
From XML view updates to relational view updates: old solutions
to a new problem∗

Vanessa P. Braganholo1

vanessa@inf.ufrgs.br
Susan B. Davidson2

susan@cis.upenn.edu
Carlos A. Heuser1

heuser@inf.ufrgs.br

1Instituto de Informática
Universidade Federal do Rio Grande do Sul - UFRGS

Brazil

2Department of Computer and Information Science
University of Pennsylvania, USA &

INRIA-FUTURS, France

Abstract

This paper addresses the question of updating rela-
tional databases through XML views. Usingquery
treesto capture the notions of selection, projection,
nesting, grouping, and heterogeneous sets found
throughout most XML query languages, we show
how XML views expressed using query trees can
be mapped to a set of corresponding relational
views. We then show how updates on the XML
view are mapped to updates on the corresponding
relational views. Existing work on updating rela-
tional views can then be leveraged to determine
whether or not the relational views are updatable
with respect to the relational updates, and if so,
to translate the updates to the underlying relational
database.

1 Introduction
XML is frequently used as an interface to relational
databases. In this scenario, XML documents (or views)
are exported from relational databases and published, ex-
changed, or used as the internal representation in user appli-
cations. This fact has stimulated much research in exporting
and querying relational data as XML views [15, 23, 22, 8].
However, the problem of updating a relational database
through an XML view has not received as much atten-
tion: Given an update on an XML view of a relational
database, how should it be translated to updates on the rela-
tional database? Since the problem of updates through rela-
tional views has been studied for more than 20 years by the

∗∗Research partially supported by CNPq and Capes (Brazil) as well as
NSF DBI-9975206 (USA).

Permission to copy without fee all or part of this material isgranted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

Vendor(vendorId, vendorName, url, state, country)
Book(isbn, title, publisher, year)
DVD(asin, title, genre, nrDisks)
Sell-Book(vendorId, isbn, price)
− foreign key(vendorId) references Vendor
− foreign key(isbn) references Book
Sell-DVD(vendorId, asin, price)
− foreign key(vendorId) references Vendor
− foreign key(asin) references DVD

Figure 1: Sample database

Figure 3: View 1: books and vendors

database community, it would be good to use all that work
to solve the new problem of updates though XML views.
Specifically, is there a way to leverage existing work on up-
dating through relational views to map view updates to the
underlying relational database?

In the relational case, attention has focused on updates
through select-project-join views since they represent a
common form of view that can be easily reasoned about us-
ing key and foreign key information. Similarly, we focus
on a common form of XML views that allows nesting, com-
posed attributes, heterogeneous sets and repeated elements.
An example of such a view is shown in figure 2, which was
defined over the database of figure 1. In this XML view,
booksare nested under theproductsnode, and theaddress
node composes attributes in a nested record format. The
productsnode is composed of tuples of two different types,
bookanddvd.

We represent XML view expressions asquery trees.
Query trees can be thought of as the intermediate represen-

276

Figure 2: View 2: vendors, books and dvds

tation of a query expressed by some high-level XML query
language, and provide a language independent framework
in which to study how to map updates to an underlying re-
lational database. They are expressive enough to capture
the XML views that we have encountered in practice, yet
are simple to understand and manipulate. Their expressive
power is equivalent to that of DB2 DAD files [9]. Through-
out the paper, we will use the term “XML view” to mean
those produced by query trees.

The strategy we adopt is to map an XML view to a set
of underlying relational views. Similarly, we map an update
against the XML view to a set of updates against the under-
lying relational views. It is then possible to use any existing
technique on updates through relational views to both trans-
late the updates to the underlying relational database and to
answer the question of whether or not the XML view is up-
datable with respect to the update.

This strategy is similar to that adopted in [5] for
XML views constructed using the nested relational algebra
(NRA), however, our view and update language are far more
general. In particular, nested relations cannot handle hetero-
geneity. Thus, the NRA is capable of representing the XML
view of Figure 3 but not that of Figure 2, and maps an XML
view to exactly one underlying relational view.

The outline and contributions of this paper are as follows:

• Section 2 defines query trees, their abstract types, and
the resulting XML view DTD.

• Section 3 presents the algorithm for mapping an XML
view to a set of underlying relational views, and proves
its correctness.

• Section 4.1 defines a simple XML update language and
algorithms to detect whether or not an update is correct
with respect to the XML view DTD.

• Section 4.2 gives an algorithm for mapping insertions,
modifications and deletions on XML views to updates
on the underlying relational views, and Section 4.3
proves its correctness.

• Section 4.4 illustrates our approach by showing how to
use the techniques of [13] to detect if an XML view is
updatable with respect to a given update.

• Section 5 discusses the expressive power of our lan-
guage, and evaluates our technique with respect to ex-
isting proposals on extracting XML views of relational
databases.

Related work can be found in Section 6. We conclude in
Section 7 with a discussion of future work.

2 Query Trees

Query trees are used as a representation of the XML view
extraction query. We use this abstract representation rather
than an XML query language syntax for several reasons:
First, reasoning about updates and the updatability of an
XML view is performed at this level. Second, they are easy
to understand yet expressive enough to capture several im-
portant aspects of XQuery such as nesting, composed at-
tributes, and heterogeneous sets.1 They can therefore be
thought of as the intermediate processing form for a subset
of many different XML query languages. For example, we
have developed an implementation of our technique which
uses a subset of XQuery as the top-level language [6].

After defining query trees, we introduce a notion which
will be used to describe the mapping to relational queries,
the abstract type of a query tree node. We use this notion
of typing to define the semantics of query trees, and then
present their result type DTD.

2.1 Query Trees Defined

An example of a query tree can be found in Figure 4, which
retrieves books that are sold for prices greater than $30.
The query tree resembles the structure of the resulting XML
view. The root of the tree corresponds to the root element of
the result. Leaf nodes correspond to attributes of relational
tables, and interior nodes whose incoming edges are starred
capture repeating elements. The result of this query is also
presented in Figure 4.

Query trees are very similar to theview forestsof [15] and
schema-tree queriespresented in [3]. The difference is that,
instead of annotating all nodes with the relational queries
that are used to build the content model of a given node, we
annotate interior nodes in the tree using only the selection
criteria (not the entire relational query). An annotation can
be asourceannotation or awhereannotation. Source anno-
tations bind variables to relational tables, andwhereannota-
tions impose restrictions on the relational tables making use
of the variables that were bound to the tables.

1They can also capture grouping, but for simplicity we omit that [7].

277

name = ‘books’

name = ‘book’
[$b := table(“Book”)]

[$sb := table(“Sell-Book”)]
[where $sb/price > 30 and

$sb/isbn=$b/isbn]

name = ‘@isbn’
value = $b/isbn

name = title
value = $b/title

name = price
value = $sb/price

*

<books>
<book @isbn="1111">

<title>Unix Network
Programming</title>

<price>38</price>
</book>
<book @isbn="2222">

<title>Computer
Networks</title>

<price>29</price>
</book>
...

</books>

Figure 4: Example of query tree and its resulting XML view

In the definitions that follow, we assume thatD is a rela-
tional database over which the XML view is being defined.
T is the set of table names ofD. AT is the set of attributes
of a given tableT ∈ T.
Definition 2.1 A query tree defined over a databaseD is
a tree with a set of nodesN and a set of edgesE in which:
Edgesare simple or starred ("*-edge"). An edge issimpleif,
in the corresponding XML instance, the child node appears
exactly once in the context of the parent node, andstarred
otherwise.Nodesare as follows:

1. All nodes have a name that represents the tag name
of the XML element associated with this node in the
resulting XML view.

