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Abstract

We introduce the notion of stochastic consis-
tency, and propose a novel approach to achiev-
ing it for caches of highly erratic data. Erratic
data sources, such as stock prices, sensor data,
are common and important in practice. How-
ever, their erratic patterns of change make
caching hard. Stochastic consistency guaran-
tees that errors in cached values of erratic data
remain within a user-specified bound, with a
user-specified probability. We use a Brown-
ian motion model to capture the behavior of
data changes, and use its underlying theory
to predict when caches should initiate pulls to
refresh cached copies to maintain stochastic
consistency. Our approach allows servers to
remain totally stateless, thus achieving excel-
lent scalability and reliability. We also discuss
a new real-time scheduling approach for ser-
vicing pull requests at the server. Our sched-
uler delivers prompt response whenever possi-
ble, and minimizes the aggregate cache-source
deviation due to delays during server overload.
We conduct extensive experiments to validate
our model on real-life datasets, and show that
our scheme outperforms current schemes.

1 Introduction

Many applications must confront the challenge of ef-
ficient delivery of erratically changing data to a large
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population of clients. Caching is widely used to reduce
latency, client-server bandwidth, and server load, but
it is difficult to guarantee cache consistency for erratic
data. We propose a novel approach to this problem.

Erratic data are numerical data that change fre-
quently and unpredictably, usually in response to un-
controllable environmental factors or other random in-
fluences in real systems. Erratic data have been recog-
nized as common in streaming applications [11], and
examples include sensor streams [23], stock prices [5],
and network statistics.

Source-cache consistency for content delivery [27] is
typically maintained under the push or the pull model.
The push method [7, 10, 28, 33] monitors all data
changes at the server, and disseminates updates to
the client caches whenever data changes beyond user-
specified error tolerance. Push is easy to implement,
but suffers from several drawbacks.

First, push is not scalable, since the server must
provide most of the required resources, such as pro-
cessing power, sockets, and memory, and monitor data
changes and manage communications with clients.
Second, it is less reliable, since state information about
connections with clients is lost when the server fails,
and is hard to restore upon reboot. Finally, it is not
power-efficient when clients are wireless and battery-
powered, since clients must remain in listen mode, in
anticipation of push updates.

1.1 The Pull Model

In the pull method [17, 19, 30], in contrast, clients
decide when to refresh local copies. While the effec-
tiveness of a pull scheme depends on the client’s ability
to initiate pulls at proper times, it is better than push
in many real-world situations, especially with erratic
and streaming data sources. Servers remains state-
less, so the method is scalable and resilient to server
failure. Wireless clients can sleep between scheduled
pulls, saving power.

For example, in environmental monitoring systems,
such as in [4], sensors are deployed at remote ocean lo-



cations at various depths to collect data. Such systems
must be wireless and battery-powered because their
locations may be hard to access. Research vessels are
charged with collecting data updates with a certain
accuracy, but frequently move out of wireless range of
sensors to perform other functions. Since broadcasting
takes much more power than to listen [6], it would be
wasteful for the sensors to initiate data pushes, since
there may be no vessels listening. We show in Sec-
tion 4 how vessels can schedule visits to the area to
pull data as appropriate to ensure monitoring accu-
racy constraints.

A similar problem arises when clients (such as PDAs
or laptops) are power-limited. The push model would
force the clients to remain in listen mode in antici-
pation of data. This is unacceptable, since the listen
power is still significant, albeit less than in transmit
mode. Our model allows clients to “sleep” most of the
time, and change mode at pull times.

Finally, consider a system which manages stock
portfolios for hundreds of thousands of clients, each
with a local cache, for which the cache-source error
must be less than some predetermined value. A model
in which the server pushes updates to each client when-
ever the its cache error exceeds its threshold would
simply not scale. The server would need to dedicate
an enormous number of connections to this task.

Combinations of push and pull have also been pro-
posed [8, 16] to achieve better performance. The suc-
cess of such combined schemes also depends on the pull
strategy at the client.

1.2 Stochastic Consistency for Erratic Data

We propose a novel pull-based synchronization scheme
for maintaining stochastic consistency (see Section 4)
of erratic data, applicable when users are willing to
tolerate some error.

Our notion of stochastic consistency guarantees
that cache-source deviation remains within user-
specified error tolerance with a certain probability
level. In many applications, slightly out-of-sync val-
ues are satisfactory, if they are within specified error
bounds. For example, a stock holder may want to
track stock price changes higher than $0.1, and a sys-
tem administrator may only care when machine loads
change by more than 10%.

In such cases, strict consistency between cache and
source is unnecessary. It suffices to adaptively syn-
chronize cached copies with the source guided by user-
defined error tolerances. Also, because of the erratic
nature of such data, it is desirable to associate a con-
fidence metric with the cache-source error. For exam-
ple, a stock holder may be satisfied with a quote if it
is within $0.1 of its true value, with confidence 90%.
In this paper, we show how to achieve stochastic con-
sistency by modeling the evolution of erratic data as
Brownian motions [29].
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The success of pull schemes depends largely on ef-
fective modeling of source data evolution. Some re-
cent work examines stochastic modeling of web page
content evolution. Cho et al. [13, 14] verify the mod-
eling of web page updates as Poisson process, by ex-
periments on more than half a million web pages over
four months, and use the model to synchronize local
copies of web data with their remote sources. A formal
discussion of stochastic modeling of content evolution
in relational database appears in [18]. The authors
use compound nonhomogeneous Poisson processes to
model the behavior of record insertion and deletion,
and Markov chains to model attribute modification.
However, none of these models are suitable for erratic
data, since erratic sources are typically numeric data,
and changes to them are much more frequent than
those due to web page or relational database evolution.
We need a new model for such erratic data, which can
dynamically capture source data characteristics.

