
Client-Based Access Control Management for XML
documents

Luc Bouganim* François Dang Ngoc*,** Philippe Pucheral*,**
*INRIA Rocquencourt
Domaine de Voluceau

78153 Le Chesnay - France
Firstname.Lastname@inria.fr

**PRiSM Laboratory
45, avenue des Etats-Unis
78035 Versailles - France

Firstname.Lastname@prism.uvsq.fr

Abstract
The erosion of trust put in traditional database servers
and in Database Service Providers, the growing
interest for different forms of data dissemination and
the concern for protecting children from suspicious
Internet content are different factors that lead to move
the access control from servers to clients. Several
encryption schemes can be used to serve this purpose
but all suffer from a static way of sharing data. With
the emergence of hardware and software security
elements on client devices, more dynamic client-based
access control schemes can be devised. This paper
proposes an efficient client-based evaluator of access
control rules for regulating access to XML documents.
This evaluator takes benefit from a dedicated index to
quickly converge towards the authorized parts of a –
potentially streaming – document. Additional security
mecanisms guarantee that prohibited data can never be
disclosed during the processing and that the input
document is protected from any form of tampering.
Experiments on synthetic and real datasets
demonstrate the effectiveness of the approach.

1. Introduction
Access control management is one of the foundation stone
of database systems and is traditionally performed by the
servers, the place where the trust is. This situation,
however, is rapidly evolving due to very different factors:
the suspicion about Database Service Providers (DSP)
regarding data confidentiality preservation [HIL02,
BoP02], the increasing vulnerability of database servers
facing external and internal attacks [FBI03], the emergence
of decentralized ways to share and process data thanks to
peer-to-peer databases [NOT03] or license-based
distribution systems [XrM] and the ever-increasing concern
of parents and teachers to protect children by controlling
and filtering out what they access on the Internet [PIC].

The common consequence of these orthogonal factors
is to move access control from servers to clients. Due to
the intrinsic untrustworthiness of client devices, all client-
based access control solutions rely on data encryption. The
data are kept encrypted at the server and a client is granted
access to subparts of them according to the decryption
keys in its possession. Sophisticated variations of this
basic model have been designed in different context, such
as DSP [HIL02], database server security [HeW01], non-
profit and for-profit publishing [MiS03, BCF01, Med] and
multilevel databases [AkT82, BZN01, RRN02]. These
models differ in several ways: data access model (pulled
vs. pushed), access right model (DAC, RBAC, MAC),
encryption scheme, key delivery mechanism and
granularity of sharing. However these models have in
common to minimize the trust required on the client at the
price of a static way of sharing data. Indeed, whatever the
granularity of sharing, the dataset is split in subsets
reflecting a current sharing situation, each encrypted with
a different key, or composition of keys. Thus, access
control rules intersections are precompiled by the
encryption. Once the dataset is encrypted, changes in the
access control rules definition may impact the subset
boundaries, hence incurring a partial re-encryption of the
dataset and a potential redistribution of keys.

Unfortunately, there are many situations where access
control rules are user specific, dynamic and then difficult to
predict. Let us consider a community of users (family,
friends, research team) sharing data via a DSP or in a peer-
to-peer fashion (agendas, address books, profiles, research
experiments, working drafts, etc.). It is likely that the
sharing policies change as the initial situation evolves
(relationship between users, new partners, new projects
with diverging interest, etc.). The exchange of medical
information is traditionally ruled by strict sharing policies
to protect the patient’s privacy but these rules may suffer
exceptions in particular situations (e.g., in case of
emergency) [ABM03], may evolve over time (e.g.,
depending on the patient’s treatment) and may be subject to
provisional authorizations [KmS00]. In the same way, there
is no particular reason for a corporate database hosted by a
DSP to have more static access control rules than its home-
administered counterpart [BoP02]1 . Regarding parental

1 In [BoP02], we identified the need for separating the concern between

encryption and access right management and we proposed a solution to
protect a relational database server from internal attacks conducted by a

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

84

control, neither Web site nor Internet Service Provider can
predict the diversity of access control rules that parents
with different sensibility are willing to enforce. Finally, the
diversity of publishing models (non-profit or lucrative)
leads to the definition of sophisticated access control
languages like XrML or ODRL [XrM, ODR]. The access
control rules being more complex, the encrypted content
and the licenses are managed through different channels,
allowing different privileges to be exercised by different
users on the same encrypted content.