2. Leaf nodes have a value (to be defined). Names of leaf
nodes that start with “@” are considered to be XML
attributes.

3. Starred nodes(nodes whose incoming edge is starred)
may have one or more source annotations and zero or
more where annotations (to be defined).

Since we map XML views to relational views, nodes with
the same name in the query tree may cause ambiguities in
the mapping. This problem can easily be solved by asso-
ciating with each node name a number corresponding to its
position in the query tree, and using it internally in the map-
ping. For simplicity, in this paper we will ignore this prob-
lem and use unique names for nodes in the query trees.

Returning to the example in Figure 4, there is a *-edge
from the root (namedbooks) to its child namedbook, indi-
cating that in the corresponding XML instance there may be
severalbooksubelements ofbooks. There is a simple edge
from the node namedbookto the node namedtitle, indicat-
ing that there is a singletitle subelement ofbook. The node
named@isbnwill be mapped to an XML attribute instead
of an element.

Before giving an example of how values are associated
with nodes, we definesourceand where annotations on
nodes of a query tree.
Definition 2.2 A source annotations within a starred node
n is of the form[$x := table(T)], where$x denotes a vari-
able andT ∈ T is a relational table. We say that$x is
bound toT by s.
Definition 2.3 A where annotationon a starred noden is
of the form[where$x1/A1 op Z1 AND ... AND $xk/Ak

op Zk], k > 1, whereAi ∈ ATi
and $xi is bound toTi

by a source annotation onn or some ancestor ofn. The

name = ‘@id’
value = $v/vendorId

name = ‘@bprice’
value = $sb/price

name = ‘products’

name = ‘btitle’
value = $b/title

name = ‘isbn’
value = $b/isbn

name = ‘book’
[$sb := table(“Sell-Book”)]

[$b := table(“Book”)]
[where

$sb/vendorId=$v/vendorId
and $b/isbn=$sb/isbn]

name = ‘dtitle’
value = $d/title

name = ‘asin’
value = $d/asin

name = ‘dvd’
[$sd := table(“Sell-DVD”)]

[$d := table(“DVD”)]
[where

$sd/vendorId=$v/vendorId
and $d/asin=$sd/asin]

name = ‘vendorName’
value = $v/vendorName

name = ‘country’
value = $v/country

name = ‘state’
value = $v/state

name = ‘address’

τ

τS

* *

τS τC

τS τS

τC

τS τS
τS τS τS

τN
τN

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

τT

*

name = ‘@dprice’
value = $sd/price

τS

Figure 5: Query tree for View 2

operatorop is a comparison operator{=, 6=, >, <, 6, >}.
Zi is either a literal (integer, string, etc.) or an expression
of the form$y/B, whereB ∈ AT and$y is bound toT by
a source annotation onn or some ancestor ofn.

Definition 2.4 The value of a noden is of form$x/A, where
A ∈ AT and$x is bound to tableT by a source annotation
onn or some ancestor ofn.

In Figure 4, the nodebook has source annotations and
where annotations. The source annotations bind variable$b
to the relational tableBook, and variable$sb to the relational
tableSell-Book. The where annotations restrict the books
that appear in the view to those with price greater than $30,
and specify the join condition of tablesBookandSell-Book.
The value of the node@isbnis specified as$b/isbn, indicat-
ing that the content of the XML view attributeisbnwill be
generated using attributeisbnof the tableBook.

A more complex example of a query tree can be found
in Figure 5 (ignore for now the typesτ associated with
nodes). This query tree retrievesvendors, and for eachven-
dor, its @id, vendorName, addressand a set ofbooks and
dvds within products. The rootvendorshas a set ofvendor
child nodes (*-edge). Thevendornode is annotated with
a binding for $v (to table Vendor), and has several chil-
dren at the end of simple edges (@id, vendorName, and
address). The value of itsid attribute is specified by the
path$v/vendorId, and that ofvendorNameis specified by
the path$v/vendorName. The nodeaddressis more com-
plex, and is composed ofstateandcountrysubelements.

The nodeproductshas two *-edge children,book and
dvd. Source annotations of thebooknode include bindings
for $b(Book) and$sb(Sell-Book) and its where annotations
connect tuples in Sell-Book to tuples in Book, and tuples in
Sell-Book with tuples in Vendor (join conditions). Nodedvd
has source annotations for$d (DVD) and$sd (Sell-DVD).
Its where annotation connects tuples in Sell-DVD to tuples
in DVD and tuples in Sell-DVD with tuples in Vendor. The
result of this query tree is View 2, shown in Figure 2.

From now on, we assume that a query tree isnon-empty,
i.e. that it consists of more than a root node.

278

2.2 Abstract Types

In our mapping strategy, it will be important to recognize
nodes that play certain roles in a query tree. In particular,
we identify five abstract types of nodes:τ , τT , τN , τC and
τS . We call themabstract typesto distinguish them from
the type or DTD of the XML view elements.

Nodes in the query tree are assigned abstract types as
follows:

1. The root has abstract typeτ .
2. Each leaf has abstract typeτS (Simple).
3. Each non-leaf node with an incoming simple edge has

abstract typeτC (Complex).
4. Each starred node which is either a leaf node or whose

subtree has only simple edges has an abstract type of
τN (Nested).

5. All other starred nodes have abstract typeτT (Tree).

Note that each node has exactly one type unless it is a
starred leaf node, in which case it has typesτS andτN .

As an example of this abstract typing, consider the query
tree in Figure 5, which shows the type of each of its nodes.
Sincebookanddvdare repeating nodes whose descendants
are non-repeating nodes, their types areτN rather thanτT .

We call the XML views produced by query trees and their
associated abstract typeswell-behavedbecause, as we will
show in the next section, they can be easily mapped to a set
of corresponding relational views. However, before turning
to the mapping we prove two facts about query trees that
will be used throughout the paper.
Proposition 2.1There is at least oneτN node in the ab-
stract type of a query treeqt.

Proof: Since query trees are assumed to be non-empty,qt
must have at least one leaf. This means thatqt must have
at least one starred noden, since the leaf node has a value
which involves at least one variable which must be defined
in some source annotation attached to a starred node. Since
the tree is finite, at least one of these starred nodes is either
a leaf node or has a subtree of simple edges, i.e. the starred
node is aτN node.
Proposition 2.2There is at most oneτN node along any
path from a leaf to the root in the abstract type of a query
treeqt.

Proof: Suppose there are twoτN nodes,n1 andn2, along
the path from some leaf to the root ofqt. Without loss of
generality, assume thatn1 is the ancestor ofn2. By defini-
tion of τN , n2 must be a starred node. Thereforen1 has a
*-edge in its subtree, a contradiction.

We will refer to the abstract type of an element by the
abstract type that was used to generate it followed by the
element name. As an example, the abstract type of the ele-
mentdvd in Figure 5 is referred to asτN (dvd), and its type
(DTD) is <!ELEMENT dvd (dtitle, asin)>.