1.3 Owur Contributions

We make several contributions in this paper. First,
we introduce the notion of stochastic consistency, and
demonstrate that it is a reasonable consistency model
for many practically important classes of erratic data.

Second, we show how to model source data evolu-
tion as Brownian motions. We verify many real-life
datasets can be modeled as Brownian motions by ex-
periments. Proxies, which cache data on behalf of
clients, can schedule pulls adaptively, using this model
to determine when the expected error in the cached
copy exceeds user-specified error tolerance. Although
we present a pure pull scheme, it can be applied seam-
lessly to other push-and-pull schemes, say, as in [16].

Third, we solve a novel real-time scheduling prob-
lem for processing pull requests at the server. When
the number of proxies is large, the server may be over-
whelmed by bursts of pull requests, resulting in poor
response. Our scheduling method aims to minimize
cache-source disparities caused by such delays overall.
As far as we are aware, this problem formulation has
not appeared in the literature before.

Finally, we study the performance of our approach
to real-life data by experiments. We examine stock
traces, system load data collected from university
servers and real-time sensor data sampled from dis-
tributed ocean buoys, showing that all of them can
achieve good fidelity (see Section 5). We compare
the performance of our Brownian motion based pull
scheme with the Adaptive TTL Scheme proposed
in [30]. We also simulate our scheduling algorithm
and compare it with the simple FCFS scheme.

The rest of this paper is organized as follows: Sec-
tion 2 reviews some previous work on consistency mod-
els and data synchronization techniques. We briefly
review the Brownian motion model in Section 3, and
verify our datasets conform to the model well. In Sec-
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Figure 1: Brownian motion with drift

tion 4, we discuss how to apply Brownian motion to
maintain stochastic consistency, and give the adaptive
pull algorithm. Simulation results are given in Sec-
tion 5. We discuss how to schedule pull requests at
the server to minimize overall cache-source deviation
in Section 6. Section 7 concludes this paper.

2 Related Work

Data synchronization in replicated systems has been
widely studied. Since strong consistency incurs high
overheads and poor scalability, weak consistency is fre-
quently preferred [10, 22, 26]. Techniques such as lazy
replication [22], epsilon-serializability [26], and anti-
entropy [20] have been proposed.

Alonso et al. [10] introduce the concept of quasi-
caching, which allows the cached value to deviate from
the true value in a controlled way. Several coherency
conditions are proposed, including the delay condition,
which states by how much time a cached image may lag
its source value, and the arithmetic condition, which
gives the allowable difference between the true values
and cached image. A pull-based synchronization tech-
nique, implicit invalidation, is proposed, which forces
refreshing by invalidating the cached copy after a cer-
tain time. However the authors have not discussed
how to set the invalidation time, based on the update
pattern of the source object.

The concept of probabilistic consistency is intro-
duced in [37], which guarantees the value returned by
the system is temporally consistent with the newest
copy with a probability p. However, this approach does
not consider the important related issue of bounding
the errors in cached values.

Maintaining temporal consistency of erratic, fre-
quently changing (dynamic) data is studied in [16,
28, 30, 34]. In [28], pure push is used to dissemi-
nate updates through a tree of cooperating reposito-
ries. In [30], various schemes are discussed for clients
to calculate the time to refresh cached copies, so that
temporal coherency is maintained. If U(t) and S(¢)
denote the cached and source values at time ¢, respec-
tively, and c is the desired error bound, then the goal is
to maintain the constraint |U(t) — S(¢)| < ¢. They ex-
perimentally show that the adaptive TTL scheme has
the best temporal consistency properties among var-
ious TTL schemes proposed in the paper. However,
the adaptive TTL scheme uses a simple linear model
to model the evolution of a erratic source, which fails
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Symbol | Company Name | S (Volatility)
NOVL Novell 2.33
BRCM Broadcom 3.91
SEBL Siebel Systems 3.06
YHOO Yahoo Inc 3.88
QCOM Qualcomm 2.05
SUNW Sun Micro 2.23
CSCO Cisco 1.98
XLNX Xilinx 2.07

Table 1: Stock traces used in our simulation

to capture the frequent fluctuations associated with
the data. In Section 5, we show by experiments that
our Brownian motion based pull scheme outperforms
adaptive TTL scheme. Deolasee et al. [16] propose
an adaptive PaP algorithm, which combines push and
pull. In the algorithm, the performance of the client
side pull is very crucial to the overall performance.

Yu et al. [34] study bounding numerical errors
among replicated servers, where every server can store
and accept updates. In their approaches, each server
has to keep state information of other servers, which
is not possible for our system with potentially large
number of proxies.

Wolfson et al. [32] study how to represent and
update the locations of moving objects in spatial
database. Their goal, which is to seek balance between
location precisions and the update frequency, is simi-
lar to ours. Yet the nature of erratic data demands a
different approach.

3 Using Brownian Motion Models

The Brownian motion [29], is widely used to model
fluctuating data in finance, engineering, communica-
tions, physics, and so on. It models increments in ran-
dom data as independent normal samples. We first
describe the model and demonstrate that it models
many practical erratic datasets well.

3.1 The Brownian Motion Model

A continuous-time stochastic process W (t), which
varies as a function of time ¢, is called a Standard
Brownian motion (SBM) [29] if it satisfies three con-
ditions: (1) W(0) = 0, (2) W(t) — W(s) is normally
distributed with mean 0 and variance t — s (¢t > s),
and (3) W(t) — W (s) is independent of W (v) — W (u)
if (s,t) and (u,v) are non-overlapping time intervals.
Property (2) says every increment of SBM is a normal
deviate. In general, SBM is a Martingale process [29],
meaning loosely that the best estimate for its future
value is its current value.

