
Detecting Change in Data Streams

Daniel Kifer, Shai Ben-David, Johannes Gehrke

Department of Computer Science
Cornell University

Abstract

Detecting changes in a data stream is an im-
portant area of research with many appli-
cations. In this paper, we present a novel
method for the detection and estimation of
change. In addition to providing statisti-
cal guarantees on the reliability of detected
changes, our method also provides meaning-
ful descriptions and quantification of these
changes. Our approach assumes that the
points in the stream are independently gen-
erated, but otherwise makes no assumptions
on the nature of the generating distribution.
Thus our techniques work for both continuous
and discrete data. In an experimental study
we demonstrate the power of our techniques.

1 Introduction

In many applications, data is not static but arrives
in data streams. Besides the algorithmic difference
between processing data streams and static data, there
is another significant difference. For static datasets, it
is reasonable to assume that the data was generated by
a fixed process, for example, the data is a sample from
a static distribution. But a data stream has necessarily
a temporal dimension, and the underlying process that
generates the data stream can change over time [17, 1,
23]. The quantification and detection of such change
is one of the fundamental challenges in data stream
settings.

Change has far-reaching impact on any data pro-
cessing algorithm. For example, when constructing
data stream mining models [17, 1], data that arrived
before a change can bias the models towards charac-
teristics that no longer hold. If we process queries over

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

data streams, we may want to give separate answers
for each time interval where the underlying data distri-
bution is stable. Most existing work has concentrated
on algorithms that adapt to changing distributions ei-
ther by discarding old data or giving it less weight [17].
However, to the best of our knowledge, previous work
does not contain a formal definition of change and thus
existing algorithms cannot specify precisely when and
how the underlying distribution changes.

In this paper we make a first step towards formal-
izing the detection and quantification of change in a
data stream. We assume that the data points are gen-
erated sequentially and independently by some under-
lying probability distribution. Our goal is to detect
when this distribution changes, and to quantify and
describe this change.

It is unrealistic to allow data stream processing al-
gorithms enough memory capacity to store the full
history of the stream. Therefore we base our change-
detection algorithm on a two-window paradigm. The
algorithm compares the data in some “reference win-
dow” to the data in a current window. Both widows
contain a fixed number of successive data points. The
current window slides forward with each incoming data
point, and the reference window is updated whenever
a change is detected. We analyze this paradigm and
develop algorithms (or tests) that can be supported by
proven guarantees on their sensitivity to change, their
robustness against raising false alarms, and their run-
ning time. Furthermore, we aim to obtain not only
reliable change detection, but also a comprehensible
description of the nature of the detected change.

1.1 Applications

A change detection test with the above properties has
many interesting applications:
Quality Control. A factory manufactures beams
made from a metal alloy. The strengths of a sample
of the beams can be measured during quality testing.
Estimating the amount of defective beams and deter-
mining the statistical significance of this number are
well-studied problems in the statistics community [5].
However, even if the number of defective beams does
not change, the factory can still benefit by analyzing

180

the distribution of beam strengths over time. Changes
in this distribution can signal the development of a
problem or give evidence that a new manufacturing
technique is creating an improvement. Information
that describes the change could also help in analysis
of the technique.
Data Mining. Suppose a data stream mining algo-
rithm is creating a data mining model that describes
certain aspects of the data stream. The data mining
model does not need to change as long as the under-
lying data distribution is stable. However, for suffi-
ciently large changes in the distribution that generates
the data stream, the model will become inaccurate. In
this case it is better to completely remove the contri-
butions of old data (which arrived before the change)
from the model rather than to wait for enough new
data to come in and outweigh the stale data. Fur-
ther information about where the change has occurred
could help the user avoid rebuilding the entire model
– if the change is localized, it may only be necessary
to rebuild part of the model.

1.2 Statistical Requirements

Recall that our basic approach to change detection in
data streams uses two sliding windows over the data
stream. This reduces the problem of detecting change
over a data stream to the problem of testing whether
the two samples in the windows were generated by dif-
ferent distributions. Consequently, we start by consid-
ering the case of detecting a difference in distribution
between two input samples. Assume that two datasets
S1 and S2 where generated by two probability distri-
butions, P1, P2. A natural question to ask is: Can we
infer from S1 and S2 whether they were generated by
the same distribution P1 = P2, or is it the case that
P1 6= P2? To answer this question, we need to design
a “test” that can tell us whether P1 and P2 are differ-
ent. Assuming that we take this approach, what are
our requirements on such a test?

Our first requirement is that the test should have
two-way guarantees: We want the guarantee that our
test detects true changes with high probability, i.e.,it
should have few false negatives. But we also want the
test to notify us only if a true change has occurred,
i.e.,it should have few false positives. Furthermore we
need to be able to extend those guarantees from the
two-sample problem to the data stream.

There are also practical considerations that affect
our choice of test. If we know that the distribution of
the data has a certain parametric form (for example,
it is a normal distribution), then we can draw upon
decades of research in the statistics community where
powerful tests have been developed.Unfortunately, real
data is rarely that well-behaved in practice; it does not
follow “nice” parametric distributions. Thus we need
a non-parametric test that makes no assumptions on
the form of the distribution.

Our last requirement is motivated by the users of
our test. A user not only wants to be notified that
the underlying distribution has changed, but she also
wants to know how it has changed. Thus we want a test
that does not only detects changes, but also describes
the change in a user-understandable way.

In summary, we want a change detection test with
these four properties: the rate of spurious detections
(false positives) and the rate of missed detections (false
negatives) can be controlled, it is non-parametric, and
it provides a description of the detected change.

1.3 An Informal Motivation of our Approach

Let us start by discussing briefly how our work relates
to the most common non-parametric statistical test
for change detection, the Wilcoxon test [24]. (Recall
that parametric tests are unsuitable as we do not want
to restrict the applicability of our work to data that
follows certain parametric distributions.)

The Wilcoxon test is a statistical test that measures
the tendency of one sample to contain values that are
larger than those in the other sample. We can control
the probability that the Wilcoxon test raises a false
alarm. However, this test only permits the detection
of certain limited kinds of changes, such as a change
in the mean of a normal distribution. Furthermore, it
does not give a meaningful description of the changes
it detects.

We address the issue of two-way guarantees by us-
ing a distance function (between distributions) to help
describe the change. Given a distance function, our
test provides guarantees of the form: “to detect a dis-
tance > ε between two distributions P1 and P2, we will
need samples of at most n points from the each of P1

and P2.”
Let us start by considering possible distance func-

tions. One possibility is to use powerful information
theoretic distances, such as the Jensen-Shannon Di-
vergence (JSD) [19]. However, to use these measures
we need discrete distributions and it may also be hard
to explain the idea of entropy to the average end-user.
There exist many other common measures of distance
between distributions, but they are either too insensi-
tive or too sensitive. For example, the commonly used
L1 distance is too sensitive and can require arbitrarily
large samples to determine if two distributions have L1

distance > ε [4]. At the other extreme, Lp norms (for
p > 1) are far too insensitive: two distributions D1 and
D2 can be close in the Lp norm and yet can have this
undesirable property: all events with nonzero proba-
bility under D1 have 0 probability under D2. Based
on these shortcomings of existing work, we introduce
in Section 3 a new distance metric that is specifically
tailored to find distribution changes while providing
strong statistical guarantees with small sample sizes.

