ci of possible semantic changes (e.g., changing the
unit meaning for price), then samples and carries out
combinations of changes from the Cartesian product
of the Ci, in the above described fashion.

It is important to emphasize that the system ad-
ministrator does not have to examine all attributes of
all data sources to specify the sets Ci. He or she spec-
ifies changes for only the attributes of the mediated
schema. Then for each source S Maveric can employ
the semantic mapping MS to derive possible semantic
changes for the attributes of S.

Change the Presentation Format: Source S can
change its presentation formats in two ways. First,
it can change the layout, for example, by switching
the order of price and address. We model this change
as follows. Again, let H and T be the HTML pages
and relational table associated with a training example
R ∈ R, respectively. We switch the order of price and
address inH, resulting in a new setH ′ of HTML pages.
Next, we apply the wrapper of S to H ′ to obtain a new
relational table T ′. The new training example R′ will
consist of H ′ and T ′.

In the next step, to obtain the label of R′, we check
if T ′ and T are equivalent (i.e., contain the same set of
tuples). If so, then despite the order switch on HTML
pages, the wrapper still works properly. So we assign

label “negative” to R′. Otherwise, the order switch
has broken the wrapper, resulting in label “positive”
being assigned to R′.
Source S can also change the format of data

instances in the HTML pages. For example, it
can change prices: from “$185,000” to “185,000” or
“$185K”, or emails: from “abc@xyz” to “abc at xyz”.
We model such changes in a way similar to modeling
layout changes, as described above.

5.2 Training with Perturbed Data

We now modify the sensor ensemble to train on both
original and perturbed examples.
In Section 4.3 we presented four classes of sensors:

value, trend, layout, and constraint sensors. To lever-
age the perturbed examples, we expand the training
algorithms of the value and trend sensors. Layout and
constraint sensors can be used without modification.
Let s be a value sensor which monitors feature f of

attribute A. Without perturbation, s builds a Gaus-
sian distribution P− over the entire training set which
contains only valid (i.e., negative) examples. With
perturbation, this distribution is also built over all ex-
amples which are valid for A as well as a second dis-
tribution P+ over all examples which are invalid for
A (i.e., generated via perturbation). Intuitively, these
are profiles of valid and invalid instances of A, respec-
tively. First, all training examples are partitioned into
two subsets: R− and R+, containing examples which
are valid and invalid for A, respectively. Then P− is
built over R− and P+ is built over R+ as described in
Section 4.3.
The modification for trend sensors is analogous,

building two distributions over the change of f across
consecutive time points. Here we compute the change
of f only over consecutive examples generated by the
same perturbation (and consecutive unperturbed ex-
amples).
The combiner is trained in the same manner as

without perturbation (Section 4.1).

5.3 Verification with Perturbed Data

The last step is to modify the verification algorithms
for value and trend sensors to leverage the two mod-
els built during training (Section 5.2). Let s be either
a value or trend sensor monitoring feature f for at-
tribute A. Given a new example R returned from the
prober, the first step is to compute the value of f for
A in R. Next, P− is used to compute score− (Sec-
tion 4.3), indicating the confidence of s that R is in-
valid (based upon the profile P−). Using the same pro-
cedure, score+ is computed using P+. However, since
P+ is a profile of invalid instances, score+ indicates
the confidence of s that R is valid (based upon the
profile P+). Intuitively, score− and score+ are quan-
tifications of two sources of evidence (i.e., two profiles)
suggesting that R is invalid and valid, respectively. In
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costdescription
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“This house…”  185,000 USD

comments      amountcategory    price

Figure 4: Borrowing data of attribute amount from
source S′ to help train for attribute price of source S.

this work we combine these into a single sensor score
as score = score−/(score− + score+). That is, the
sensor score of s is the confidence that A is invalid,
normalized by the confidence that A is valid.
Note that this combination function lends the same

credibility to score− and score+. In practice, however,
the number of training examples used to construct P−
and P+ may differ significantly, suggesting that either
score− or score+ should play a larger role in deter-
mining the sensor score. One potential approach for
further investigation is a scheme in which both score−
and score+ are weighted before applying the above
combination function (e.g., weighting score− by the
number of training examples used to build P−).
Note that if perturbation fails to generate invalid

examples for A, there is no profile P+. In these
cases compute the sensor score as without perturba-
tion (Section 4.3).