Drifting Brownian Motion (DBM) S(t) is similar,
but includes a secular drift in the expectation of the
process. Its behavior can be captured by the following
equation:

dS(t) = p(t)dt + o(t) dW (t), 1)



time stock datasets temp datasets system load
interval | BRCM | QCOM | SEBL | ON/1/0W/36M | ON/140W/4TM | ON/1/0W/7T0M dataset
10 min | 75.50% | 80.28% | 75.50% 75.21% 72.96% 79.58% 76.00%
15 min | 71.80% | 75.67% | 76.17% 72.38% 75.90% 79.44% 75.23%
20 min | 72.14% | 70.88% | 76.11% 73.45% 73.55% 77.20% 75.41%
30 min | 70.92% | 65.23% | 72.14% 71.47% 66.13% 62.21% 70.59%

Table 2: Average p-values of W-S test for various datasets and time intervals, confidence interval:
95%. ON/140W/36M trace is sampled at longitude ON, latitude 140W, sea depth 36M.

u(t) and o(t) are the time-dependent drift and diffu-
sion parameters, respectively. Using finite differences
for differentials for simplicity, AW (t) represents the in-
crement of the SBM, AW (t) ~ N(0, At). Intuitively,
u(t) models a secular upward or downward trend in
the erratic data, while o(t) models the randomness
associated with the data, as shown in Figure 1. Fun-
damentally, DBM is a combination of a predictable lin-
ear trend and a Brownian motion process. The term
() At represents the non-stochastic part of the pro-
cess, and characterizes the current moving trend. The
term o (t) AW (t) is the stochastic or Brownian motion
part, and represents the randomness in the data. At
time ¢, the process increment AS(¢) follows the normal
distribution (u(t)At, o2(t)At).

3.2 Applicability of Brownian Motion

A key property of Brownian motions is that data in-
crements are modeled as independent normal distribu-
tions (u(t)At, o2(t)At). We expect the drift and dif-
fusion parameters u(t) and o(t) to be relatively con-
stant in the short term. To show that this model is
useful in modeling real-world datasets, it suffices to
show that increments for small, non-overlapping, and
equal-length time intervals are samples from normal
distributions in the short term.

Normality testing [15, 31] has been extensively stud-
ied in the statistical literature, because of the great im-
portance of the normal distribution. Various tests ex-
ist [15, 31], including the Kolmogorov-Smirnov (K-S)
test, the Chi-Square (x?) test, the Wilk-Shapiro ( W-
S) test, and the Anderson-Darling (A-D) test. Each
normality test is formulated as a hypothesis test in
which the null hypothesis is that samples are normal.
Some of these tests are general goodness-of-fit tests,
such as the K-S test and x2 tests, while others are
specifically designed for testing normality, such as the
W-Stest. Generally speaking, the tests specific to nor-
mality are more powerful in detecting non-normality
than the general goodness-of-fit tests [31]. We chose
to apply the W-S test for testing normality, as it has
high power [31], given no prior knowledge about the
possible alternatives.

We tested the applicability of the Brownian mo-
tion model to a variety of real-life streaming data
sources. We selected datasets from three classes of
real-life data, namely, stock prices, sensor data, and
system load data, and tested whether their increments
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were normal. The stock streams we chose are listed
in Table 1 with values arriving every minute for the
entire year 06/2001-06/2002. Each stream contained
about 10° data values. Qur sensor time series were
taken from the TAO project [4] at the Pacific Marine
Environmental Laboratory (PMEL), and comprised
a year’s measurements (11/1991-11/1992) of temper-
ature (temp) at various ocean depths. Each temp
stream contained about 10* values, sampled every 1
minute. Our system load data comprised 1-minute av-
erages of system loads collected every five seconds for
two days on our main server.

We deliberately chose data streams with high
volatility. Such data show high uncertainty of move-
ment, and display large fluctuations even over short
intervals. Highly erratic data are more challenging for
our adaptive pull model. The 3 value [36] shown in
Table 1 is a measure of the relative volatility of a stock
to the market. Generally, symbols with 8 € [1,4] are
considered to have high volatility.

Table 2 shows the average p-values [31] of the W-S
test evaluated on increment samples taken over vari-
ous time intervals. For each time interval, we repeat-
edly applied the W-S'test on samples over the intervals
through the entire data series, and record the average
results (p-values). The p-value measures the proba-
bility that the W-S test statistic will take on a value
that is at least as extreme as the observed value when
the null hypothesis is true. In our context, the larger
the p-value, the stronger the confidence with which we
may accept the samples as normal. The significance
level (@) of our test is 0.05. Any sample with p-value
lower than « can be flagged as non-normal with high
confidence. The p-values for our datasets are far higher
than ¢, indicating that we can have high confidence in
modeling the increments as normal samples. Not sur-
prisingly, for longer time intervals, the p-value drops
somewhat, suggesting the model may evolve during
longer intervals (see Section 5.1).

4 The Stochastic Consistency Model

Figure 2 depicts our system model. There are three
major components in our system: a central server
or erratic data source, proxies with caches (only one
proxy is shown), and clients. The server maintains
N data objects {01, 02, ...,0n}, whose values are up-
dated frequently, say, by incoming update streams.
Users request object values through proxies. At each
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Figure 2: System architecture

proxy, users register tuples (o;,€;,p;) specifying that
the user is interested in object o;, and can toler-
ate error €; with probability confidence p;. Proxies
adaptively pull object values on behalf of users, at
intervals designed to maintain stochastic consistency
with the server. The server responses have the form
(Si(tp), mi(tp), 0i(tp)), where S;(t,) denotes the value
of 0; at pull time t,, u;(tp) and o;(t,) are the estimates
of 0;’s drift and diffusion parameters, respectively (see
Section 4.3). When a user requests o;’s value from
the proxy at some time ¢, the current estimate of 0;’s
value, based on last pulled object value and parame-
ters, is returned.