In addition, users are usually not interested in ar-
bitrary change, but rather in change that has a suc-

181

cinct, representation that they can understand. Thus
we restrict our notion of change to showing the hyper-
rectangle (or, in the special case of one attribute, the
interval) in the attribute space that is most greatly
affected by the change in distribution. We formally
introduce this notion of change in Section 3.

1.4 Our Contributions

In this paper we give the first formal treatment of
change detection in data streams.Our techniques as-
sume that data points are generated independently but
otherwise make no assumptions about the generating
distribution (i.e. the techniques are nonparametric).
They give provable guarantees that the change that is
detected is not noise but statistically significant, and
they allow us to describe the change to a user in a suc-
cinct way. To the best of our knowledge, there is no
previous work that addresses all of these requirements.

In particular, we address three aspects of the prob-
lem: (1) We introduce a novel family of distance mea-
sures between distributions; (2) we design an algorith-
mic set up for change detection in data streams; and
(3) we provide both analytic and numerical perfor-
mance guarantees on the accuracy of change detection.

The remainder of this paper is organized as follows.
After a description of our meta-algorithm in Section
2, we introduce novel metrics over the space of distri-
butions and show that they avoid statistical problems
common to previously known distance functions (Sec-
tion 3). We then show how to apply these metric to
detect changes in the data stream setting, and we give
strong statistical guarantees on the types of changes
that are detected (Section 4). In Section 5 we de-
velop algorithms that efficiently find the areas where
change has occurred, and we evaluate our techniques
in a thorough experimental analysis in Section 6.

2 A Meta-Algorithm For Change De-
tection

In this section we describe our meta-algorithm for
change detection in streaming data. The meta-
algorithm reduces the problem from the streaming
data scenario to the problem of comparing two (static)
sample sets. We consider a datastream S to be a se-
quence < s1, s2, · · · > where each item si is generated
by some distribution Pi and each si is independent of
the items that came before it. We say that a change
has occurred if Pi 6= Pi+1, and we call time i + 1 a
change point1. We also assume that only a bounded
amount of memory is available, and that in general the
size of the data stream is much larger than the amount
of available memory.

1It is not hard to realize that no algorithm can be guaranteed
to detect any such change point. We shall therefore require the
detection of change only when the difference between Pi and
Pi+1 is above some threshold. We elaborate on this issue in
section 3.

Algorithm 1 : FIND CHANGE
1: for i = 1 . . . k do
2: c0 ← 0
3: Window1,i ← first m1,i points from time c0

4: Window2,i ← next m2,i points in stream
5: end for
6: while not at end of stream do
7: for i = 1 . . . k do
8: Slide Window2,i by 1 point
9: if d(Window1,i, Window2,i) > αi then

10: c0 ← current time
11: Report change at time c0

12: Clear all windows and GOTO step 1
13: end if
14: end for
15: end while

Note that the meta-algorithm above is actually run-
ning k independent algorithms in parallel - one for
each parameter triplet (m1,i,m2,i, αi). The meta-
algorithm requires a function d, which measures the
discrepancy between two samples, and a set of triples
{(m1,1,m2,1, α1), . . . , (m1,k,m2,k, αk)}. The numbers
m1,i and m2,i specify the sizes of the ith pair of win-
dows (Xi, Yi). The window Xi is a ‘baseline’ window
and contains the first m1,i points of the stream that
occurred after the last detected change. Each win-
dow Yi is a sliding window that contains the latest
m2,i items in the data stream. Immediately after a
change has been detected, it contains the m2,i points
of the stream that follow the window Xi. We slide the
window Yi one step forward whenever a new item ap-
pears on the stream. At each such update, we check
if d(Xi, Yi) > αi. Whenever the distance is > αi,
we report a change and then repeat the entire proce-
dure with Xi containing the first m1,i points after the
change, etc. The meta-algorithm is shown in Figure 1.

It is crucial to keep the window Xi fixed while slid-
ing the window Yi, so that we always maintain a refer-
ence to the original distribution. We use several pairs
of windows because small windows can detect sudden,
large changes while large windows can detect smaller
changes that last over longer periods of time.

The key to our scheme is the intelligent choice of
distance function d and the constants αi. The func-
tion d must truly quantify an intuitive notion of change
so that the change can be explained to a non-technical
user. The choice of such a d is discussed in Section
3. The parameter αi defines our balance between sen-
sitivity and robustness of the detection. The smaller
αi is, the more likely we are to detect small changes
in the distribution, but the larger is our risk of false
alarm.

We wish to provide statistical guarantees about the
accuracy of the change report. Providing such guar-
antees is highly non-trivial because of two reasons:
we have no prior knowledge about the distributions

182

and the changes, and the repeated testing of d(Xi, Yi)
necessarily exhibits the multiple testing problem - the
more times you run a random experiment, the more
likely you are to see non-representative samples. We
deal with these issues in section 3 and section 4, re-
spectively.

3 Distance Measures for Distribution
Change

In this section we focus on the basic, two-sample, com-
parison. Our goal is to design algorithms that exam-
ine samples drawn from two probability distributions
and decide whether these distributions are different.
Furthermore, we wish to have two-sided performance
guarantees for our algorithms (or tests). Namely, re-
sults showing that if the algorithm accesses sufficiently
large samples then, on one hand, if the samples come
from the same distributions then the probability that
the algorithm will output “CHANGE” is small, and
on the other hand, if the samples were generated
by different distributions, our algorithm will output
‘CHANGE” with high probability. It is not hard to
realize that no matter what the algorithm does, for
every finite sample size there exist a pair of distinct
distributions such that, with high probability, samples
of that size will not suffice for the algorithm to detect
that they are coming from different distributions. The
best type of guarantee that one can conceivably hope
to prove is therefore of the type: “If the distributions
generating the input samples are sufficiently different,
then sample sizes of a certain bounded size will suffice
to detect that these distributions are distinct”. How-
ever, to make such a statement precise, one needs a
way to measure the degree of difference between two
given probability distributions. Therefore, before we
go on with our analysis of distribution change detec-
tion, we have to define the type of changes we wish
to detect. This section addresses this issue by exam-
ining several notions of distance between probability
distributions.