2.3 Semantics of Query Trees

The semantics of a query tree follows the abstract type of
its nodes, and can be found in algorithm 1. The algorithm

eval(qt, d) {qt is the root of the query tree,d the database instance}
{qt is the query tree andd is the database instance}
evaluate(root(qt), d)

evaluate(n ,d)
{Assume a node type has functions abstract_type(n), name(n), value(n),
children(n), sources(n), and where(n) (with the obvious meanings).}
Let bindings{} be a hash array of bindings of variable attributes to values,initially
empty.
caseabstract_type(n)

τ |τC : buildElement(n)
τT |τN : table(n)
τS : print "<name(n)>value(n)</name(n)>"

end case

buildElement(n)
let tag = "name(n)"
for each attributec in children(n) do

add "name(c) = value(c)" to tag

end for
print "< tag >"
for each non-attributec in children(n) do

evaluate(c)
end for
print "</name(n)>"

table(n)
let w be a list of conditions in sources(n)
for eachw[i] do

if w[i] involves a variablev in bindings{} then
substitute the value binding{v} for v

end if
end for
calculate the setB of all bindings for variables in sources(n) that makes the con-
junction of the modifiedw[i]’s true, usingd
for eachb in B do

addb to bindings{}
buildElement(n)
removeb from bindings{}

end for

Algorithm 1: Eval algorithm

constructs the XML view resulting from a query tree recur-
sively, and starts withn being the root of the query tree.
The basic idea is that the source and where annotations in
each starred noden are evaluated in the database instanced,
producing a set of tuples. The algorithm then iterates over
these tuples, generating one element corresponding ton in
the output for each of these tuples and evaluating the chil-
dren ofn once for each tuple.

The bindings{} hash array stores the current values of
variables, taken from the underlying relational database.We
assume that values inbindings{}are represented as$x/A =
1, $x/B = 2, where$x is a variable bound to a relational ta-
ble T , A andB are the attributes ofT and1 and2 are the
values of attributesA andB in the current tuple ofT .

2.4 DTD of a Query Tree

Query tree views defined over a relational database have a
well-defined schema (DTD) that is easily derived from the
tree. Given a query tree, its DTD is generated as follows:

1. For each attribute leaf node named@A with parent
namedE, create an attribute declaration
<!ATTLIST E @A CDATA #REQUIRED>

2. For each non-attribute leaf node namedE, create an
element declaration <!ELEMENTE (#PCDATA)>

3. For each non-leaf node namedE, create an element
declaration <!ELEMENTE (E1, . . . ,Ek, Ek+1*, . . . ,
En*)>, whereE1, ..., Ek are non-attribute child nodes

279

of E connected by a simple edge, andEk+1* , ..., En*
are child nodes ofE connected by a *-edge. In case
n = 0, then create an element declaration <!ELE-
MENT E EMPTY>

As an example, the DTD of the view produced by the
query tree shown in Figure 5 is:

<!ELEMENT vendors (vendor*)>
<!ELEMENT vendor (vendorName, address, products)>
<!ATTLIST vendor id CDATA #REQUIRED>
<!ELEMENT vendorName (#PCDATA)>
<!ELEMENT address (state, country)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT products (book*,dvd*)>
<!ELEMENT book (btitle, isbn)>
<!ATTLIST book bprice CDATA #REQUIRED>
<!ELEMENT btitle (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT dvd (dtitle, asin)>
<!ATTLIST dvd dprice CDATA #REQUIRED>
<!ELEMENT asin (#PCDATA)>
<!ELEMENT dtitle (#PCDATA)>

Note that all (#PCDATA) elements are required. When
the value of a relational attribute is null, we produce an ele-
ment with a distinguished null value.

3 Mapping to Relational Views

In our approach, updates over an XML view are trans-
lated to SQL update statements on a set of correspond-
ing relational view expressions. Existing techniques such
as [13, 17, 20, 2, 27] can then be used to accept, reject
or modify the proposed SQL updates. In this section, we
discuss how an XML view constructed by a query tree is
mapped to a set of corresponding relational view expres-
sions.
Map. Given a query treeqt with only oneτN node, the
corresponding SQL view statement is generated as follows.
Join together all tables found in source annotations (called
source tables) in a given noden in qt, using the where an-
notations that correspond to joins on source tables inn as
inner join conditions. If no such join condition is found
then use “true” (e.g. 1=1) as the join condition, resulting in
a cartesian product. Call these expressionssource join ex-
pressions. Use the hierarchy implied by the query tree to left
outer join source join expressions in an ancestor-descendant
direction, so that nodes with no children still appear in the
view. The conditions for the outer joins are captured as fol-
lows: If nodea is an ancestor ofn and a where annotation
in n specifies a join condition on a table inn with a table in
a, then use this annotation as the join condition for the outer
join. Similar to inner joins, if no condition for the outer join
is found, then use “true” as the join condition so that if the
inner relation is empty, the tuples of the outer will still ap-
pear. Use the remaining where annotations (the ones that
were not used as inner or outer join conditions) in an SQL
where-clause and project the values of leaf nodes. The re-
sulting SQL view statement represents an unnested version
of the XML view.

For example, the relational view corresponding to the
query tree in Figure 4 is:

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

name = ‘@id’
value = $v/vendorId

name = ‘@bprice’
value = $sb/price

name = ‘products’

name = ‘btitle’
value = $b/title

name = ‘isbn’
value = $b/isbn

name = ‘book’
[$sb := table(“Sell-Book”)]

[$b := table(“Book”)]
[where $sb/vendorId=$v/vendorId

and $b/isbn=$sb/isbn]

name = ‘vendorName’
value = $v/vendorName

name = ‘country’
value = $v/country

name = ‘state’
value = $v/state

name = ‘address’

τ

τT

τS

*

*

τS τC

τS τS

τC

τS τS
τS

τN

Figure 6: Partitioned query tree forτN (book)

SELECT b.isbn AS isbn, b.title AS title, sb.price AS price
FROM (Book AS b INNER JOIN Sell-Book AS sb

ON sb.isbn=b.isbn) WHERE sb.price > 30

Split. For a query tree with more than oneτN node, this
process is incorrect. As an example, consider the query tree
of Figure 5 which has twoτN nodes (book and dvd). If
we follow the mapping process described above, the tables
DVD and Book will be joined, resulting in a cartesian prod-
uct. In this expression, a book is repeated for each DVD,
violating the semantics of the query tree. We must therefore
split a query tree into sub-query trees containing exactly one
τN node each before generating the corresponding relational
views. After the splitting process, each sub-query tree pro-
duced is mapped to a relational view as explained above.

The splitting process consists in isolating a noden of
typeτN in the query treeqt, and taking its subtree as well as
its ancestors and their non-repeating descendants (typesτC

andτS) to form a new treeqti. Recall thatqt must have at
least oneτN node by Proposition 2.1.

The first step to generateqti is to copyqt to qti. Then,
delete fromqti all subtrees rooted at nodes of typeτN , ex-
cept for the subtree rooted atn. Observe that deleting a
subtreer may change the abstract type of the ancestors ofr.
Specifically, ifr has an ancestora with typeτT , andr is a’s
only starred descendant, the type ofa becomesτN after the
deletion ofr. Continue to delete subtrees rooted at nodes of
typeτN in qti and retype ancestors untiln is the only node
of typeτN in qti. The process is repeated for every node of
type τN in qt and results in exactly oneτN node per split
tree (algorithmsmapandsplit are available in [7]).