In the meantime, software and hardware architectures
are rapidly evolving to integrate elements of trust in client
devices. Windows Media9 [Med] is an example of
software solution securing published digital assets on PC
and consumer electronics. Secure tokens and smart cards
plugged or embedded into different devices (e.g., PC,
PDA, cellular phone, set-top-box) are hardware solutions
exploited in a growing variety of applications
(certification, authentication, electronic voting, e-payment,
healthcare, digital right management, etc.). Finally, TCPA
[TCP] is a hybrid solution where a secured chip is used to
certify the software’s installed on a given platform,
preventing them from hacking2 . Thus, Secure Operating
Environments (SOE) become a reality on client devices
[Vin02]. SOE guarantee a high tamper-resistance,
generally on limited resources (e.g., a small portion of
stable storage and RAM is protected to preserve secrets
like encryption keys and sensitive data structures).

The objective of this paper is to exploit these new
elements of trust in order to devise smarter client-based
access control managers. The goal pursued is being able to
evaluate dynamic and personalized access control rules on
a ciphered input document, with the benefit of dissociating
access rights from encryption. The considered input
documents are XML documents, the de-facto standard for
data exchange. Authorization models proposed for
regulating access to XML documents use XPath
expressions to delineate the scope of each access control
rule [BCF01, GaB01, DDP02]. Having this context in
mind, the problem addressed in this paper can be stated as
follows.

Problem statement

• To propose an efficient streaming access control rules
evaluator
The streaming requirement is twofold. First, the
evaluator must adapt to the memory constrained SOE,
thereby precluding materialization (e.g., building a
DOM representation of the document). Second, some
target applications mentioned above are likely to
consume streaming documents. Efficiency is, as usual,
an important concern.

Database Administrator.

2 Architectures like TCPA are controversial today. Our objective is not to
fuel this debate. But, clearly, secured client-based architectures are on
the way and considering them to design new security models, new
ways to protect data confidentiality and privacy is undoubtedly an
important challenge. The real danger would be to leave a single actor
or consortium decide about a unique security model that imposes to
everyone.

• To guarantee that prohibited information is never
disclosed
The access control being realized on the client device,
no clear-text data but the authorized ones must be
made accessible to the untrusted part of this client
device.

• To protect the input document from any form of
tampering
Under the assumption that the SOE is secure, the only
way to mislead the access control rule evaluator is to
tamper the input document, for example by substituting
or modifying encrypted blocks.

Contributions

To tackle this problem, this paper makes the following
contributions:
1. Accurate streaming access control rules evaluator

We propose a streaming evaluator of XML access
control rules, supporting a robust subset of the XPath
language. At first glance, one may consider that
evaluating a set of XPath-based access control rules
and a set of XPath queries over a streaming document
are equivalent problems [DF03, GMO03, CFG02].
However, access control rules are not independent.
They may generate conflicts or become redundant on
given parts of the document. The proposed evaluator
detects accurately these situations and exploits them to
stop eagerly rules becoming irrelevant.

2. Skip index
We design a streaming and compact index structure
allowing to quickly converge towards the authorized
parts of the input document, while skipping the others,
and to compute the intersection with a potential query
expressed on this document (in a pull context).
Indexing is of utmost importance considering the two
limiting factors of the target architecture: the cost of
decryption in the SOE and the cost of communication
between the SOE, the client and the server. This
second contribution complements the first one to match
the performance objective.

Combined together, these two contributions form the core
of our client-based XML access control solution.
Additional mechanisms are however required to guarantee
that prohibited data can never be disclosed during the
processing and that the input document is protected from
any form of tampering. For the sake of conciseness, these
mechanisms are mentioned below but are not discussed
further in the paper. The reader interested by these aspects
is referred to [BDP04]:
• Pending predicates management

Pending predicates (i.e., a predicate P conditioning the
delivery of a subtree S but encountered after S while
parsing the document) are difficult to manage in a
streaming fashion. We propose a strategy to detect
eagerly the pending parts of the document, to skip
them at parsing time and to reassemble afterwards the
relevant pending parts at the right place in the final

85

result. The way pending predicates are managed
guarantees that prohibited data can never be disclosed
on the client device.