The most natural notion of distance (or similar-
ity) between distributions is the total variation or
the L1 norm. Given two probability distributions,
P1, P2 over the same measure space (X, E) (where
X is some domain set and E is a collection of sub-
sets of X - the measurable subsets), the total varia-
tion distance between these distributions is defined as
TV (P1, P2) = 2 supE∈E |P1(E) − P2(E)| (or, equiva-
lently, when the distributions have density functions,
f1, f2, respectively, the L1 distance between the dis-
tributions is defined by

∫
|f1(x)−f2(x)|dx). Note that

the total variation takes values in the interval [0, 1].
However, for practical purposes the total varia-

tion is an overly sensitive notion of distance. First,
TV (P1, P2) may be quite large for distributions that
should be considered as similar for all practical pur-
poses (for example, it is easy to construct two dis-

tributions that differ, say, only on real numbers whose
9th decimal point is 5, and yet their total variation dis-
tance is 0.2). The second, related, argument against
the use of the total variation distance, is that it may be
infeasibly difficult to detect the difference between two
distributions from the samples they generate. Batu et
al [4] prove that, over discrete domains of size n, for
every sample-based change detection algorithm, there
are pairs of distribution that have total variation dis-
tance ≥ 1/3 and yet, if the sample sizes are below
O(n2/3), it is highly unlikely that the algorithm will
detect a difference between the distributions. In par-
ticular, this means that over infinite domains (like the
real line) any sample based change detection algorithm
is bound to require arbitrarily large samples to de-
tect the change even between distributions whose total
variation distance is large.

We wish to employ a notion of distance that, on
one hand captures ‘practically significant’ distribution
differences, and yet, on the other hand, allows the ex-
istence of finite sample based change detection algo-
rithms with proven detection guarantees.

Our solution is based upon the idea of focusing on
a family of significant domain subsets.

Definition 1. Fix a measure space and let A be a
collection of measurable sets. Let P and P ′ be proba-
bility distributions over this space.

• The A-distance between P and P ′ is defined as

dA(P, P ′) = 2 sup
A∈A
|P (A)− P ′(A)|

We say that P, P ′ are ε-close with respect to A if
dA(P, P ′) ≤ ε.

• For a finite domain subset S and a set A ∈ A, let
the empirical weight of A w.r.t. S be

S(A) =
|S ∩A|
|S|

• For finite domain subsets, S1 and S2, we define
the empirical distance to be

dA(S1, S2) = 2 sup
A∈A
|S1(A)− S2(A)|

The intuitive meaning of A-distance is that it is
the largest change in probability of a set that the user
cares about. In particular, if we consider the scenario
of monitoring environmental changes spread over some
geographical area, one may assume that the changes
that are of interest will be noticeable in some local
regions and thus be noticeable by monitoring spatial
rectangles or circles. Clearly, this notion of A-distance
is a relaxation of the total variation distance.

It is not hard to see that A-distance is always ≤ the
total variation and therefore is less restrictive. This

183

point helps get around the statistical difficulties asso-
ciated with the L1 norm. If A is not too complex2,
then there exists a test t that can distinguish (with
high probability) if two distributions are ε-close (with
respect to A) using a sample size that is independent
of the domain size.

For the case where the domain set is the real
line, the Kolmogorov-Smirnov statistics considers
sup

x
|F1(x) − F2(x)| as the measure of difference be-

tween two distributions (where Fi(x) = Pi({y : y ≤
x})). By setting A to be the set of all the one-
sided intervals (−∞, x) the A distance becomes the
Kolmogorov-Smirnov statistic. Thus our notion of dis-
tance, dA can be viewed as a generalization of this
classical statistics. By picking A to be a family of
intervals (or, a family of convex sets for higher dimen-
sional data), the A-distance reflects the relevance of
locally centered changes.

Having adopted the concept of determining distance
by focusing on a family of relevant subsets, there are
different ways of quantifying such a change. The A
measure defined above is additive - the significance of
a change is measured by the difference of the weights of
a subset between the two distributions. Alternatively,
one could argue that changing the probability weight
of a set from 0.5 to 0.4 is less significant than the
change of a set that has probability weight of 0.1 under
P1 and weight 0 under P2.

Next, we develop a variation of notion of the A
distance, called relativized discrepancy, that takes the
relative magnitude of a change into account.

As we have clarified above, our aim is to not only
define sensitive measures of the discrepancy between
distributions, but also to provide statistical guarantees
that the differences that these measures evaluate are
detectable from bounded size samples. Consequently,
in developing variations of the basic dA measure, we
have to take into account the statistical tool kit avail-
able for proving convergence of sample based estimates
to true probabilities. In the next paragraph we out-
line the considerations that led us to the choice of our
‘relativized discrepancy’ measures.

Let P be some probability distribution and choose
any A ∈ A, let p be such that P (A) = p. Let S be a
sample with generated by P and let n denote its size.
Then nS(A) behaves like the sum Sn = X1 + · · · +
Xn of |S| independent binomial random variables with
P (Xi = 1) = p and P (Xi = 0) = 1 − p. We can use
Chernoff bounds [16] to approximate that tails of the
distribution of Sn:

P [Sn/n ≥ (1 + ε)p] ≤ e−ε2np/3 (1)

P [Sn/n ≤ (1− ε)p] ≤ e−ε2np/2 (2)

Our goal is to find an expression for ε as a func-
2there is a formal notion of this complexity - the VC-

dimension. We discuss it further in Section 3.

tion ω(p) so that the rate of convergence is approx-
imately the same for all p. Reasoning informally,
P (p−Sn/n ≥ pω(p)) ≈ e−ω(p)2np/2 and the right hand
side is constant if ω(p) = 1/

√
p. Thus

P [(p− Sn/n)/
√

p > ε]

should converge at approximately the same rate for
all p. If we look at the random variables X∗

1 , . . . , X∗
n

(where X∗
i = 1−Xi) we see that S∗

n =
∑

X∗
i = n−Sn

is a binomial random variable with parameter 1 − p.
Therefore the rate of convergence should be the same
for p and 1 − p. To make the above probability sym-
metric in p and 1 − p, we can either change the de-
nominator to

√
min(p, 1− p) or

√
p(1− p). The first

way is more faithful to the Chernoff bound. The sec-
ond approach approximates the first approach when p
is far from 1/2. However, the second approach gives
more relative weight to the case when p is close to 1/2.

Substituting S(A) for Sn/n, P (A) for p, we get
that (P (A)−S(A))/

√
min(P (A), 1− P (A)) converges

at approximately the same rate for all A such that
0 < P (A) < 1 and (P (A)− S(A))/

√
P (A)(1− P (A))

converges at approximately the same rate for all A
(when 0 < P (A) < 1). We can modify it to the two
sample case by approximating P (A) in the numerator
by S‘(A). In the denominator, for reasons of symme-
try, we approximate P (A) by (S‘(A))+S(A))/2. Tak-
ing the absolute values and the sup over all A ∈ A,
we propose the following measures of distribution dis-
tance, and empirical statistics for estimating it:

Definition 2 (Relativized Discrepancy). Let
P1, P2 be two probability distributions over the same
measure space, let A denote a family of measurable
subsets of that space, and A a set in A.