6 Multi-Source Training

For the sensors of a source S, we have discussed how to
obtain training data directly from S (Section 4.1), or
from perturbing S’s data (Section 5). We now describe
how additional training data can be “borrowed” from
other sources in the data integration system.
Consider source S in Figure 4, whose schema con-

tains attribute price. Recall that there may be multiple
sensors that monitor price (Section 4.3). For example,
a sensor may monitor the average number of charac-
ters in each price instance, while another one monitors
the average length in token.
Since price (with format “$185,000”) matches at-

tribute cost of the mediated schema, which in turn
matches amount of a source S ′, we can borrow in-
stances of amount (which have the format “185,000
USD”) to help train such sensors. After being trained
on these new instances, the sensors will be better able
to recognize valid instances of price if source S adopts
the price format of source S′ in the future.
To implement this idea, for each original training

example R ∈ R which is associated with a relational
table T , we replace all instances of certain attributes
(e.g., price of table T ) with instances of “equivalent”
attributes from other sources (e.g., amount of S ′, see
Figure 4). This results in a new table T ′. Next, we
check if all constraints of source S are satisfied on T ′.
If not, then T ′ is discarded, otherwise it becomes a

The Web:

• “ price is 
185,000 USD”

• “ costs  
185,000 USD”

Other 
Sources:

price
185,000 USD

amount
210 K

potentially 
corrupt 
attribute

185,000 USD 
is valid

Monetary 
Recognizers:

• $185,000

• $185000.00

Figure 5: Filtering to remove false alarms.

new training example R′.

Declaring Sensors Global or Local: In certain
cases it may not be desirable to borrow training data
from sources external to S. For example, consider at-
tribute category of source S in Figure 4, which draws
instances from a fixed vocabulary (e.g., house, com-
mercial, lot, etc.). Suppose the system administra-
tor wants Maveric to alert him/her whenever this
meaning of category changes, then borrowing external
training data for category may cause a problem. For
instance, both category and the external attribute com-

ments (of source S′) map to description of the mediated
schema (Figure 4). However, instances of comments

are long textual paragraphs. Hence, borrowing these
to train for category will likely mislead the sensors.
For this reason,Maveric allows the system admin-

istrator the option to declare each source attribute lo-
cal or global. If a sensor involves any local attribute
then it is declared local, otherwise global. Maveric

trains local sensors only on the data probed and per-
turbed from their source, while for global sensors it
also borrows training data from other sources.

7 Filtering False Alarms

The goal of Maveric is to detect when a mapping for
source S has become invalid. Toward this end, we have
described the sensor ensemble, a model of “normality”
for the attributes of S. When the prober returns a
new set of query results, Maveric sounds an alarm if
the results do not fit this model well.
The challenge, however, is to define “well” such that

invalid mappings trigger an alarm while valid map-
pings leave Maveric silent. The current standard
solution (see the related work section) is to adjust a
sensitivity threshold, such as the alarm threshold in
Maveric. This solution however is inadequate. Set-
ting the threshold too high risks not being able to de-
tect many invalid mappings, which can have serious
consequences to the operation of a data integration
system. On the other hand, setting the threshold lower
often generates a large number of false alarms, which
drain the energy and resources of the system adminis-
trator. Indeed, false alarm has been a serious problem
plaguing many verification systems [19, 21].
To reduce the number of false alarms, we propose

filtering, a “sanity check” step to be added on top
of current verification schemes. Figure 5 illustrates
the process of filtering in Maveric. Suppose the sen-
sor ensemble has output an alarm, saying in effect
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that price has an unfamiliar format: “185,000 USD”.
Maveric then feeds the instances of price through a
series of three filters, each of which attempts to check
if the unfamiliar format can in fact be a valid format
for price. (We will describe the working of these filters
shortly.) If none of the filters recognizes the new price
format, then the alarm is forwarded to the system ad-
ministrator, otherwise it is silenced.
In what follows we describe three filtering methods

currently employed in Maveric: recognizers, leverag-
ing sources external to S, and utilizing the Web.

Employing Recognizers: When the sensor ensem-
ble produces an alarm, Maveric inspects the individ-
ual sensor scores (see Section 4.3) to determine the set
of attributes that have potentially been “corrupted”.
Then for each such attribute A, Maveric applies rec-
ognizers (if any) that have been designed specifically
for that attribute type. A recognizer [9, 18] knows
some common values or formats for A, and is often
implemented as a dictionary or a set of regular ex-
pressions, for frequently occurring attributes such as
person names, price, email, geographic location, color,
date, etc. Figure 5 illustrates two monetary recog-
nizers, which recognize the formats “$185,000” and
“$185000.00”.
A “corrupted” attribute is “silenced” if it is rec-

ognized by at least one recognizer. All “corrupted”
attributes that have not been silenced are then for-
warded to the multi-source filter.