As pull requests arrive at the server, a real-time
scheduler dynamically schedules these requests for ser-
vice (see Section 6), to ensure prompt responses.

In what follows, we introduce the stochastic consis-
tency model in Section 4.1. In Section 4.2, we show
how proxies can determine their pull times under the
DBM model, to maintain stochastic consistency. The
drift and diffusion parameters, which capture data
characteristics on the fly, are estimated for each data
object periodically at the server. The issue of param-
eter estimation is discussed in Section 4.3. In 4.4, we
describe our adaptive pull algorithm.

4.1 Stochastic Consistency

In our approach, proxies cache and serve data objects
under a stochastic consistency model. A client is sat-
isfied if the value returned by the proxy for object o;
is within € of its true value with probability at least
p. Let S;(t) and U;(t) be the true and cached values
of object o; at time t. Let € be the user-specified er-
ror tolerance and p be the confidence expressed as a
probability. The cache is stochastically consistent if

Pr[|(S:(t) —Ui(t))| <e] >p, atalltimest. (2)

A proxy must frequently refresh cached copies to main-
tain stochastic consistency. To reduce communication
overhead and server loads, we need a mechanism to
adaptively decide when the cache-source deviation is
likely to exceed €, and refresh the cached copy only at
such times.

Let the proxy have pulled object o;’s values from
the server at times t1,%s, ..., t;. At time tz, the proxy
must determine the next time tpy1 = tr + Aty the

196

data must be pulled. During the interval [t, tg+1], the
proxy returns to the user an estimate for o;’s value,
based on the last pulled value S;(tx). Consider the
probability function:

Fi(t, At) = Pr(|Si(t + At) — E[Si(t + At)]| < ] (3)

F;(t, At) is the probability that the cache-source devi-
ation of o;’s value is within € at time ¢ + At, given the
last proxy-pulled value is S;(t). S;(t+ At) is the actual
source value, and E[S;(t + At)] is the estimated value
at the proxy. How the proxy determines E[S;(t + At)]
depends on the source data evolution model, which
will be discussed shortly.

The cached value is stochastically consistent at time
tr + Aty if Fj(ty,Aty) > p. Clearly, to maintain
stochastic consistency, the proxy must pull to refresh
the local value before F;(ty, Aty) drops below p. Thus,
at time ty,, the next pull time t51 = ty + Aty for ob-
ject o; is determined by the smallest Aty for which
Fi(ty, Aty) < p.

4.2 Determining the Next Pull Time

After justifying the appropriateness of the DBM model
in Section 3.2, we model the increment of source object
0;, AS;(t, At) = S;(t + At) — S;(t), as follows:

ASi(t, At) = pi(t) - At +o4(t) - AW (2),  (4)

wi(t) and o;(t) are the time varying drift and diffusion
parameters, respectively. W (t) is a SBM. It’s not dif-
ficult to see AS;(t, At) follows a normal distribution:

AS;(t, At) ~ N(ui(t)At, o?(t)At). (5)
Let E[S;(t + At)] = S;(t) + pi(t) At, we obtain:
Si(t + At) — E(S;(t + At)) ~ N(0, o2(t)At). (6)

In Equation 6, E[S;(t + At)] is the expected value of
Si(t + At) at time t + At. Thus E[S;(t + At)] can
serve as the best estimate of S;(¢t + At) at such time.
Suppose S;(t) and p;(t) are pulled by the proxy at time
t, E[S;(t+ At)] will be returned to users upon requests
before S;(t) expires. We also need to find such At that
the probability the cache-source error remains within
€ at time t + At., as defined in Equation 3, starts
dropping below p.

Equations 3 and 6 indicate that F;(t, At) is a de-
creasing function of At. Thus, it suffices to find At



for which Pr[|;(¢, Ate)| < €] = p. One must solve the
following equation to obtain At,:

o= ew(-Fas = @

€

o (t) VAL
simply the well-known error function [1], and since it
is evaluated at the proxies and not at the server, our
model remains scalable. Using Equation 7, proxies can
obtain t + At,, the next due time to refresh the local
copy so that the expected error remains within user-
specified tolerance.

We have thus far treated error tolerances as abso-
lute values. However, one might be also interested in
relative error tolerance. For example, a user may need
to know the value of a stock portfolio within a given
percentage bound. If we denote the relative error tol-
erance as €%, we need to find At such that:

Pr[|Ss(t + Ate,) — E[Si(t + Ate,)]| < &% - [Si(t)|] =p
8)

Now we can similarly calculate the next pull time as

the case of absolute error tolerance described before.

where € = We note that this integral is

4.3 Updating the Model

Proxies need the current drift parameter u;(t) to cal-
culate the expected object value E(S;(t)), and the dif-
fusion parameter o;(¢) to calculate At.. Both parame-
ters reflect the current characteristics of o;, and should
be estimated on a regular basis at the server.