• Define φA(P1, P2) as

sup
A∈A

|P1(A)− P2(A)|√
min{P1(A)+P2(A)

2 , (1− P1(A)+P2(A)
2)}

• For finite samples S1, S2, we define φA(S1, S2)
similarly, by replacing Pi(A) in the above defi-
nition by the empirical measure Si(A) = |Si ∩
A|/|Si|.

• Define ΞA(P1, P2) as

sup
A∈A

|P1(A)− P2(A)|√
P1(A)+P2(A)

2

(
1− P1(A)+P2(A)

2

)
• Similarly, for finite samples S1, S2, we define

ΞA(S1, S2) by replacing Pi(A) in the above defi-
nition by the empirical measure Si(A).

184

Our experiments show that indeed these statistics
tend to do better than the dA statistic because they
use the data more efficiently - a smaller change in an
area of low probability is more likely to be detected by
these statistics than by the DA (or the KS) statistic.

These statistics have several nice properties. The
dA distance is obviously a metric over the space of
probability distributions. So is the relativized dis-
crepancy |φA| (as long as for each pair of distribution
P1 and P2 there exists a A ∈ A such that F1 and
P1(A) 6= P2(A)). The proof is omitted due to space
limitations. We conjecture that |ΞA| is also a metric.

However, the major benefit of the dA, φA, and ΞA
statistics is that in addition to detecting change, they
can describe it. All sets A which cause the relevant
equations to be > ε are statistically significant. Thus
the change can be described to a lay-person: the in-
crease or decrease (from the first sample to the second
sample) in the number of points that falls in A is too
much to be accounted for by pure chance and therefore
it is likely that the probability of A has increased (or
decreased).

3.1 Technical preliminaries

Our basic tool for sample based estimation of the A
distance between probability distributions is based on
the Vapnik-Chervonenkis theory.

Let A denote a family of subsets of some domain
set X. We define a function ΠA : N 7→ N by

ΠA(n) = max{|{A∩B : A ∈ A}| : B ⊆ X and |B| = n}

Clearly, for all n, ΠA ≤ 2n. For example, if A is the
family of all intervals over the real line, then ΠA(n) =
O(n2), (0.5n2 + 1.5n, to be precise).

Definition 3 (VC-Dimension). The Vapnik-
Chervonenkis dimension of a collection A of sets is

VC-dim(A) = sup{n : ΠA(n) = 2n}

The following combinatorial fact, known as Sauer’s
Lemma, is a basic useful property of the function ΠA.

Lemma 3.1 (Sauer, Shelah). If A has a finite VC-
dimension, d, then for all n, ΠA(n) ≤ Σd

i=0

(
n
i

)
It follows that for any such A, PiA(n) < nd. In

particular, for A being the family of intervals or rays
on the real line, we get PiA(n) < n2.

3.2 Statistical Guarantees for our Change De-
tection Estimators

We consider the following scenario: P1, P2 are two
probability distributions over the same domain X, and
A is a family of subsets of that domain. Given two
finite sets S1, S2 that are i.i.d. samples of P1, P2 re-
spectively, we wish to estimate the A distance between

the two distributions , dA(P1, P2). Recall that, for any
subset A of the domain set, and a finite sample S, we
define the S- empirical weight of A by S(A) = |S∩A|

|S| .
The following theorem follows by applying the clas-

sic Vapnik-Chervonenkis analysis [22], to our setting.

Theorem 3.1. Let P1, P2 be any probability distri-
butions over some domain X and let A be a family
of subsets of X and ε ∈ (0, 1). If S1, S2 are i.i.d m
samples drawn by P1, P2 respectively, then,

P [∃A ∈ A ||P1(A)− P2(A)| − |S1(A)− S2(A)|| ≥ ε]

< ΠA(2m)4e−mε2/4

It follows that

P [|dA(P1, P2)− dA(S1, S2)| ≥ ε] < ΠA(2m)4e−mε2/4

Where P in the above inequalities is the probability
over the pairs of samples (S1, S2) induced by the sam-
ple generating distributions (P1, P2).

One should note that if A has a finite VC-
dimension, d, then by Sauer’s Lemma, ΠA(n) < nd

for all n.

We thus have bounds on the probabilities of both
missed detections and false alarms of our change de-
tection tests.

The rate of growth of the needed sample sizes as a
function of the sensitivity of the test can be further im-
proved by using the relativized discrepancy statistics.
We can get results similar to Theorem 3.1 for the dis-
tance measures φA(P1, P2) and ΞA(P1, P2). We start
with the following consequence of a result of Anthony
and Shawe-Taylor [2].

Theorem 3.2. Let A be a collection of subsets of
a finite VC-dimension d. Let S be a sample of size
n each, drawn i.i.d. by a probability distribution, P
(over X), then

Pn(φA(S, P) > ε) ≤ (2n)de−nε2/4

(Where Pn is the n’th power of P - the probability
that P induces over the choice of samples).

Similarly, we obtain the following bound on the
probability of false alarm for the φA(S1, S2) test.

Theorem 3.3. Let A be a collection of subsets of a
finite VC-dimension d. If S1 and S2 are samples of size
n each, drawn i.i.d. by the same distribution, P (over
X), then

P 2n(φA(S1, S2) > ε) ≤ (2n)de−nε2/4

(Where P 2n is the 2n’th power of P - the probability
that P induces over the choice of samples).

185

To obtain analogous guarantees for the probabilities
of missed detection of change, we employ the fact that
φA is a metric.

Claim 3.1. For finite samples, S1, S2, and a pair of
probability distributions P1, P2 (all over the same do-
main set),

|φA(P1, P2)− φA(S1, S2)| ≤ φA(P1, S1) + φA(P2, S2)

We can now apply Theorem 3.2 to obtain

Theorem 3.4. Let A be a collection of subsets of
some domain measure space, and assume that the VC-
dimension is some finite d. Let P1 and P2 be prob-
ability distributions over that domain and S1, S2 fi-
nite samples of sizes m1,m2 drawn i.i.d. according to
P1, P2 respectively. Then

Pm1+m2 [|φA(S1, S2)− φA(P1, P2)| > ε]

≤ (2m1)de−m1ε2/16 + (2m2)de−m2ε2/16

(Where Pm1+m2 is the m1 + m2’th power of P - the
probability that P induces over the choice of samples).

Finally, note that, it is always the case that

φA(P1, P2) ≤ ΞA(P1, P2) ≤ 2φA(P1, P2)

It therefore follows that guarantees against both
false-positive and missed-detection errors similar to
Theorems 3.3 and 3.4, hold for the ΞA statistics as
well.