The result of this process for the query tree of Figure 5 is
shown in Figures 6 and 7. Using these split trees, the corre-
sponding relational viewsViewBookandViewDVDare (we
name these views so we can refer to them in the examples
of Section 4):
CREATE VIEW VIEWBOOK AS
SELECT v.vendorId AS id, v.vendorName AS vendorName,
v.state AS state, v.country AS country,
sb.price AS bprice, b.isbn AS isbn, b.title AS btitle

FROM (Vendor AS v LEFT JOIN (Sell-Book AS sb INNER JOIN
Book AS B ON b.isbn=sb.isbn) ON v.vendorId=sb.vendorId);
CREATE VIEW VIEWDVD AS
SELECT v.vendorId AS id, v.vendorName AS vendorName,
v.state AS state, v.country AS country,
sd.price AS dprice, d.asin AS asin, d.title AS dtitle

FROM (Vendor AS v LEFT JOIN (Sell-DVD AS sd INNER JOIN
DVD AS d ON d.asin=sd.asin) ON v.vendorId=sd.vendorId)

280

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

name = ‘@id’
value = $v/vendorId

name = ‘@dprice’
value = $sd/price

name = ‘products’

name =‘btitle’
value = $b/title

name = ‘isbn’
value = $b/isbn

name = ‘dvd’
[$sd := table(“Sell-DVD”)]

[$d := table(“DVD”)]
[where $sd/vendorId=$v/vendorId

and $d/asin=$sd/asin]

name = ‘vendorName’
value = $v/vendorName

name = ‘country’
value = $v/country

name = ‘state’
value = $v/state

name = ‘address’

τT

τS

*

*

τS τC

τS τS

τC

τS τS τS

τN

τ

Figure 7: Partitioned query tree forτN (dvd)

As described above,split takes as input the original
query treeqt and produces as output a set of query trees
{qt1, ..., qtn}, each of which has oneτN node;map takes
{qt1, ..., qtn} as input and produces a set of relational view
expressions{V1, ..., Vn}, where eachVi is produced from
qti as described above. It follows directly from these algo-
rithms that:

Proposition 3.1The number of relational view expressions
in map(split(qt)) is the number ofτN nodes inqt.

The correctness of the set of relational view expressions
resulting frommapandsplit can be understood in the fol-
lowing sense: Each tuple in the bindings relations for the
XML view is in one or more instances of the corresponding
relational views. To be more precise, we define the follow-
ing:

Definition 3.1 Theevaluation schemaS of a query treeqt
is the set of all names of leaf nodes inqt.

Definition 3.2 Let x be an XML instance of a query tree
qt with evaluation schemaS, in which the instance nodes
are annotated by the query tree type from which they were
generated. Letn be the deepestτN or τT instance nodes
for some root to leaf path inx. Letp be the set of nodes in
the path fromn to the root ofx. An evaluation tupleof x
is created fromn by associating the value of each leaf node
l that is a descendant ofn or of some node inp with the
attribute inS corresponding to the name ofl, and leaving
the value of all other attributes inS null.

The multi-set of all evaluation tuples ofx is called its
evaluation relationand is denotedevalRel(x).

For example, Table 1 shows the result ofevalRel(x) for
the query tree of Figure 5.

Definition 3.3 Let {V1, ..., Vn} be defined over a rela-
tional schemaD, and d be an instance ofD. Then
relOuterUnion({V1, ..., Vn}, d) denotes the set of relational
instances that result from taking the outer union of the eval-
uation of eachVi overd: relOuterUnion({V1, ..., Vn}, d)
= evalV (V1, d)

⋃
...

⋃
evalV (Vn, d), where

⋃
denotes

outer union, andevalV(V ,d) instantiatesV overd.
For example, relOuterUnion({ViewBook, ViewDVD},

d) is the outer union of evalV(ViewBook, d) and
evalV(ViewDVD,d), whose result is shown in Table 2.

The correctness of the set of relational views resulting
from mapandsplit can now be understood in the following
sense:

Theorem 3.1Given a query treeqt defined over a database
D and an instanced of D, then evalRel(eval(qt, d)) ⊆
relOuterUnion(map(split(qt)), d).

(Proofs for all the theorems of this papers are available in
[7].)

Furthermore, the tuples inrelOuterUnion(map(split(qt)),
d) − evalRel(eval(qt, d)) represent starred nodes with an
empty evaluation (which we call “stubbed” nodes). More
precisely:

Definition 3.4 Letx be an XML instance of a query treeqt
with evaluation schemaS, and n be aτN or τT instance
node inx. A stubbed tupleof x is created fromn by asso-
ciating the value of each leaf nodel that is an ancestor ofn
with the attribute inS corresponding to the name ofl, and
leaving the value of all other attributes inS null.

The set of all stubbed tuples ofx is denotedstubs(x).
As an illustration of a stubbed tuple, consider tuplet6 in

table 2. Since the XML instance of Figure 2 does not have
any dvd sold by vendorBarnes and Noble, there is a tuple
[2, Barnes and Noble, NY, US, null, null, null] in ViewDVD
which was added by the LEFT join. This is correct, since
vendoris in a common part of the view, so its information
appears both inViewBookandViewDVD. However,t6 is not
in table 1, since when the entire view is evaluated, this ven-
dor joins with a book.
Theorem 3.2Given a query treeqt defined over a database
D and an instanced of D, then every tuplet in
relOuterUnion(map(split(qt)), d) − evalRel(eval(qt, d)) ⊆
stubs(x).

Note that the statement of correctness isnotthat the XML
view can be constructed from instances of the underlying re-
lational views. The reason is that we do not know whether
or not keys of relations along the path fromτN nodes to
the root are preserved, and therefore do not have enough in-
formation to group tuples from different relational view in-
stances together to reconstruct the XML view. When keys at
all levelsare preserved, then the query tree can be modified
to a form in which the variables iterate over the underlying
relational views instead of base tables, and used to recon-
struct the XML view. Details of this algorithm (replace) can
be found in [7].

4 Updates
Given an update against a well-behaved view, we translate
it to a set of SQL update statements against the correspond-
ing relational view expressions, so existing work on updates
through relational views can be used to translate the updates
to the underlying relational database. In this section, we
start by defining XML updates and then describe the trans-
lation. We also summarize how to determine whether or not
an update is side-effect free.

Although no standard has been established for an XML
update language, several proposals have appeared [1, 25, 4,

281

id vendorName state country bprice btitle isbn dprice dtitle asin
t1 1 Amazon WA US 38 Unix Network Programming 1111 NULL NULL NULL
t2 1 Amazon WA US 29 Computer Networks 2222 NULL NULL NULL
t3 1 Amazon WA US NULL NULL NULL 29 Friends D1111
t4 2 Barnes and Noble NY US 38 Unix Network Programming 1111 NULLNULL NULL
t5 2 Barnes and Noble NY US 38 Computer Networks 2222 NULL NULL NULL

Table 1: Tuples resulting fromevalRel(eval(qt, d)) for the query tree of Figure 5

id vendorName state country bprice btitle isbn dprice dtitle asin
t1 1 Amazon WA US 38 Unix Network Programming 1111 NULL NULL NULL
t2 1 Amazon WA US 29 Computer Networks 2222 NULL NULL NULL
t3 2 Barnes and Noble NY US 38 Unix Network Programming 1111 NULLNULL NULL
t4 2 Barnes and Noble NY US 38 Computer Networks 2222 NULL NULL NULL
t5 1 Amazon WA US NULL NULL NULL 29 Friends D1111
t6 2 Barnes and Noble NY US NULL NULL NULL NULL NULL NULL

Table 2: Tuples resulting fromrelOuterUnion({ViewBook,ViewDVD},d)

19]. The language described below is much simpler than
any of these proposals, and in some sense can be thought
of as an internal form for one of these richer languages (as-
suming a static translation of updates [4]). The simplicityof
the language allows us to focus on the key problem we are
addressing.