The server maintains a buffer B; containing the k
most recent data values for each object o;, sampled
at regular intervals, h. When a new sampled value
comes in to a full buffer, the oldest value in the buffer
is simply discarded. Parameters u;(t) and o;(t) are es-
timated using the current contents of B;. According to
the DBM model, increments follow normal distribution
N(ui(t)At,02(t)At). Given a fixed At, such as h, over
short term, estimating u;(t) and o;(¢) is equivalent to
estimating the mean and variance of increments over
At. The issue of estimating mean and variance has
been extensively studied, and sample mean and sam-
ple variance are typically used as estimators [29]. We
show in our experiments, that for the short time hori-
zons we will be concerned with, simpler methods work
quite well. Let gi;(¢) represent the estimated value of
wi(t), we have:

k—2
i) = =1 S(BG+1-BE) O

The estimated value of o;(t) is:

k—2
520 = =7 S (B U+1)- Bl (10

fii(t) and ¢;(t) are both unbiased and easy to com-
pute. Since h is comparatively small, the estimated
values are quite accurate.
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Algorithm 1 Adaptive Pull Algorithm

Prozy side (0, €, p):
loop
if teyrr == tpu”(oi) then
/* time to pull new value of object 0; */
Send a pull request pull(o;) to the server, and wait;
On receiving server response, proxy obtains (S;, i, 0;);
Update local copy with new value S;;
Calculate Ate based on obtained u; and oy;
tlast(oi) = tpull(oi)y tpull(oi) = teurr + Ate;
end if

if proxy receive a user request reg(o;) then
/* the prozy receives a user request for object o; */
E(tcurr) =S5 + l»‘i(tcurr - tlast);
Return E(tcurr) to the user;
end if
end loop

Server side:
loop
if server receive a pull request pull(o;) then
Process the request, retrieve current value of object o;,
Si;
Retrieve latest evaluated u; and o7;
Send (S;, pi, 07) back to the proxy;
end if

end loop

The parameter estimation process for each object
must be carried out repeatedly at the server. On pro-
cessing a pull request, the latest estimates of u; and o;
are returned with the object values to the proxy (see
Figure 2), which will use them to calculate expected
object value and decide the next pull time.

4.4 Adaptive Pull Algorithm

Algorithm 1 outlines our adaptive pull algorithm. .y
is the current system time at the proxy. t,uu(0;) is the
calculated next pull time for object 0;, and #1445 (0;) is
the last time the cached copy of o; is updated. On re-
ceiving response (S;, i, 0;) from the server, the proxy
calculates At, based on o; as well as € and p. On re-
ceiving user request at time t.,, the proxy returns its
best estimated value E(t.y-) based on current cached
value S; and ;. Our server is totally stateless, guaran-
teeing good scalability. For simplicity, we assume the
pulled value is immediately available at the proxy after
it sends the pull request, which may not be true in the
real world. We will tackle this problem in section 6.

It should be possible to extend our model to hier-
archical proxying schemes. As user requests (o;,¢€,p)
propagate up the hierarchy, each non-leaf node picks
the most conservative values of € and p for each object
cached in the subtree, and propagate them upwards.
Root nodes communicate with the server using our
pull scheme. Updates are pushed down the hierarchy
according to € value at each node.

5 Adaptive Pull Performance

We conducted a series of experiments to demonstrate
the performance of our scheme on real-life erratic data
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Figure 3: Fidelity for stock trace BRCM

sources, such as stock prices, sensor data, and system
loads. We showed in Section 3.2 that it is appropriate
to model these datasets as Brownian motions. Here
we show that our approach outperforms previous ap-
proaches in terms of accuracy and efficiency. We sim-
ulated our approach using the csim simulation pack-
age [3] on an Intel Pentium 4 at 1.70GHz.

We first introduce the fidelity metric [30], which
measures how often our predictions of pull times meet
the user-specified error tolerance. Fidelity character-
izes the confidence we may place in our model, and is
defined as:

time cache-source errors are < %
fidelity(o;) = < e (&%)

total simulation time

5.1 Adjusting 0; On-line

As in Section 3.2, we deliberately chose highly erratic
datasets, since they represent greater challenges for
our method than do ordinary datasets. In particular,
we must confront a paradox in the case of such highly
erratic data—the fidelity of our approach actually de-
grades as we increase the error tolerance, due to rapid
changes in data characteristics. Not only is o; high in
this case, but the values of o; and u; are themselves
likely to change rapidly. This effect leads to poor pre-
dictions of pull times, since the data evolution model
will likely have changed significantly even before the
current At. has expired.

Figure 3 illustrates this paradox on the highly er-
ratic stock trace BRCM, since its fidelity drops off as
we increase the error tolerance. BRCM has the ex-
tremely high § value of 3.91 (see Table 1), so its o; is
also likely to change rapidly. As we increase the error
tolerance, the interval between pulls increases. Unfor-
tunately, the proxies can only obtain the updates of
o; at those pull times, and the value of o; is likely
outdated quite early in this interval, so that our pre-
dictions of next pull time is likely to be wrong.

The changing behaviour of o¢;, also known as
stochastic volatility, has been extensively studied in
Econometrics [12]. Typically, various stochastic pro-
cess models are applied to o(t). We choose the Hull-
White (H-W) model [12], since it is one of the simplest
and very widely used. H-W models o2 (t) as a geomet-
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ric Brownian motion [29]:
do? (t) = a(t)o? (t) dt + B(t)oF (t) AW, (¢),

where a(t) and $(t) are both time dependent coeffi-
cients, W, (t) is a SBM uncorrelated with the W (#)
driving S;(t) (see Equation 4).

Let the proxy pull values S;(t), ui(tx), o;(tg) from
the server at time t;. o?(ty) is a reasonable estimate
of the current volatility, but will change in the next
interval. We use the H-W model to estimate the ex-
pected volatility ¢;*(t;41) in the next interval. Using
finite differences for differentials, we get

G (tht1) = o7 (tr) - () Aty + 1). (11)

Coefficient a(ty) can be estimated from the previous
obtained volatilities o2(tx) and o?(tx—1) as follows:
o; (ty) — o (tr—1)
07 (te—1)Atg_1
where Aty =t —tr_1. Taking Aty 1/ Aty = 1, we
2
obtain ¢;(txy1) = ajét(:fz) from Equation 11 and 12.
Now, We can calculate Aty as before, using the ad-
justed diffusion parameter &;(tx,1) instead of o;(tx)-

a(ty) = (12)

5.2 Performance of Our Approach

Equipped with the o adjustment method discussed
above, we first demonstrate the fidelity of our approach
on the three classes of streaming data with both abso-
lute (€) and relative error tolerance (e,%). We simulate
each data stream as an erratic data object, and only
one proxy is simulated in this experiment.