To appreciate the potential benefits of using this rel-
ative discrepancy approach, consider the case where
A is the collection of all real intervals. It is easy to
verify that the VC-dimension of this family A is 2.
Let us estimate what sample sizes are needed to be
99% sure that an interval I, that changed from hav-
ing no readings to having η fraction of the detected
readings in this interval, indicate a real change in
the measured field. Note that for such an interval,

S1(I)−S2(I)√
0.5(S1(I)+S2(I))

=
√

2η. We can now apply Theorem

3.3 to see that m = 30/η should suffice. Note that if
we used the dA measure and Theorem 3.1, the bound
we could guarantee would be in the order of 1/η2.

4 Tight Bounds for Streaming Real
Data

Traditional statistical hypothesis testing consists of
three parts: the null hypothesis, a test statistic, and
a critical region. The null hypothesis is a statement
about the distributions that generate the data. A
statistic is a function that is computed over the sam-
pled data. For example, it could be the average, or the
Wilcoxon statistic, or the number of heads in a series
of coin tossings. A critical region (or rejection region)
is a subset of the range of the statistic. If the value

of the statistic falls in the critical region, we reject the
null hypothesis. Critical regions are designed so that
if the null hypothesis were true, the probability that
the test statistic will take a value in the critical region
is less than some user-specified constant.

This framework does not fare very well when deal-
ing with a data stream. For example, suppose a datas-
tream is generated in the following way: an adversary
has two coins, one of them is a fair coin, having proba-
bility 1/2 of landing heads, and the other is a coin that
always falls heads. At each time unit, the adversary
flips a coin and reports its results. The adversary can
secretly switch coins at any time.

Even if the adversary never switches coins, any pat-
tern of heads and tails will eventually show up in the
stream, and thus for any test statistic of bounded
memory (that cannot keep track of the length of the
sequence) and non-trivial critical region, we will even-
tually get a value that causes us to falsely reject the
null hypothesis (that only the fair coin is being used).

Since there is no way to avoid mistakes all together,
we direct our efforts to limiting the rate of mistakes.
We propose the following measure of statistical guar-
antee against false positive errors, in the spirit of the
error rate:

Definition 4 (size). A statistical test over data
streams is a size(n, p) test if, on data that satisfies the
null hypothesis, the probability of rejecting the null
hypothesis after observing n points is at most p.

In the rest of this section we will show how to
construct a critical region (given n and p) for the
Wilcoxon, Kolmogorov-Smirnov, φA, and ΞA tests.
Proofs are omitted due to space limitations. The crit-
ical region will have the form {x : x ≥ α}. In other
words, we reject the null hypothesis for inordinately
large values of the test statistic.

For the rest of this section, we will assume that
the points of a stream S =< s1, s2, · · · > are real-
valued and that the collection A is either a collection
of all initial segments (−∞, x) or the collection of all
intervals (a, b).

4.1 Continuous Generating Distribution

In order to construct the critical regions, we must
study the distributions of the test statistics under the
null hypothesis (all n points have the same generating
distribution).

Our change-detection scheme can use the Wilcoxon,
Kolmogorov-Smirnov, φA and ΞA statistics as well as
any other statistic for testing if two samples have the
same generating distribution. Let K represent the
statistic being used. Pick one window pair and let
m1 be the size of its first window and m2 be the size
of its second window. Over the first n points of the
stream S, our change-detection scheme computes the
values: K(< s1, . . . , sm1 >,< si+m1 , . . . , si+m1+m2 >)

186

for i = 1 . . . n −m1 −m2. Let FK,m1,m2,n(S) be the
maximum of these values (over all window locations i).
We reject the null hypothesis if FK,m1,m2,n(S) ≥ α.
That is, we conclude that there was a change if, for
some i, the i’th Y window revealed a sample which
is significantly different than the sample in the refer-
ence X window. It turns out that when the n points
are generated independently by the same continuous
generating distribution G then FK,m1,m2,n is a ran-
dom variable whose distribution does not depend on
G. Namely,

Theorem 4.1. If s1, . . . , sn, are generated indepen-
dently by any fixed continuous probability distribu-
tion, G, and the statistic K is either the Wilcoxon,
Kolmogorov-Smirnov, φA or ΞA, then the distribution
of FK,m1,m2,n does not depend on G.

When n = m1 + m2 this is the same as testing if
two samples have the same continuous generating dis-
tribution. In this case, this result for the Wilcoxon and
Kolmogorov-Smirnov statistics is well-known. We can
provide a concrete description of the distribution of F .
Consider the stream < 1, 2, . . . , n >. Given a statis-
tic K, parameters m1, m2, and c, and a permutation,
π =< π1, . . . , πn > of < 1, 2, . . . , n >, we say that π is
odd if, when we apply our change detection scheme to
that sequence of numbers, we get FK,m1,m2,n > c.

Theorem 4.2. Under the hypothesis of 4.1, for any
c, P (FK,m1,m2,n > c) is 1/n! times the number of odd
permutations of the stream < 1, 2, . . . , n >.

In light of Theorems 4.1 and 4.2 the only component
we are still missing, to construct a size (n, p) test for
continuous distributions, is determining the value α
(that, in turn, defines our test’s critical region). We
consider three ways to can compute α:

1. Direct Computation: generate all n! permutations
of < 1, 2, . . . , n > and compute FK,m1,m2,n. Set α
to be the 1− p percentile of the computed values.

2. Simulation: since the distribution of FK,m1,m2,n

does not depend on the generating distribution
of the stream, choose any continuous distribu-
tion, generate ` samples of n points each, com-
pute FK,m1,m2,n for each sample and take the 1−p
quantile. We will show how to choose ` in Sub-
section 4.2.

3. Sampling: since simulation essentially gives us `
permutations of < 1, 2, . . . , n >, we can generate
` permutations directly, compute FK,m1,m2,n and
take the 1−p quantile. This uses less random bits
than the simulation approach since we don’t need
to generate random variables with many signifi-
cant digits.

Next we consider the case of non-continuous proba-
bility distributions. If we are dealing with discrete

distributions and use the Kolmogorov-Smirnov, φA or
ΞA statistics, then Theorem 4.3 assures us that we can
construct the critical region as above and the proba-
bility of falsely rejecting the null hypothesis is ≤ p.

Theorem 4.3. Let G be any distribution function
and let H be a continuous distribution function. If K
is either the Kolmogorov-Smirnov, φA or ΞA statis-
tic, then for any c ≥ 0, PG(FK,m1,m2,n > c) ≤
PH(FK,m1,m2,n > c)

4.2 Choosing `

In this section we discuss how to choose ` (the number
of simulation runs we need to compute the (1 − p)
quantile). We have an unknown distribution G from
which we sample ` many n-size sequences of points.
For each sequence of size n, we compute the FK,m1,m2,n

statistic to get a set of ` values. We use the element
that falls in the (1− p) quantile as an estimate of the
true 1− p quantile of the distribution for FK,m1,m2,n.
If the 1− p quantile is unattainable, then we actually
compute an estimate of the 1−p∗ quantile where 1−p∗

is the smallest attainable quantile ≥ 1− p. Note that
by Theorem 4.1, the distribution of FK,m1,m2,n does
not depend on G in any way. Thus estimating the
1−p quantile presents a one-time cost. This value can
then be reused for any stream.