4.1 Update language

Updates are specified using path expressions to point to a
set of target nodes in the XML tree at which the update is to
be performed. For insertions and modifications, the update
must also specify a∆ containing the new values.

Definition 4.1 An update operationu is a triple <t,∆,ref>,
wheret is the type of operation (insert, delete, modify);∆
is the XML tree to be inserted, or (in case of a modifica-
tion) an atomic value; andref is a simple path expression in
XPath [10] which indicates where the update is to occur.

The path expressionref is evaluated from the root of the
tree and may yield a set of nodes which we callupdate
points. In the case of modify, it must evaluate to a set of
leaf nodes. We restrict the filters used inref to conjunctions
of comparisons of attributes or child elements with atomic
values, and call the expression resulting from removing fil-
ters in ref the unqualified portionof ref. For example, the
unqualified portion of/vendors/vendor[@id="01"]is /ven-
dors/vendor.

Definition 4.2 An update pathref is valid with respect to a
query treeqt iff the unqualified portion ofref is non-empty
when evaluated onqt.

For example,/vendors/vendor[@id="01"]/vendorName
is a valid path expression with respect to the query tree
of Figure 5, since the path/vendors/vendor/vendorNameis
non-empty when evaluated on that query tree.

The semantics of insert is that∆ is inserted as a child of
the nodes indicated byref ; the semantics of modify is that
the atomic value∆ overwrites the values of the leaf nodes
indicated byref ; and the semantics of a delete is that the
subtrees rooted at nodes indicated byref are deleted.

The following examples refer to Figure 2:

Example 4.1To insert a new book selling for $38 under the
vendor with id=“01” we specify: t = insert, ref = /ven-
dors/vendor[@id="01"]/ products,

∆ = {<book bprice = "38">
<btitle>New Book</btitle><isbn>9999</isbn>

</book>}.

Example 4.2To change thevendorNameof the vendor with
id = "01" to Amazon.comwe specify: t = modify, ref
= /vendors/vendor[@id = "01"]/vendorName, ∆ = {Ama-
zon.com}.

Example 4.3To delete all books with title "Com-
puter Networks" we specify: t= delete, ref = /ven-
dors/vendor/products/book[btitle="Computer Networks"].

Note that not all insertions and deletions make sense
since the resulting XML view may not conform to the DTD
of the query tree (see Section 2.4). For example, the deletion
specified by the path/vendors/vendor/vendorNamewould
not conform to the DTD of Figure 5 sincevendorNameis
a required subelement ofvendor. We must also check that
∆’s inserted and subtrees deleted are correct.

Definition 4.3 An update <t,∆,ref> against an XML view
specified by a query treeqt is correctiff

• ref is valid with respect toqt;
• if t is a modification, then the unqualified portion ofref

evaluated onqt arrives at a node whose abstract type
is τS ;

• if t is an insertion (deletion), then the unqualified por-
tion of ref + the root of∆ (ref) evaluated onqt arrives
at a node whose incoming edge is starred (equivalently,
its abstract type isτT or τN);

• if nonempty, then∆ conforms to the DTD of the ele-
ment arrived at byref.

For example, the deletion of example 4.3 is correct
since book is a starred subelement ofproducts. How-
ever, the deletion specified by the update path/ven-
dors/vendor/vendorNameis not correct sincevendorName
is of abstract typeτS , as is the deletion specified by the in-
valid update path/vendors/vendor/dvd.

4.2 Mapping XML updates to relational views

We now discuss how correct updates to an XML view are
translated to SQL updates on the corresponding relational
views produced in the previous section.

Throughout this section, we will use the XML view 2 of
Figure 2 as an example. The relational viewsViewBookand

282

ViewDVDcorresponding to this XML view were presented
in Section 3.

The translation algorithm for insertions, deletions and
modifications,translateUpdate, is given in [7].

4.2.1 Insertions

To translate an insert operation on the XML view to the un-
derlying relational views we do the following: First, the un-
qualified portion of the update pathref is used to locate the
node in the query tree under which the insertion is to take
place. Together with∆, this will be used to determine which
underlying relational views are affected. Second,ref is used
to query the XML instance and identify the update points.
Third, SQL insert statements are generated for each under-
lying relational view affected using information in∆ as well
as information about the labels and values in subtrees rooted
along the path from each update point to the root of the XML
instance.

Observe that by proposition 2.2, there is at most one node
of type τN along the path from any node to the root of the
query tree and that insertions can never occur below aτN

node, since all nodes below aτN node are of typeτS or τC

by definition.
For example, to translate the insertion of example 4.1, we

use the unqualified update path/vendors/vendor/productson
the query tree of Figure 5, and find that the type of the up-
date point isτC(products). Continuing fromτC(products)
using the structure of∆, we discover that the onlyτN node
in ∆ is its root, which is of typeτN (book). The underlying
view affected will therefore beViewBook. We then use the
update pathref= /vendors/vendor[@id="01"]/ productsto
identify update points in the XML document. In this case,
there is one node (8). Therefore, a single SQL insert state-
ment against viewViewBookwill be generated.

To generate the SQL insert statement, we must find val-
ues for all attributes in the view. Some of these attribute-
value pairs are found in∆, and others must be taken from
the XML instance by traversing the path from each up-
date point to the root and collecting attribute-value pairs
from the leaves of trees rooted along this path. In exam-
ple 4.1,∆ specifiesbprice="38", btitle=“New Book” and
isbn=“9999” . Along the path from the node 8 to the root
in the XML instance of Figure 2, we findid=“01” , vendor-
Name=“Amazon”, state=“WA” andcountry=“US” . Com-
bining this information, we generate the following SQL in-
sert statement:
INSERT INTO VIEWBOOK (id, vendorName, state, country,

bprice, isbn, btitle)
VALUES ("01","Amazon","WA","US",38,"9999","New Book")

As another example, consider the following insertion
against the view 2:t = insert, ref = /vendors,
∆={<vendor id="03">

<vendorName>New Vendor</vendorName>
<address>

<state>PA</state>
<country>US</country>

</address>
<products>
<book bprice="30">
<btitle>Book 1</btitle><isbn>9111</isbn></book>

<book bprice="30">

<btitle>Book 2</btitle><isbn>9222</isbn></book>
<dvd dprice="30">
<dtitle>DVD 1</dtitle><asin>D9333</asin></dvd>

</products>
</vendor>}.

The unqualified update pathref evaluated against the
query tree of Figure 5 yields a nodeτ (vendors), which is
the root. Continuing from here using labels in∆, we dis-
cover two nodes of typeτN : τN (book)andτN (dvd). We
will therefore generate SQL insert statements toViewBook
and as well asViewDVD.