Exploiting External Sources: This filter exploits
data in sources external to S, in a way that is simi-
lar to multi-source training (Section 6) but differ from
it in certain aspects. Specifically, suppose that sen-
sor s raises an alarm on A and that A is a global
attribute (see Section 6), then the filter attempts to
leverage data in other sources to silence s. First, it re-
trieves instances of attributes (in other sources) that
are equivalent to A. Note that it retrieves fresh data,
rather than the existing training data at other sources.
The reason is that since the last time the sensor en-
semble was trained, sources might have changed and
introduced new formats or values for instances of A.
Thus the filter probes the sources to collect any possi-
ble “evidence” of these new formats and values.
The filter then creates a new sensor s′ from the same

sensor template as s, and trains s′ on the collected
data. Next, it applies s′ to instances of A, and silences
the original sensor s if the new sensor s′ does not raise
an alarm.
A “corrupted” attribute A is silenced if all sensors

that raise alarm on it have been silenced. All remain-
ing “corrupted” attributes are then forwarded to the
Web-based filter.

Learning from the Web: Our final filter employs
the Web to recognize unfamiliar instances of a “cor-
rupted” attribute A, in a manner similar to that of
the KnowItAll system [10], which collects instances of
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Figure 6: Six real-world domains used in our experi-
ments.

a concept (e.g., city, actor, etc.) from the Web.
To explain this filter, consider again attribute price

in Figure 5, with the unfamiliar instances such as
“185,000 USD”. In this example, the two monetary
recognizers failed to recognize that these instances are
prices. Exploiting equivalent attributes from other
sources also did not help, because the format of amount

is “210K”, quite different from the format of price.
Thus, Maveric employs the Web to decide if

“185,000 USD” is in fact a valid price instance. To-
ward this end, the Web-based filter first generates a
set of indicator phrases such as “price is 185,000 USD”
and “costs 185,000 USD”. Note that some phrases are
generic (e.g., “<attribute> is <value>”) while others
are attribute specific (e.g., “costs <value>” for mone-
tary attributes). These templates are pre-specified in
the filter. Next, the filter submits each of these indi-
cator phrases to a search engine (e.g., google.com) and
records the number of hits returned. It also records
the number of hits for the query consisting only of the
instance value (e.g., “185,000 USD”).
Next, the filter computes a form of pointwise mutual

information (PMI) between each indicator phrase and
the instance-only phrase. For example,

PMI(“costs <value>” and “185,000 USD”)

=
|hits for “costs 185,000 USD”|

|hits for “185,000 USD”|
.

Intuitively, a high PMI value suggests that “185,000
USD” is a valid instance of price. The filter averages
the PMI scores of all available instances of price, to
obtain a single score u.
Next, the filter computes a similar PMI score v, but

over “junk” instances, i.e., those that are not valid in-
stances of price. In our experiments we used instances
of other attributes collected during training as “junk”
instances for price. Then, if the quantity u/(u+ v) ex-
ceeds a pre-specified threshold, the filter considers the
current instances of price to be valid, and silences the
alarm over price.
By the end of the filtering step, if all “corrupted”

attributes have been silenced, then Maveric silences
the alarm raised by the sensor ensemble. Otherwise it
sends the alarm to the system administrator.

8 Empirical Evaluation

We have evaluated Maveric on 114 sources over
six real-world domains. Our goals were to compare
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Maveric with previous approaches, to evaluate the
usefulness of perturbation, multi-source training, and
filtering, and to examine the sensitivity of Maveric

with respect to its parameters.