So given constants L∗ and U∗ (where L∗ < 1− p <
U∗), and δ, we want to choose ` so that our estimate
of the of the 1− p quantile is between L∗ and U∗ with
probability 1 − δ. Let L to be the largest attainable
quantile ≤ L∗ and choose xL such that PG(X ≤ xL) =
L. Similarly, let U be the smallest attainable quantile
≥ U∗ and choose xU such that PG(X ≤ xU) = U .

Now let X1, . . . , Xn be random variables with dis-
tribution G. Define the random variables Y1, . . . , Yn

such that Yi = 1 if Xi ≤ xL and 0 otherwise. Define
Z1, . . . , Zn so that Zi = 1 if Xi ≤ xU and 0 otherwise.
Note that P (Yi = 1) = L and P (Zi = 1) = U .

Suppose v is the element that falls in the 1 − p
quantile of the Xi and let µv = PG(X ≤ v) be the
true quantile of v. If µv < L then at least n(1− p) of
the Yi are 1 and if µv > U then at most n(1 − p) of
the Zi are 1. Thus

P (µv /∈ [L,U]) ≤ P

(
n∑

i=1

Yi ≥ n(1− p)

)

+ P

(
n∑

i=1

Zi ≤ n(1− p)

)
(3)

Now, if W1, . . . ,Wn are i.i.d 0− 1 random variables
with P (Wi = 1) = θ and Sn = W1 + · · ·+Wn then the
following holds [10]:
P (Sn ≤ k) = (n− k)

(
n
k

) ∫ 1−θ

0
tn−k−1(1− t)k dt

This integral is known as the incomplete beta func-
tion Ix(a, b) where x = 1− θ, a = n− k and b = k + 1.

187

[21] shows how to numerically evaluate the incomplete
beta function. Once this integral is evaluated, we use
a binary search to find a value of n such that the right
hand side of Equation 3 is ≤ δ.

5 Algorithms

In this section we will assume that the stream S =<
s1, s2, · · · > consists of real-valued points and that A
is either the collection of initial segments or intervals.
Algorithms and suitable choices of A for higher di-
mensions is an open problem. Our algorithms use the
following data structure:

Definition 5 (KS structure). We say that A is a
KS structure if

• It is a finite array < a1, . . . , am > of elements in
R2 where the first coordinate is called the ”value”
and the second coordinate is called the ”weight”.
The value is referred to as v(ai). The weight is
referred to as w(ai).

• The array is sorted in increasing order by value.

• The length of the array is referred to as |A|.

For each integer k, we can define GA(k) =
k∑

i=1

w(Ai)

Let (X, Y) be a window pair where X is the rear
window and Y is the front window, |X| = m1 and
|Y | = m2. We sort all the elements and create a KS-
structure Z =< z1, z2, . . . , zm1+m2 > where w(zi) =
−1/m1 if zi came from x and w(zi) = 1/m2 if zi came
from Y . Z can be maintained throughout the life of
the stream with incremental cost O(log(m1 + m2)) by
using a balanced tree.

Using this data structure, the Wilcoxon can be re-
computed in time O(m1 + m2). The same thing holds
for φA and ΞA when A is the set of initial segments.
If A is the set of all intervals then the recomputation
time for φA and ΞA is O([m1 + m2]2). It is an open
question whether it is possible to incrementally recom-
pute those statistics faster.

In the rest of this section, we show how to recom-
pute the Kolmogorov-Smirnov statistic over intervals
and initial segments in O(log(m1 + m2)) time. For in-
tervals, this is the same as finding the a, b (with a < b)
that maximize |GZ(b)−GZ(a)|. For initial segments
we need to maximize |GZ(a)|.

Lemma 5.1. Let Z be a KS-structure. Then
max
a<b
|GZ(b)−GZ(a)| = max

c
GZ(c)−min

d
GZ(d)

Thus it is sufficient to compute maxc GZ(c)
and mind GZ(d). The quantities of interest are
maxc GZ(c) − mind GZ(d) (for intervals) and
max{maxc GZ(c), |mind GZ(d)|} (for initial seg-
ments). The next lemma forms the basis of the
incremental algorithm.

Lemma 5.2. Let A and B be KS structures. Fur-
thermore, v(a) ≤ v(b) for all a ∈ A, b ∈ B. Let MA

maximize GA and mA minimize GA. Similarly let MB

maximize GB and mB minimize GB . Let Z be the KS
structure formed from the elements of a and b. Then
either MA or MB + |A| maximizes GZ and either mA

or mB + |A| minimizes GZ .

Algorithm 2 : START(X,Y)
1: For each x ∈ X set weight(x) = 1/|X|
2: For each y ∈ Y set weight(y) = −1/|Y |
3: Create the KS structure Z from X and Y (Z is

sorted by value)
4: Create a binary tree B where the elements of Z

are the leaves.
5: DESCEND(B.root)
6: Return B.root.VMax-B.root.vmin

Thus we can create a divide-and-conquer algorithm
that maintains KS structures at every level and uses
Lemma 5.2 to combine them. The algorithm sorts the
elements in the windows X and Y into an array Z and
builds a binary tree over it (where the elements of X
and Y are contained in the leaves). For every node n,
the set of leaves descended from n, referred to as J(n),
forms a consecutive subset of Z (we refer to this as a
subarray). Thus if n1 and n2 are siblings then J(n1)
and J(n2) are disjoint and the concatenation of J(n1)
and J(n2) is a subarray of Z. Furthermore, each J(n)
is a KS structure. Each node n has the following 5
fields:

1. sum= sum of the weights of elements of J(n).
2. imin = the integer that minimizes GJ(n)

3. IMax = the integer that maximizes GJ(n)

4. vmin = GJ(n)(imin)
5. VMax = GJ(n)(IMax)

The algorithm starts at the root. The general step
is as follows: if we are examining node n and one of
its children c does not have any values for its fields
then we recurse down that child. Otherwise if both
children have values for those fields, we use Lemma
5.2 to compute these values for n. Algorithms 2 and 3
show how this is done.

The algorithm performs one O(|X| + |Y |) sorting
step. Building a blank binary try over these ele-
ments can be done in O(|X| + |Y |) time since there
are O(|X|+ |Y |) nodes and for each node it computes
the values of its fields in constant time. Therefore, af-
ter the sorting step, the algorithm runs in linear time.