Evaluatingref against the XML instance of Figure 2
yields one update point, node 1. Traversing the path from
this update point to the root yields no label-value pairs (since
the update point is the root itself). We then identify each
node of typeτN in ∆, and generate one insertion for each
of them. As an example, traversing the path from the first
τN (book) node in∆ yields label-value pairsbprice = "30",
btitle = "Book 1", andisbn = "9111". Going up to the root of
∆, we haveid = "03" , vendorName = "New Vendor", state
= "PA" andcountry = "US". This information is therefore
combined to generate the following SQL insert statement:
INSERT INTO VIEWBOOK (id, vendorName, state, country,

bprice, isbn, btitle)
VALUES ("03","New Vendor","PA","US",30,"9111","Book 1");

In a similar way, information is collected from the re-
maining twoτN nodes in∆ to generate:
INSERT INTO VIEWBOOK (id, vendorName, state, country,

bprice, isbn, btitle)
VALUES ("03","New Vendor","PA","US",30,"9222","Book 2");
INSERT INTO VIEWDVD (id, vendorName, state, country,

dprice, asin, dtitle)
VALUES ("03","New Vendor","PA","US",30,"D9333","DVD 1");

4.2.2 Modifications

By definition, modifications can only occur at leaf nodes. To
process a modification, we do the following: First, we use
the unqualifiedref against the query tree to determine which
relational views are to be updated. This is done by looking
at the first ancestor of the node specified byref which has
typeτT or τN , and finding all nodes of typeτN in its sub-
tree. (At least oneτN node must exist, by definition.) If
the leaf node that is being modified is of typeτN itself, then
it is guaranteed that the update will be mapped only to the
relational view corresponding to this node.

Second, we generate the SQL modify statements. The
qualifications inref are combined with the terminal label
of ref and value specified by∆ to generate an SQL update
statement against the view.

For example, consider the update in example 4.2. The un-
qualifiedref is /vendors/vendor/vendorName. TheτN nodes
in the subtree rooted atvendor(the firstτT or τN ancestor of
vendorName) areτN (book) andτN (dvd), and we will there-
fore generate SQL update statements for bothViewBookand
ViewDVD. We then use the qualificationid = "01" from ref
= /vendors/vendor[@id = "01"]/vendorNametogether with
the new value in∆, to yield the following SQL modify state-
ments:
UPDATE VIEWBOOK SET vendorName="Amazon.com" WHERE id="01";
UPDATE VIEWDVD SET vendorName="Amazon.com" WHERE id="01"

283

4.2.3 Deletions

Deletions are very simple to process. First, the unqualified
portion of the update pathref is used to locate the node in
the query tree at which the deletion is to be performed. This
is then used to determine which underlying relational views
are affected by finding allτN nodes in its subtree. Second,
SQL delete statements are generated for each underlying re-
lational view affected using the qualifications inref.

As an example, consider the deletion in example 4.3. The
unqualified update path is/vendors/vendor/products/book.
The onlyτN node in the subtree indicated by this path in the
query tree isτN (book). This means that the deletion will be
performed inViewBook. Examining the update path/ven-
dors/vendor/products/book[btitle=“Computer Networks"]
yields the label-value pairbtitle=“Computer Networks".
Thus the deletion on the XML view is translated to an SQL
delete statement as:
DELETE FROM VIEWBOOK WHERE btitle="Computer Networks"

It is important to notice that if a tuplet in one relation
“owns” a set of tuples in another relation via a foreign key
constraint (e.g. a vendor “owns” a set of books), then dele-
tions must cascade in the underlying relational schema in
order for the deletion oft specified through the XML view
to be allowed by the underlying relational system.

4.3 Correctness

Since we are not focusing on how updates over relational
views are mapped to the underlying relational database, our
notion of correctness of the update mappings is their effect
on each relational viewtreated as a base table.

Let x = eval(qt, d) be the initial XML instance,u be
the update as specified in Definition 4.1, andapply(x, u)
be the updated XML instance resulting from applyingu to
x. The functiontranslateUpdate(x, qt, u) (shown in [7] and
summarized in Section 4.2) translatesu to a set of SQL up-
date statements {U11, ..., U1m1

, ..., Un1, ..., Unmn
}, where

eachUij is an update on the underlying view instancevi

= evalV(Vi,d) generated bymap(split(qt)).
We use the notationv′i = applyR(vi, {Ui1, ..., Uimi

}) to
denote the application of {Ui1, ..., Uimi

} to vi, resulting in
the updated viewv′i. If the set of updates for a givenvi is
empty, thenv′i = vi.

Theorem 4.1Given a query treeqt defined over database
D, then for any instanced of D and correct updateu over
qt, evalRel(apply(x, u)) ⊆ v′1

⋃
...

⋃
v′n, where

⋃
denotes

outer union.

Theorem 4.2Given a query treeqt defined over a database
D and an instanced of D, then v′1

⋃
...

⋃
v′n −

evalRel(apply(x, u)) ⊆ stubs(apply(x, u))
Note that a correctness definition likeapply(eval(qt,d),

u) ≡ eval(qt, d′), whered′ is the updated relational database
state resulting from the application of the translated view
updates {U11, ..., U1m1

, ..., Un1, ..., Unmn
} to updates ond,

does not make sense due to the fact that we do not control
the translation of view updates. Therefore we cannot claim
that they are side-effect free.

In the next subsection, we discuss a scenario in which
this claim can be made.

4.4 Updatability

There are several choices of techniques that could be used
to translate from updates on relational views to updates on
the underlying relational database. Some consider a transla-
tion to be correct if it does not affect any part of the database
that is outside the view [2, 20]. Others consider a translation
to be correct as long as it corresponds exactly to the spec-
ified update, and does not affect anything else in the view
[13]. Still others use additional information to build specific
translators for each view [18, 21, 27]. Here, we choose [13]
to illustrate how reasoning aboutside-effect freerelational
view updates can be extended to XML views.

In [5], we define conditions under which XML views
constructed by “nest-last” nested relational algebra (NRA)
expressions are updatable. Since nest-last NRA expressions
perform nests over a relational algebra expression, our re-
sults are based on the ability to unnest the NRA expres-
sion to obtain a (single) corresponding relational view, and
then build on the results of [13] to detect updatability. Since
query trees also express nesting and are mapped to asetof
corresponding relational views, we can use these results to
reason about the updatability of XML views constructed by
query trees. We assume the underlying relational database is
in BCNF (as required by [13]), and impose three restrictions
on the query tree and update: (1) each table must be bound
to at most one variable; (2) each value in a leaf node must
be unique, that is, if the value ofn is specified as$x/A, then
this value specification does not appear on any other node in
the query tree; (3) comparisons in the filters ofref must be
equalities. These restrictions are imposed so that the result-
ing relational views do not include joins of the same tables
and projections of the same attribute (as required by [13]).
The restriction to equalities in conditions is also required by
[13].

Theorem 4.3A correct updateu to an XML view defined
by a query treeqt is side-effect free if for all (Ui, Vi), where
Vi is the corresponding relational view ofqti andUi is the
translation ofu overVi, Ui is side-effect free inVi.

Based on Theorem 4.3, we can now answer a more gen-
eral question: Is there a class of query tree views for which
all possible updates are side-effect free? To answer this
question, we summarize the results of [5] and [13] for condi-
tions under which NRA views are updatable, and generalize
them for XML views constructed by query trees.

Insertions. An insertion over an NRA view is side-effect
free when the corresponding relational viewV is a select-
project-join view, the primary and foreign keys of the source
relations ofV are in the view and joins are made only
through foreign keys. In terms of query trees, this means
that the primary keys of the source relations ofqti must ap-
pear as values in leaf nodes ofqti and thewhereannotations
in qti specifies joins using foreign keys, for all split treesqti
corresponding to a query treeqt.