Each point in Figure 4 is the averaged fidelity over
five datasets belonging to the same class of data. The
fidelity achieved by our model closely matches the
prespecified confidence p. For example, the average
fidelity at 90% level is 89.4% for stock data (€,.%),
88.4% for temp data (¢), and 89.1% for system load
data (e.%). Such results suggest that our approach
captures source data change patterns well, and pre-
dicts pull times well. Not surprisingly, a higher p value
achieves higher fidelity, but incurs larger communica-
tion overhead, as explained below.

Figure 5 demonstrates the communication overhead
incurred for maintaining stochastic consistency for dif-
ferent datasets. The communication overhead is mea-
sured as the number of pulls generated during the en-
tire simulation period, and varies across the datasets,
depending on the dataset’s trends and fluctuation pat-
terns. A higher p triggers more pulls, while a looser
e(e; %) triggers fewer pulls. The total updates curve
shows the total number of data updates in the stream.
The optimal curve shows the minimum number of pulls
needed for a certain error tolerance, obtained from an
off-line calculation. These two curves represent the
number of pulls for a naive scheme and the optimal
scheme respectively. As can be seen, the communica-
tion overhead incurred by our scheme is far less than
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the naive scheme and close to the optimal scheme.

5.3 Comparison with Adaptive TTL Scheme

A linear adaptive pull scheme (Adaptive TTL) with
user-provided temporal coherency requirement was in-
troduced in [16, 30]. Their notion of temporal co-
herency requirement is equivalent to our error toler-
ance. TTL (time-to-live) denotes the time interval
before the current local copy is invalidated, i.e, the
time before next pull. The scheme applies a linear
change model on source objects. Proxies estimate the
linear coefficients based on their last retrieved values
and the latest calculated TTL (7;). The next TTL
is determined by a weighted combination of estimated
TTL (Test), the latest TTL, and the most conservative
TTL thus far (Tpy) [16].

T = max(Tmin, Min(Tmaez, @ Tmr + (1 —a) - Tayn)),
where Tdyn = w'Test'i‘(l_w)'Tl; Test = (Tl/lDlatest_
Dypenuitimate|) - € and [Tmin, Tmaz] denotes a static
bound for the next TTL value. In [30], the authors
compare Adaptive TTL with other pull schemes by
experiments, and conclude that Adaptive TTL outper-
forms all other schemes.

We compare our scheme with Adaptive TTL on
various stock traces, in Figure 6. An ideal scheme
is such one that can achieve high fidelity with mini-
mum number of pulls. We record the number of pulls
needed by each scheme to achieve the same fidelity,
and show the results for three individual stock traces

(BRCM, SEBL, and QCOM). The parameters for
Adaptive TTL are as follows: w = 0.5, TT R,,;,, = 0.3,
TTR,,.c = 500. The coefficient a is dynamically ad-
justed to match the fidelity achieved by our approach.
Clearly, for all traces we show, to achieve the same
fidelity, Adaptive TTL scheme requires far more pulls
than our scheme, which suggests that our Brownian
motion model can capture the source data character-
istics much better than Adaptive TTL’s linear model.

6 Pull Request Scheduling at Server

Server scalability is one of our major goals, since we
want to maximize the number of proxies that a server
can handle. If o; is high, the request rate for o; at the
server will be high (see Equation 7) as well as bursty.
Proxies may then experience long delays, or even re-
ceive no replies at all, if the server queue overflows.
Thus, we need a scheduler which can intelligently
schedule pull requests at the server, so that it guar-
antees prompt responses whenever possible, and min-
imizes the total cache-source errors across the proxies
when the server is overloaded.

Paradoxically, it is as bad for the server to respond
early as it is to respond late. To see this, consider a
wireless client which has scheduled the next response
from the server to arrive at time t;. To save power,
the client will turn off its wireless receiver, turning
it on just before tg. At time tg, the client expects
the server’s response to be “fresh”, that is, to contain
S(tq), u(tq), and o(ty). If the server responds at time
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Figure 7: Our scheduling model

t, < tq, two problems arise. First, the receiver will
still be off at ¢,, so that this response will be missed
entirely. Second, even if we assume that the response
can be delivered to the client after it wakes up at tq4,
the values S(t,),u(ts), and o(t,) will be stale, since
the client requires S(tq), u(tq), and o(tq). The values
S(t,) and S(t4) will differ by an amount determined
by the DBM model. Early responses by the server
cause stale values of S;, p; and o; to be delivered at
the due times, while late processing will cause cache-
source errors to exceed the user-specified bound.

In this section, we introduce a novel variant of Just-
In-Time (JIT) scheduling, in which a request must
complete before its due time, but as close to it as possi-
ble [21]. We propose a penalty function in Section 6.2,
and aim to minimize the overall penalties at any time
at the server.

6.1 Scheduling Model Options

Figure 7 shows the scheduling of pull requests for ob-
ject o; from the proxy. ti,ts,- - ,t; are the times the
proxy is supposed to refresh the cached value. Miss-
ing these times may cause the cache-source deviation
exceeds the user tolerance.

In a naive scheme, the proxy would send the (k+1)-
th request to the server at time tg1 = tr + Atg, the
point when the data is needed. The server processes
incoming requests on FCFS basis. However, this strat-
egy gives the server very little leeway, since it must
respond hastily to each request.