Domains and Data Sources: Table 6 summa-
rizes the six real-world domains in our experiments.
“Flights” contains 19 airfare sites, “Books” 21 on-
line bookstores, and “Researchers” 60 database re-
searcher homepages (we will describe the other do-
mains shortly).
For each data source S in these three domains,

we first constructed a source schema, built a wrapper
W , and provided a mapping MS between the source
schema and a mediated schema. We then periodically
probed S with the same set of queries (taking care
to ensure that the probing adapted to query interface
changes at the source). This probing resulted in a
set of snapshots H1, . . . , Hn, each of which is a set
of HTML pages. Next, we labeled each snapshot Hi

“negative” if applying the original wrapperW to it re-
sults in valid data (and thus valid MS). Otherwise we
labeled Hi as “positive”. This gives us a set of labeled
snapshots that we can use in evaluating Maveric.
The last two columns of Table 6 shows the number
of positive/negative snapshots in each domain.
The above three domains provide a “live” evalu-

ation of Maveric, but this evaluation is limited to
the changes that happened during the probing period.
The next three domains (“Real Estate”, “Inventory”,
and “Courses”, see Table 6) enabled us to evaluate
Maveric over a richer set of changes.
For each of these domains, we first obtained sev-

eral large real-world data sets, which were previously
retrieved from online sources (and now archived at an-
hai.cs.uiuc.edu/archive. We treated each data set as a
source, and simulated the source being “live” by col-
lecting an HTML page template from the Web, build-
ing an interface to return query results embedded in
this template, and writing a wrapper to interact with
this interface. This way we were able to probe the
source as if it were currently online, but we could
“evolve” the source as we like.
Next, for each source, we asked volunteers to pro-

vide five reformatted versions of the original HTML
template, along with a correct new wrapper for each
version. These HTML versions differed in several as-
pects: page layout, attribute format and display order,
the use of auxiliary text, etc.. We then synthesized
snapshots by pairing HTML templates with wrappers,
and obtained for each source 11 snapshots: 6 negatives
and 5 positives.

8.1 The Sensor Ensemble vs. Prior Solutions

We began by comparing the core architecture of
Maveric, the sensor ensemble, with the “Lerman”
system, a state-of-the-art wrapper verification ap-
proach [21] that was shown to outperform the system
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Figure 7: Two variations of the core Maveric system
compared to related work. Note that P, R, and F-1 are
averages over multiple runs, and hence the formula F-1 =
2PR / (P + R) does not hold among these numbers.
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Figure 8: Accuracy of progressively enhanced versions
of Maveric.

in [19].
Figure 7 shows the accuracy of the Lerman sys-

tem and two versions of sensor ensemble forMaveric:
density scoring (D) and normalized density scoring
(ND) as described in Section 4.3. Within each do-
main and for each verification system, we carried out
three runs per source. In each run we trained the sys-
tem over three negative snapshots (to simulate training
over a period where the mapping is known to be cor-
rect), then applied it to verify the remaining snapshots
(of that source). The accuracy of each run is measured
with precision P = (number of alarms when snapshot
is positive) / (number of alarms), R = (number of
alarms when snapshot is positive) / (number of posi-
tive snapshots), and F-1 = 2PR / (P + R). To evaluate
the potential of each system, we report results for the
alarm threshold which maximizes F-1 performance (in
Section 8.3 we show that Maveric is robust to vary-
ing this threshold). The reported P, R, F-1 are the
averages across all runs in each domain.
The results show that Maveric significantly out-

performs the Lerman system, increasing F-1 by 4-19%
in each domain (Section 9 discusses reasons for im-
provements). Both the (D) and (ND) methods provide
comparable results. Hence we use the (D) method for
the remaining experiments.

8.2 Improvements to Maveric

In the next step we evaluated the utility of various en-
hancements. We started with the core Maveric, i.e.,
the sensor ensemble, then progressively added pertur-
bation, multi-source training, and filtering. Figure 8
shows the accuracy for these four versions of Maveric

(the experimental setup is identical to that of Sec-
tion 8.1). The results show that each enhancement
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Figure 10: Accuracy of the sensor ensemble for varying
numbers of probing queries.

improves the verification ability of Maveric. Adding
perturbation improves over the sensor ensemble by up
to 6% F-1, multi-source training additionally improves
by up to 5%, and filtering additionally improves by up
to 3%. Each enhancement improves F-1 in at least four
of the six domains. The complete Maveric system
(with all enhancements) reached accuracy of 82-98%
F-1 across the domains.
To examine the utility of each individual enhance-

ment to the complete Maveric system, we also mea-
sured the accuracy of four “stripped-down” versions
of Maveric shown in Figure 9. The rightmost ver-
sion is the completeMaveric. Each preceding version
removes exactly one enhancement. The results show
that each enhancement improved the performance in
at least half of the domains, thereby contributing to
the overall effectiveness of Maveric.