To make this incremental, we note that when a new
element arrives in the stream, we remove one element
from the front window Y and then add this new ele-
ment and the weights of the elements in X and Y do
not change. Thus we just need to maintain the tree
structure of the algorithm in O(log(|X| + |Y |)) time
under insertions and deletions. To do this, we replace

188

Algorithm 3 : DESCEND(n)
1: if n is a leaf then
2: a← the element of Z contained in n
3: n.sum← weight(a).
4: if weight(a) > 0 then
5: n.imin← 1; n.IMax← 1
6: n.vmin← 0; n.VMax← a
7: else
8: n.imin← 1; n.IMax← 1
9: n.vmin← a; n.VMax← 0

10: end if
11: return
12: end if
13: lc←left child(n); rc←right child(n)
14: DESCEND(lc); DESCEND(rc)
15: n.sum← lc.sum + rc.sum
16: if lc.VMax ≥ lc.sum+rc.VMax then
17: n.VMax← lc.VMax; n.IMax← lc.IMax
18: else
19: n.VMax← lc.sum + rc.VMax
20: n.IMax← rc.IMax + |J(lc)|
21: end if
22: if lc.vmin ≤ lc.sum+rc.vmin then
23: n.vmin← lc.vmin; n.imin← lc.imin
24: else
25: n.vmin← lc.sum + rc.vmin
26: n.imin← rc.imin + |J(lc)|
27: end if
28: return

the binary tree with a balanced tree, such as a B∗ tree.
Now when a new element is inserted or deleted, we can
follow the path this element takes from the root to a
leaf. Only the nodes along this path are affected and
so we can recursively recompute the fields values for
those nodes in constant time per node (in a way sim-
ilar to procedure DESCEND, shown in Algorithm 3).
Since the both path length and insert/delete costs are
O(log(|X| + |Y |)) the incremental algorithm runs in
time O(log(|X|+ |Y |)).

6 Experimental Results

In order to compare the various statistics for nonpara-
metric change detection, it is necessary to use simu-
lated data so that the changes in generating distribu-
tions are known. In each experiment, we generate a
stream of 2, 000, 000 points and change the distribu-
tion every 20, 000 points. Note that the time at which
a change is detected is a random variable depending on
the old and new distributions. Thus the time between
changes is intentionally long so that it would be easier
to distinguish between late detections of change and
false detections of change. Furthermore, in order to
estimate the expected number of false detections, we
run the change-detection scheme on 5 control streams
with 2 million points each and no distribution change.
Figure 1 reports the average number of errors per 2

Figure 1: Average number of errors in 2,000,000 points
size(n,p) W KS KS (Int) φ Ξ
S(20k, .05) 8 8 9.8 3.6 7.2
S(50k, .05) 1.4 0.6 1.8 1.6 1.8

million points.
In the experiments, our scheme uses 4 window pairs

where both windows in a pair have the same size.
The sizes are 200, 400, 800, 1600 points. We evaluate
our scheme using the Kolmogorov-Smirnov statistic
over initial segments ”KS”, the Kolmogorov-Smirnov
statistic over intervals ”KSI”, the Wilcoxon statis-
tic ”W”, and the φA and ΞA statistics (where A is
the set of initial segments). We have two version of
each experiment, each using a different critical region.
The critical regions correspond to size (50000, .05) and
(20000, .05). These are referred to as S(50k, .05) and
S(20k, .05) , respectively. The critical regions for each
window were constructed by taking the .95 quantile
over 500 simulation runs (using the uniform distribu-
tion between 0 and 1).

When some window detects a change, it is consid-
ered not late if the real change point is within the
window or if the change point was contained in the
window at most M time units ago (where M is the
size of the window). Otherwise the change is consid-
ered late.

Distribution changes are created as follows: each
stream starts with some distribution F with parame-
ters p1, . . . , pn and rate of drift r. When it is time for
a change, we choose a (continuous) uniform random
variable Ri in [−r, r] and add it to pi, for all i.

The rest of the experiments deal with streams where
the generating distribution changes (there are 99 true
changes in each stream and a change occurs every
20,000 points). The numbers are reported as a/b where
a is the number of change reports considered to be not
late and b represents the number of change reports
which are late or wrong. Note the average number
of false reports should be around the same as in the
control files.

The first group of experiments show what happens
when changes occur primarily in areas with small prob-
abilities. In Figure 2, the initial distribution is uniform
on [−p, p] and p varies at every change point. The
changes are symmetric, and as expected, the Wilcoxon
statistic performs the worst with almost no change de-
tection. The Kolmogorov-Smirnov test primarily looks
at probability changes that are located near the me-
dian and doesn’t do very well although it clearly out-
performs the median. In this case, performing the
Kolmogorov-Smirnov test over intervals is clearly su-
perior to initial segments. Clearly the best perfor-
mance is obtained by the φ and Ξ statistics. For ex-
ample, using the S(50k, .05) test for φ there are 86
on-time detections and 13 late detections. Since its
error rate is about 1.6, it is very likely that this test

189

Figure 2: Uniform on [−p, p] (p = 5)
with drift= 1
St. S(20k,.05) S(50k,.05)
W 0/5 0/4
KS 31/30 25/15
KSI 60/34 52/27
φ 92/20 86/13
Ξ 86/19 85/9

Figure 3: Mixture of Standard Nor-
mal and Uniform[-7,7] (p = 0.9)
with drift= 0.05
St. S(20k,.05) S(50k,.05)
W 0/2 0/0
KS 0/15 0/7
KSI 4/32 2/9
φ 16/33 12/27
Ξ 13/36 12/18

Figure 4: Normal (µ = 50, σ = 5)
with drift= 0.6
St. S(20k,.05) S(50k,.05)
W 10/27 6/16
KS 17/30 9/27
KSI 16/47 10/26
φ 16/38 11/31
Ξ 17/43 16/22

truly detected all changes.

Figure 3 shows a more subtle change. The start-
ing distribution is a mixture of a Standard Normal
distribution with some Uniform noise (uniform over
[−7, 7]). With probability p we sample from the Nor-
mal and with probability 1 − p we sample from the
Uniform. A change in generating distribution is ob-
tained by varying p. Initially p = .9, meaning that the
distribution is close to Normal. Here we have similar
results. The Wilcoxon does not detect any changes and
is clearly inferior to the Kolmogorov-Smirnov statistic.
Once again, change detection improves when we con-
sider intervals instead of initial segments. The φ and Ξ
statistics again perform the best (with φ being slightly
better than Ξ).

The next group of experiments investigates the ef-
fects of changing parameters of commonly used dis-
tributions. Figures 4 and 5 show results for Normal
and Exponential distributions. The performance of
the tests is similar, given the error rate for S(20k, .05)
tests and so the S(50k, 0.5) tests are more informa-
tive. Overall, the Kolmogorov-Smirnov test does bet-
ter, suggesting that such parametrized changes pri-
marily affect areas near the median.