Another approach would be for the proxy to no-
tify the server as soon as it computes Atg, so that
the server has the maximum latitude in scheduling re-
quests. However, we have observed, the server must
not respond too soon, and must effectively deliver the
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really needed, so that the the (k + 1)-th pull request is
made at time tx11 — (see Figure 7). The scheduler at
the server now has more flexibility in deciding when to
process each request, and it retains no proxy-specific
state. We show how to derive 7y in section 6.4.
Request processing at the server may involve re-
trieval of the current object value, o;, and u; from
the database, assembling HTML pages or XML docu-
ments, encrypting data, and so on. In fact, different
proxies may interact with different server applications,
so even for the same o;, requests from different proxies
may require different processing times. For simplic-
ity, we assume constant network delays. Using more
complex network models will be our future work.

6.2 Real-Time Scheduling Model

Each pull request, pull(o;), arriving at the server
can be treated a real-time task, parametrized as
Tj(0s,pj,d;), where p; is T;’s processing time; d; is its
due time, d; = t+vy—4, (t is server’s current time, and
¢4 is the proxy-server round-trip network delay. Since
the request is sent at time tgy1 — 7y, only v — § time
units are available for server processing.)

As explained before, we must start processing the
request as close as possible to the due time d;, that is,
at d; — pj, to provide the proxy the latest object value
and p;, o;. Such scheduling is called Just-In-Time
(JIT) scheduling [21, 24, 25], and penalizes earliness,
as well as tardiness. Tasks finish exactly on their due
dates is an ideal JIT schedule.

We must first define a penalty function which prop-
erly penalizes both tardiness and earliness. If the
server’s response is tardy, arriving after ¢4 1, the proxy
must continue to estimate the object’s value beyond
tg+1 using the old drift parameter value pu;(tx), al-
though the actual drift and diffusion parameters will
have changed to p;(tx+1) and o;(tg+1) by tgy1-



Beyond time tjy1, the actual data values change
as Si(tp+1 + At) = Si(tey1) + pilter1)At +
oi(tg+1)AW (t). However, the proxy has to continue
to use S;(tx) and p;(tr) to first estimate E[S;(tg+1)]
and then the additional change in this value during
the interval At as u;(t)At. Since try1 was chosen to
make |S;(tk+1) — E[Si(tg+1)]| < €, the extra cache-
source value deviation will consist of two parts: a
drift-induced component, |p;(tg41) — pi(tr)|At, and a
diffusion-induced component, o; AW (t). Since AW (t)
is N(0, At), changes in it can be expressed in terms of
its standard deviation v/At. Thus, if the due time and
the completion time for task 7} are d; and C; respec-
tively, the extra error is |p;(te+1) — ps(tr)|(C; — dj) +
oi(tr+1)y/Cj — d;-

On the other hand, if the server responds
early, at C; < dj;, the proxy receives the values
Si(C}), 1i(Cj),0:(C;) at dj. Consequently, these val-
ues are out of date by d; — C; time units, resulting in
error (1;(C;) - (dj — Cj) + 0i(C;) - \/d;j — C.

If the penalty is taken to be proportional to the
additional error, The following function penalizes both
earliness and tardiness, and accounts for both the drift
and diffusion terms. Let p; and o; are the current
drift and diffusion parameters when the pull request
T} arrives the server, and ,ug- is the old drift parameter
at the proxy.

Pj = pj max(0,d; — Cj) + 4 max(0, Cj — d;)

(13)
+054/1C; — djl,

where /i; = |u; — pj|. The penalty is zero only when
C; = dj. As C; deviates more from d;, more penalty
will be incurred. Our goal is to minimize )" . P;, the
total penalties, at any time at the server. Since the
server scheduler needs to know the old drift parameter
w; of each pulling proxy, the value of u; should be sent
to the server along with each pull request.

JIT scheduling has been well studied, and Baker
et al. [21] review the literature on scheduling n tasks
on single machine to minimize total earliness and tar-
diness penalty. Most work to date uses linear penalty
functions, such as: h; max(0,d; —C;) +w; max(0,C; —
d;), where h; is the early cost rate, and wj is the tardy
cost rate. It is known that minimizing an aggregate
linear penalty function is NP-hard [25]. Since our ver-
sion is a combination of a linear penalty and a square
root penalty, it is more general, and clearly, also NP-
hard. We seek heuristics to solve our problem.

6.3 An Off-Line LINSQT-ET Heuristic

Our scheduling algorithm must be efficient and on-line,
since scheduling decisions have to be made as pull re-
quests arrive. We start with the heuristic LIN-ET pro-
posed for off-line scheduling with linear penalties [25].
Theorem 1. Given n tasks, let the objective be to min-
imize Y 5, (hj max(0,d; — Cy) + w; max(0, Cj — dj)).
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Any adjacent pairs of tasks in the optimal sequence
must satisfy

Qye(wy + hy),

where task x immediately precedes task y, and Q, and
Qys are defined as:

WPy — Qay(We + ha) > wypy —

0 ifs, <0,
Quo =< 8y if 0< 8y < Py, (14)
py otherwise.

Here sy, = dy — t — py, is the slack of task u, p, is its
processing time, and t is the current system time.
Proof: See [25]. O

Theorem 1 offers a necessary condition for an op-
timal schedule, from which the LIN-ET heuristic [25]
is derived as follows: given n tasks at time ¢, they are
sequenced in order of priority R;, calculated as follows:

W if 55 <0,
Rj(Sj)Z Wj—Sj(Wj-i-Hj)/kﬁ if0<$j < kp,
—H; if 85 > kp.

(15)
where W; = w;/p;, Hj = h;/pj, and p is the aver-
age processing time of n tasks, and k is called looka-
head parameter, used to extend the scope of optimality
beyond two adjacent tasks. In practice, as discussed
in [25], a low k (k = 2, or k = 3) may be adequate.