8.3 Sensitivity Analysis

Number of Probing Queries: Figure 10 shows F-
1 accuracy of the sensor ensemble for varying numbers
of probing queries. A data point at 60% means that we
randomly sampled the original set of probing queries
three times, each time taking out 60% of the queries,
and using that as a new set of probing queries to rerun
the sensor ensemble. The data point is the F-1 score
averaged over the three runs.
The figure shows that F-1 varies by less than 2% in

three domains and 5% in the remaining two (Inventory
and Books), suggesting that the core Maveric is rel-
atively robust for varying numbers of probing queries.

Number of Sensor Templates: In a similar ex-
periment, we evaluated the sensor ensemble with only
80%, 60%, 40%, and 20% of the original set of sensor
templates (used for experiments in Section 8.1). As the

percentage goes to 20%, the results (not shown due to
space limitation) show a steady decrease of F-1, by
10 or 19%, depending on the domain, suggesting that
a rich set of sensors can significantly help Maveric

improve accuracy.

Alarm Threshold & Duration of Training: In
additional experiments we found that when varying
the alarm threshold used in Section 8.1 by +/- 0.1, F-
1 accuracy of the completeMaveric version varied by
less than 0.12, and that F-1 changed gracefully with
respect to the alarm threshold. This suggests that
while the alarm threshold does affect accuracy, an ad-
ministrator need not exactly optimize this threshold
in order to achieve good verification performance with
Maveric.
Finally, we have trained the sensor ensemble on up

to ten snapshots, and found negligible change in F-1
accuracy. This is significant because training on fewer
snapshots would place less burden over the system ad-
ministrator.

9 Discussion

Reasons for Improvement: Maveric improves
upon prior approaches due to several reasons. First,
it exploits a broader collection of evidence. Prior
works exploit only value and format features of data
instances. In contrast, Maveric can exploit also lay-
out and constraint related evidence. Second,Maveric

has a highly modular design in the sensor ensemble,
which enables the natural incorporation of these mul-
tiple types of evidence. Third, Maveric employs a
combiner to explicitly evaluate the usefulness of each
type of evidence, whereas previous works assume all
evidence to be equally indicative of the validity of
query results. For example, the average token length
of (say) house-description is exploited by all verifica-
tion approaches. However, prior works assume that
the value of this feature is relatively stable across valid
sets of query results. In practice, this value can fluc-
tuate significantly over valid instances, in which case
the combiner of Maveric will notice and place less
emphasis on this feature during verification.
Beyond the core architecture, the three enhance-

ments proposed in this work provide additional bene-
fits. Perturbation and multi-source training generate
additional instances beyond what is directly observ-
able from a single source. This allows the sensor en-
semble to build a broader notion of valid mappings
and improve future predictions. Filtering also allows
the use of more computationally expensive verification
methods in order to reduce the number of false alarms
sent to the administrator.

Limitations: In our experiments, Maveric failed
to reach 100% accuracy for two main reasons. First,
it encountered unrecognized formats. For example, in
Courses it only learned (during training) that “2:00
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PM” is a valid START-TIME format, so later it did
not recognize that “1400” is also semantically equiv-
alent. (Interestingly Web-based verification also did
not catch this, because “1400” is used in many ways
and hence does not have a high co-occurrence rate
with TIME and START.) Other examples include
“7/11/1996” vs. “July 11, 1996” and “M-W-F” vs.
“Mon Wed Fri”. Possible solutions include having a
more exhaustive set of perturbation templates, and ex-
ploiting more sources, among others.
Second, Maveric encountered attributes with sim-

ilar values. For example, a source in Inventory domain
has ORDER-DATE and SHIP-DATE, both with for-
mat “7/4/2004”. When the page was redesigned so
that the order of these attributes was switched, the
wrapper extracted them in the wrong order. But given
that the extracted values had the same format, the cur-
rent version of Maveric assumed this was correct. A
constraint sensor such as one enforcing the constraint
“ORDER-DATE ≤ SHIPPED-DATE” can help alle-
viate this problem.

10 Conclusions & Future Work

Monitoring semantic mappings to detect when they
have become broken is a crucial task in deploying data
integration systems. To this end, we have described
the Maveric solution, which employs an ensemble of
sensors to monitor data sources. We presented three
novel improvements: perturbation and multi-source
training to make the verification system more robust,
and filtering to reduce the number of false alarms. Ex-
tensive real-world experiments demonstrated the effec-
tiveness of our core approach over existing solutions,
as well as the utility of our improvements. Besides
further evaluation of Maveric, our main future work
focuses on repairing the broken mappings once they
have been detected.
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