Finally, we show results discrete distributions. For
all tests but the Wilcoxon, we showed that the error
bounds from the continuous case are upper bounds
on the error in the discrete case. Thus the results
can indicate that some tests perform better in the dis-
crete setting or that for some tests, bounds for discrete
distributions are closer to the bounds for continuous
distributions. However, it is not possible to distin-
guish between these two cases without more theoreti-
cal analysis. In the case of the Wilcoxon test, we do
not know if the bounds for continuous distributions
are upper bounds for discrete distributions. However,
if we assume the same error rate as in Figure 1 we
could compare the results. Figures 6 and 7 show our
results for Binomial and Poisson distributions. The
Wilcoxon appears to perform the best, both in early
detection and total detection of change. However, it is
difficult to judge the significance of this result. Among
the other tests, the Kolmogorov-Smirnov test appears
to be best.

7 Related Work

There is much related work on this topic. Some of
the standard background includes statistical hypothe-
sis testing and the multiple testing problem [5]. There
has been much work on change point analysis in the
statistics literature [6], However, most of the tests are
parametric in nature (except the tests discussed in Sec-
tion 1), and thus their assumptions are rarely satis-
fied for real data. Furthermore, the tests are run only
once - after all of the data has been collected. The
most related work from the statistics literature is the
area of scan statistics [14, 15]. However, work on scan
statistics does not work in the data stream model: the
algorithms require that all the data can be stored in-
memory, and that the tests are preformed only once
after all the data is gathered. Neill and Moore improve
the efficiency of Kulldorff’s spatial scan statistics using
a hierarchical tree structure [20].

In the database and data mining literature there is
a plethora of work on processing data streams (see [3]
for a recent survey). However, none of this work ad-
dresses the problem of change in a data stream. There
is some work on evolving data [11, 12, 13, 7], mining
evolving data streams [7, 17], and change detection in
semistructured data [9, 8]. The focus of that work,
however, is detection of specialized types of change
and not general definitions of detection of change in
the underlying distribution. There has been recent
work on frameworks for diagnosing changes in evolving
data streams based on velocity density estimation [1]
with the emphasis on heuristics to find trends, rather
than formal statistical definitions of change and when
change is statistically meaningful, the approach taken
in this paper.

The work closest to ours is work by Kleinberg on
the detection of word bursts in data stream, but his
work is tightly coupled with the assumption of discrete
distributions (such as the existence of words), and does
not apply to continuous distributions [18].

8 Conclusions and Future Work

We believe that our work is a promising first step to-
wards non-parametric change detection. Our experi-
ments confirm a fact that is well known in the statistics
community: there is no test that is “best” in all situ-

190

Figure 5: Exponential (λ = 1) with
drift= 0.1
St. S(20k,.05) S(50k,.05)
W 12/38 6/34
KS 11/38 9/26
KSI 7/22 4/14
φ 7/29 5/18
Ξ 11/46 4/20

Figure 6: Binomial (p = 0.1, n =
2000) with drift= 0.001
St. S(20k,.05) S(50k,.05)
W 36/42 25/30
KS 24/38 20/26
KSI 17/22 13/15
φ 12/32 11/18
Ξ 23/33 15/23

Figure 7: Poisson (λ = 50) with
drift = 1
St. S(20k,.05) S(50k,.05)
W 36/35 31/26
KS 23/30 16/27
KSI 14/25 10/18
φ 14/21 9/17
Ξ 23/22 17/11

ations. However, the φA and ΞA statistics do not per-
form much worse than the other statistics we tested,
and in some cases they were vastly superior.

Our work is only the first step towards an un-
derstanding of change in data streams. We would
like to formally characterize the relative strengths and
weaknesses of various non-parametric tests and to
study the types of changes that occur in real data.
Other interesting directions for future work are relax-
ing the assumption that points in the stream are gen-
erated independently, improving bounds for discrete
distributions, designing fast algorithms (especially for
statistics computed over intervals), determining which
classes of sets A are useful in higher dimensions, and
better estimation of the point in time at which the
change occurred.

Acknowledgments. Dan Kifer was supported by
an NSF Fellowship. The authors are supported by
NSF grants 0084762, 0121175, 0133481, 0205452, and
0330201, and by a gift from Microsoft. Any opinions,
findings, conclusions, or recommendations expressed
in this paper are those of the authors and do not nec-
essarily reflect the views of the sponsors.

References

[1] C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A frame-
work for clustering evolving data streams. In VLDB
2003.

[2] M. Anthony and J. Shawe-Taylor. A result of vap-
nik with applications. Discrete Applied Mathematics,
47(2):207–217, 1993.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In PODS 2002.

[4] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and
P. White. Testing that distributions are close. In
FOCS 2000.

[5] P. J. Bickel and K. Doksum. Mathematical Statistics:
Basic Ideas and Selected Topics. Holden-Day, Inc.,
1977.

[6] E. Carlstein, H.-G. Müller, and D. Siegmund, edi-
tors. Change-point problems. Institute of Mathemati-
cal Statistics, Hayward, California, 1994.

[7] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining
surprising patterns using temporal description length.
In VLDB 1998.

[8] S. S. Chawathe, S. Abiteboul, and J. Widom. Repre-
senting and querying changes in semistructured data.
In ICDE 1998.

[9] S. S. Chawathe and H. Garcia-Molina. Meaningful
change detection in structured data. In SIGMOD
1997.

[10] W. Feller. An Introduction to Probability Theory and
its Applications, volume 1. John Wiley & Sons, inc.,
3rd edition, 1970.

[11] V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon:
Mining and monitoring evolving data. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE),
13(1):50–63, 2001.

[12] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining
data streams under block evolution. SIGKDD Explo-
rations, 3(2):1–10, 2002.

[13] V. Ganti, J. Gehrke, R. Ramakrishnan, and W.-Y.
Loh. A framework for measuring differences in data
characteristics. Journal of Computer and System Sci-
ences (JCSS), 64(3):542–578, 2002.

[14] J. Glaz and N. Balakrishnan, editors. Scan statistics
and applications. Birkhäuser Boston, 1999.

[15] J. Glaz, J. Naus, and S. Wallenstein. Scan statistics.
Springer New York, 2001.

[16] T. Hagerup and C. Rub. A guided tour of chernoff
bounds. Information Processing Letters, 33:305–308,
1990.

[17] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In KDD 2001.

[18] J. M. Kleinberg. Bursty and hierarchical structure in
streams. In KDD 2002.

[19] J. Lin. Divergence measures based on the shannon
entropy. IEEE Transactions on Information Theory,
37(1):145–151, 1991.

[20] D. Neill and A. Moore. A fast multi-resolution
method for detection of significant spatial overdenisi-
ties. Carnegie Mellon CSD Technical Report, June
2003.

[21] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical Recipes in C. Cambridge
University Press, 1992.

[22] V. N. Vapnik. Statistical Learning Theory. John Wiley
& Sons, 1998.

[23] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23(1):69–101, 1996.

[24] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1:80–83, 1945.

191