284

Deletions and modifications.Deletions and modifications
over an NRA viewV are side-effect free when the above
conditions for insertions are met andV is well-nested[5].
By well-nested, we mean that the source relations inV must
be nested according to key-foreign key constraints in the un-
derlying relations. We rephrase this condition in terms of
query trees as follows:

Definition 4.4 A query treeqt is well-nestedif for any two
source relationsR andS in qt, if S is related toR by a for-
eign key constraint then the source annotation forR occurs
in an ancestor of the nodes containing the source annota-
tion for S. Additionally, attributes ofR must not appear as
values in the descendants ofs.

The results above identify three classes of updatable
XML views: one that is updatable for all possible inser-
tions; one that is updatable for all possible insertions, dele-
tions and modifications; and a general one whose updata-
bility with respect to a given update can be reasoned about
using Theorem 4.3. Furthermore, we can now prove the fol-
lowing:

Theorem 4.4Given a query treeqt with the restrictions
mentioned above and defined over a BCNF database
D, then for any instanced of D and correct up-
date u over qt: apply(eval(qt,d), u) ≡ eval(qt, d′),
where d′ is the updated relational database state result-
ing from the application of the translated view updates
{U11, ..., U1m1

, ..., Un1, ..., Unmn
} using the techniques of

[13].

We leave the study of updatability using other existing
relational techniques for future work.

5 Evaluation
For purposes of presentation, the query tree language pre-
sented in this paper was kept simple to highlight how the
mapping of the query tree and updates are performed.

Query trees can be extended in a number of ways, for
example to deal with grouping, aggregates, function appli-
cations and so on. As an example of such extension, in [7]
we allow grouped valueswhich allow tuples that agree on
a given value to be clustered together, as well as leaf nodes
with attributes. With such an extension,books anddvds that
agree on a given price could be grouped under a common
productsancestor. In this case, the nodeproductswould
be a starred node with a child@price. The nodeproducts
would repeat for every distinct value ofpriceon tables Sell-
Book and Sell-DVD. This extension affects the mapping al-
gorithm only superficially and does not affect the results of
this paper.

However, another consideration that must be kept in
mind when extending the language is whether or not the re-
lational views resulting from the XML view are updatable.
The language presented in this paper, with suitable restric-
tions on the way in which joins and nesting are performed
with respect to keys and foreign keys in the underlying rela-
tional database, presents a subset of XQuery in whichside-
effect freeupdates can be defined as discussed in the pre-

vious section. While grouped values and leaf nodes with
attributes do not affect these results, the addition of func-
tions and aggregates would. Analogous to work on updat-
ing views in relational databases which restricts views to
select-project-join queries, we have therefore initiallyde-
cided against considering a richer language (although we
plan to do so in future work).

The EBNF for the subset of XQuery corresponding to our
language (with grouped values) can be found in [7].

To evaluate our language, we first discuss the restrictions
in our form of queries, and what query trees can or cannot
express. Second, we examine the power of expression of
query trees, and compare it with existing proposals in lit-
erature. We have also analyzed the “practicality” of XML
views constructed by query trees by collecting examples
of real XML views extracted from relational databases and
evaluating whether or not query trees can capture them. For
these real XML views, query trees were sufficiently expres-
sive. Details can be found in [7].

5.1 Limitations of Query Trees

Although query trees are quite expressive, there are some
restrictions.

Values must come from the relational database.We do
not allow constants to be introduced as values in leaves, nor
do we allow functions to calculate new values from values
in the database. Allowing constant values in leaves is po-
tentially useful (for example, to add a version number to the
view), but they are not interesting from the perspective of
updates to the relational database nor can they themselves
be updated since they are not part of the database schema.
Calculating a value from a set of values (e.g. taking the av-
erage of a relational column) creates a one to many mapping
which cannot be updated; research on relational views also
disallows this case. However, calculating a new value from
a single value in the database (e.g. translating length in cen-
timeters to length in inches) could be allowed as long the
reverse function was also specified.

Queries are trees rather than graphs. This restric-
tion disallows recursive queries, which are also disallowed
in SilkRoute [15]. For example, suppose the relational
database contained a relation Patriarchs(PName, CName)
with instance {(John, Marc), (John, Chris), (Justin, John)}.
An XML view of this that one might wish to construct would
be:
<Patriarch>
<Name>Justin</Name>
<Children>

<Name>John</Name>
<Children> <Name>Marc</Name>

<Name>Chris</Name>
</Children>

</Children>
</Patriarch>

Since recursive queries cannot be mapped to select-
project-join queries, our technique would have to be ex-
tended significantly to reason about them.

On the other hand, query trees are flexible enough to rep-
resent heterogeneous structures (e.g. the view in Figure 5).

285

name = ‘result’

name = ‘sellBooks’

name = ‘vendor’
[$v := table(“Vendor”)]

[$sb := table(“Sell-Book”)]
[where $v/vendorId=$sb/vendorId]

value = $v/vendorName

τ

τS τN

name = ‘book’
[$b := table(“Book”)]

τC τN

name = ‘btitle’
value = $b/title

τS

*

*
name = ‘dvds’

name = ‘dtitle’
value = $d/title

τS

*

τC

name = ‘dvd’
[$b := table(“DVD”)]

τN

Figure 8: Example of query tree

It can also represent query trees with a repeating leaf node,
as shown in Figure 8 (note thatvendoris labeled withτN

andτS). The XML view resulting from this query tree is as
follows:
<result>

<sellBooks>
<vendor>Amazon</vendor>
<vendor>Barnes and Nobel</vendor>

</sellBooks>
<book><btitle>Unix Network Programming</btitle></book>
<book><btitle>Computer Networks</btitle></book>
...
<dvds>
<dvd><dtitle>Friends</dtitle></dvd>
...

</dvds>
</result>

It turns out that XML views with heterogeneous content
and repeating leaves arise frequently in practice, but thatre-
cursive views are not common. We therefore believe that
the above restrictions do not limit the usefulness of our ap-
proach.

5.2 Power of Expression

We now compare the expressive power of query trees with
SilkRoute’sview forests[15], XPERANTO [22], and DB2
DAD files [9].

XPERANTO [22] can express all queries in XQuery.
View forests [15] are capable of expressing any query in the
XQueryCore that does not refer to element order, use recur-
sive functions or use is/is not operators. Query trees present
the same limitations as [15], and are also not capable of ex-
pressingif/then/elseexpressions; sequences of expressions
(since we require that the result of the query always be an
XML document); function applications; and arithmetic and
set operations. Input functions are also a limitation of query
trees; in contrast to SilkRoute, variables cannot be bound to
the results of expressions.

DB2 XML Extender provides mappings from relations
to XML through DAD files. Mappings can be done
in two ways: using a single SQL statement (by using
the SQL_stmt element in the DAD file), or using the
RBD_node mapping. The SQL_stmt method allows only
a single SQL statement, so XML views with heterogeneous
structures (like the one in Figure 5) can not be constructed.
The RBD_node method allows heterogeneous structures,
since instead of specifying a single SQL statement for the
XML extraction, the user specifies, for each XML element
or attribute in the XML view, the table and attribute name
from which the data must be retrieved. It is also possible
to specify conditions for each XML node in the DAD file
(join conditions and selection conditions). DB2 DAD files

with RDB_node method are equivalent to query trees in ex-
pressive power, since all the data come directly from the
relational database and functions cannot be applied over the
retrieved data. This is meaningful, since DB2 DAD files
represent features that are useful in practice, and because
this subset can easily be mapped to relational views.