LIN-ET performs quite well under various settings
[25], and is computing efficient, so it is a good can-
didate for an on-line heuristic. Before designing the
heuristic for our problem, which we will call LINSQT-
ET, we must first reconcile our non-linear penalty
function (Equation 13) with the priority representa-
tion (Equation 15) as follows.

Theorem 2. Given n tasks, let the objective be to min-
imize 3., (uj max(0,d; — Cy) + fi; max(0, Cj — d;) +

0j+/|C; —d;|). All adjacent pairs of tasks in the opti-

mal sequence must satisfy
WePy — Qoy(Wg + hy) > wypy — Qyo(wy + hy)

where
o

x:lfz'*' 2 ’
V|S$|+ |5z_py|
ag
z = Mg + § .
V|3z|+ |S:c_py|

The other notations are as in Theorem 1.

h

(16)

We proved Theorem 2 in [35]. Now our schedul-
ing problem can be mapped to the linear penalty case
(Theorem 1) with weights w, and h, defined in Equa-
tion 16. Our heuristic LINSQT-ET sequences tasks in
order of priority R; defined in Equation 15, using w;
and h; as in Equation 16.

6.4 An On-line LINSQT-ET Heuristic

The heuristic LINSQT-ET we have just described is
off-line, but Algorithm 2 outlines an on-line version.



Algorithm 2 On-line LINSQT-ET heuristic
PRIO-LIST: List of tasks with s; < kp, in priority order.

On Arrival of Task Tj:

/¥ calculate priority of Tj: W; is as in Equation 16 */
T; - priority = W; — s;(W; + H;)/kp;

insert T} into PRIO-LIST;

Task Execution:
/* when one task done, pick next task in PRIO-LIST */
loop
if PRIO-LIST is not empty then
update priorities of top h tasks in PRIO-LIST, and re-
order them;
Ty = PRIO-LIST(0);
dequeue Ty from PRIO-LIST, and execute;
else
/* if PRIO-LIST is empty, wait for time w. */
wait(w);
end if

for every [ time units do
/* update the whole PRIO-LIST regularly */
update all priorities in PRIO-LIST;

end for

end loop

According to Equation 15, tasks whose slack times
exceed kp have the lowest priorities (—H;), and are
unlikely to be scheduled in the immediate future. In
other words, if a task has slack time kp when it arrives,
there is little danger of it having arrived later. Conse-
quently, if ¢ is the network round-trip delay, a proxy
needs to initiate a pull no earlier than kp + p; + ¢
time units ahead of its due time. So we can derive
v =kp+p; + 6 in Figure 7.

In Algorithm 2, pending tasks are ordered by their
priorities in PRIO-LIST. Task priority is a function
of the slack time (Equation 16), and changes with
time. However, updating priority values and reorder-
ing PRIO-LIST requires O(nlogn) time. This is too
expensive to perform before every scheduling decision,
especially when n is large. Instead, we schedule af-
ter updating and reordering only the top h tasks in
PRIO-LIST. However, we do update and reorder all
of PRIO-LIST every [ time units. In our experiments,
we set h = 10 and [ = 10 sec.

6.5 Experimental Results

We simulate our on-line LINSQT-ET scheduling algo-
rithm on stock traces, and compare its performance
with the FCFS-based scheduling under various work-
loads. FCFS scheduling is widely used in current sys-
tems, such as Apache [2]. We set the constant looka-
head parameter k = 3. To calculate v, proxies obtain
the value of k, p, and p; the first time they contact
the server. We assume each proxy caches one data
object, the value of € is randomly chosen from range
0.1 — 0.5. The request processing time for each proxy
is randomly drawn from the range 25ms—40ms [9].
Figure 8(a) compares FCFS and LINSQT-ET with
respect to the fraction of time the server is overloaded,
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which is calculated as the percentage of total simula-
tion time that at least one task misses its due time. As
the figure shows, the server gets more overloaded as the
number of proxies increases in both schemes. However,
LINSQT-ET remains far more scalable than FCFS
throughout the wide range considered. Figure 8(b)
compares the two schemes with respect to the average
penalties during overload. As can be seen, LINSQT-
ET scheduling incurs significantly less penalty, and
consequently less cache-source deviation than FCFS.

Figure 8(c) compares the penalties incurred by the
two schemes relative to the optimal, given a certain
number of pending tasks to schedule. The optimal
schedule is the sequence of tasks with minimum penal-
ties, which is computed through an off-line exhaustive
search. Generally, the deviation between LINSQT-ET
and optimal is quite low, while the deviation between
FCFS and optimal becomes much larger as the number
of pending tasks increases.

7 Conclusions

We have proposed stochastic consistency, a new model
of consistency appropriate for situations when users
can tolerate some error. We have also presented
a novel pull-based scheme for maintaining stochas-
tic consistency for caches holding erratic and volatile
data. Our approach models changes in source data
as Brownian motions, and schedules pulls from the
proxy to keep errors in the cached data within user-
specified error tolerance. Pulls are initiated at times
determined by user error tolerance, probability confi-
dence and data characteristics.

To guarantee high scalability and prevent the server
from becoming a bottleneck, the server schedules pull
requests using a new variant of JIT scheduling. Our
variant uses a non-linear penalty function, which has
not been addressed previously in the literature.

We show through simulations that our Brownian
motion based scheme achieves high fidelity on stock
traces, sensor data and system load data, while keep-
ing the communication overhead low. We also compare
our adaptive scheme with the adaptive TTL scheme
in [30], and find that to achieve the same fidelity, our
scheme requires much fewer pulls. We simulate the
server scheduling algorithm under various workloads,
and demonstrate that it far outperforms naive FCFS
scheme both in scalability and overload penalties.
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