6 Related Work

There are several proposals for exporting and querying
XML views of relational databases [8, 15, 22, 23]. For up-
dates, [28] presents a round trip case study, where XML
documents are stored in relational databases, reconstructed
and then updated. In this case, it is always possible to trans-
late the updates back to the underlying relational database.
Our approach differs since we address updates oflegacy
databases through XML views.

Commercial relational databases offer support for ex-
tracting XML data from relations as well as restricted types
of updates. In SQL Server [11], an XML view generated
by an annotated XML Schema can be modified usingup-
dategrams. To update, the user provides a before and after
image of the XML view [12]. The system computes the
difference between the images and generates SQL update
statements. The views supported by this approach are very
restricted: joins are through keys and foreign keys, and nest-
ing is controlled to avoid redundancy. This corresponds to
our well-nested query trees, which are therefore provably
updatable with respect to all insertions, deletions and mod-
ifications. Oracle [14] offers the specification of an anno-
tated XML Schema, but the only possible update is to insert
an XML document that agrees with the schema. IBM DB2
XML Extender [9] requires that updates be issued directly
in the relational tables.

Native XML databases also support updates [26, 16, 24].
The goal of all these systems differs from ours since they do
not update through views.

7 Conclusions

In this paper, we present a technique for updating relational
databases through XML views. The views are constructed
using query trees, which allow nesting as well as heteroge-
neous sets of tuples, and can be used to capture mixed con-
tent, grouping, as well as repeating text elements and text
elements with attributes.

The main contributions of this paper are the mapping of
the XML view to a set of underlying relational views, and
the mapping of updates on an XML view instance to a set
of updates on the underlying relational views. By providing
these mappings, the XML update problem is reduced to the
relational view update problem and existing techniques on
updates through views [13, 17, 2, 20] can be leveraged. As
an example, we show how to use the approach of [13] to
produce side-effect free updates on the underlying relational
database.

Another benefit of our approach is that query trees are
agnostic with respect to a query language. Query trees rep-

286

resent an intermediate query form, and any (subset of an)
XML query language that can be mapped to this form could
be used as the top level language. In particular, we have im-
plemented our approach in a system calledPataxó that uses
a subset of XQuery to build the XML views and translates
XQuery expressions into query trees as an intermediate rep-
resentation [6]. Similarly, our update language represents an
intermediate form that could be mapped into from a number
of high-level XML update languages (using a static evalu-
ation of which updates are to be performed). In our imple-
mentation, we use a graphical user interface which allows
users to click on the update point or (in the case of a set ori-
ented update) specify the path in a separate window and see
what portions of the tree are affected.

In future work, we plan to study the updatability of XML
views using other proposals of updates through relational
views in the literature. We also plan to extend the language
to include other features such as aggregates, and to extend
the model to include order.

References
[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and

J. Wiener. The Lorel Query Language for Semistruc-
tured Data.International Journal on Digital Libraries,
1(1):68–88, 1997.

[2] F. Bancilhon and N. Spyratos. Update semantics of
relational views.ACM Transactions on Database Sys-
tems, 6(4), Dec. 1981.

[3] P. Bohannon, S. Ganguly, H. Korth, P. Narayan, and
P. Shenoy. Optimizing view queries in ROLEX to sup-
port navigable result trees. InProceedings of VLDB
2002, Hong Kong, China, Aug. 2002.

[4] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active
XQuery. InICDE, San Jose, California, Feb. 2002.

[5] V. Braganholo, S. Davidson, and C. Heuser. On the
updatability of XML views over relational databases.
In Proceedings of WEBDB 2003, San Diego, CA, June
2003.

[6] V. Braganholo, S. Davidson, and C. Heuser. UX-
Query: building updatable XML views over relational
databases. InBrazilian Symposium on Databases,
pages 26–40, Manaus, AM, Brazil, 2003.

[7] V. Braganholo, S. Davidson, and C. Heuser. Propa-
gating XML View Updates to a Relational Database.
Technical Report TR-341, UFRGS, Porto Alegre, RS,
Brazil, Feb. 2004.

[8] S. Chaudhuri, R. Kaushik, and J. Naughton. On re-
lational support for XML publishing: Beyond sorting
and tagging. InProceedings of SIGMOD 2003, San
Diego, CA, June 2003.

[9] J. Cheng and J. Xu. XML and DB2. InProceedings of
ICDE’00, San Diego, CA, 2000.

[10] J. Clark and S. DeRose. XML Path Language (XPath)
Version 1.0. W3C Recomendation, Nov. 1999.

[11] A. Conrad. A Survey of Microsoft SQL
Server 2000 XML Features. MSDN Library.
http://msdn.microsoft.com/library/en-us/dnexxml/html/xml
07162001.asp. Jul 2001.

[12] A. Conrad. Interactive microsoft SQL Server & XML

online tutorial.http://www.topxml.com/tutorials/main.asp?
id=sqlxml.

[13] U. Dayal and P. A. Bernstein. On the correct transla-
tion of update operations on relational views.ACM
Transactions on Database Systems, 8(2):381–416,
Sept. 1982.

[14] A. Eisenberg and J. Melton. SQL/XML is making
good progress.SIGMOD RECORD, 31(2), 2002.

[15] M. Fernández, Y. Kadiyska, D. Suciu, A. Morishima,
and W.-C. Tan. Silkroute: A framework for publish-
ing relational data in XML. ACM Transactions on
Database Systems (TODS), 27(4):438–493, Dec. 2002.

[16] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
TIMBER: A native XML database.The VLDB Jour-
nal, 11(4):274–291, 2002.

[17] A. M. Keller. Algorithms for translating view up-
dates to database updates for views involving selec-
tions, projections, and joins. InProceedings of SIG-
MOD, pages 154–163, Portland, Oregon, Mar. 1985.
ACM.

[18] M. Keller. The role of semantics in translating view
updates.IEEE Computer, 19(1):63–73, 1986.

[19] A. Laux and L. Martin. XUpdate WD, Sept. 2000.
Working Draft. http://www.xmldb.org/xupdate/xupdate-
wd.html.

[20] J. Lechtenbörger. The impact of the constant comple-
ment approach towards view updating. InProceedings
of PODS 2003, pages 49–55, San Diego, CA, June
2003.

[21] L. A. Rowe and K. A. Shoens. Data abstraction, views
and updates in RIGEL. InSIGMOD, pages 71–81,
Boston, Massachusetts, 1979.

[22] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan,
and J. Funderburk. Querying XML views of relational
data. InProceedings of VLDB 2001, Roma, Italy, Sept.
2001.

[23] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J.
Carey, B. G. Lindsay, H. Pirahesh, and B. Reinwald.
Efficiently publishing relational data as XML docu-
ments.The VLDB Journal, pages 65–76, 2000.

[24] Software AG. Tamino XML Server, 2002.http://www.
softwareag.com/tamino/details.htm.

[25] I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updat-
ing XML. In Proceedings of SIGMOD 2001, Santa
Barbara, CA, May 2001.

[26] The Apache Software Foundation. Apache Xindice.
http://xml.apache.org/xindice, 2002.

[27] L. Tucherman, A. L. Furtado, and M. A. Casanova. A
pragmatic approach to structured database design. In
VLDB, pages 219–231, Florence, Italy, Oct. 1983.

[28] L. Wang, M. Mulchandani, and E. A. Rundensteiner.
Updating XQuery Views Published over Relational
Data: A Round-trip Case Study. InProc. of XML
Database Symposium, Berlin, Germany, Sept. 2003.

287