• Random integrity checking
We combine hashing (Merkle hash tree [Mer90]) and
encryption (Cypher Block Chaining [Sch96]) techniques
to make the integrity of the document verifiable in a
streaming way, despite the forward and backward
random accesses generated by the use of the skip index
and by the management of pending predicates.
The paper is organized as follows. Section 2 introduces

the XML access control model we consider and illustrates
it on a motivating example. Sections 3 and 4 detail the two
main contributions mentioned above. Section 5 presents
experimental results based on both synthetic and real
datasets. Section 6 concludes. Related works are addressed
throughout each section.

2. Access control model
Access control model semantics

Several authorization models have been recently proposed
for regulating access to XML documents. Most of these
models follow the well-established Discretionary Access
Control (DAC) model [BCF01, GaB01, DDP02], even
though RBAC and MAC models have also been
considered [Cha00, CAL02]. We introduce below a
simplified access control model for XML, inspired by
Bertino’s model [BCF01] and Samarati’s model [DDP02]
that roughly share the same foundation. Subtleties of these
models are ignored for the sake of simplicity.

In this simplified model, access control rules, or access
rules for short, take the form of a 3-uple <sign, subject,
object>. Sign denotes either a permission (positive rule) or
a prohibition (negative rule) for the read operation. Subject
is self-explanatory. Object corresponds to elements or
subtrees in the XML document, identified by an XPath
expression. The expressive power of the access control
model, and then the granularity of sharing, is directly
bounded by the supported subset of the XPath language. In
this paper, we consider a rather robust subset of XPath
denoted by XP{[],*,//} [MiS02]. This subset, widely used in
practice, consists of node tests, the child axis (/), the
descendant axis (//), wildcards (*) and predicates or
branches […]. Attributes are handled in the model
similarly to elements and are not further discussed.

The cascading propagation of rules is implicit in the
model, meaning that a rule propagates from an object to all
its descendants in the XML hierarchy. Due to this
propagation mechanism and to the multiplicity of rules for
a same user, a conflict resolution principle is required.
Conflicts are resolved using two policies: Denial-Takes-
Precedence and Most-Specific-Object-Takes-Precedence.
Let assume two rules R1 and R2 of opposite sign. These
rules may conflict either because they are defined on the
same object, or because they are defined respectively on
two different objects O1 and O2, linked by an

ancestor/descendant relationship (i.e., O1 is ancestor of
O2). In the former situation, the Denial-Takes-Precedence
policy favors the negative rule. In the latter situation, the
Most-Specific-Object-Takes-Precedence policy favors the
rule that applies directly to an object against the inherited
one (i.e., R2 takes precedence over R1 on O2). Finally, if a
subject is granted access to an object, the path from the
document root to this object is granted too (names of
denied elements in this path can be replaced by a dummy
value). This Structural rule keeps the document structure
consistent with respect to the original one.

The set of rules attached to a given subject on a given
document is called an access control policy. This policy
defines an authorized view of this document and, depending
on the application context, this view may be queried. We
consider that queries are expressed with the same XPath
fragment as access rules, namely XP{[],*,//}. Semantically, the
result of a query is computed from the authorized view of
the queried document (e.g., predicates cannot be expressed
on denied elements even if these elements do not appear in
the query result). However, access rules predicates can
apply on any part of the initial document.

Motivating example

We use an XML document representing medical folders to
illustrate the semantics of the access control model and to
serve as motivating example. A sample of this document is
pictured in Figure 1, along with the access control policies
associated to three profiles of users: secretaries, doctors
and medical researchers. A secretary is granted access only
to the patient’s administrative subfolders. A doctor is
granted access to the patient’s administrative subfolders
and to all medical acts and analysis of her patients, except
the details for acts she didn’t carry out herself. Finally, a
researcher is granted access only to the laboratory results
and the age of patients who have subscribed to a protocol
test of type G3, provided the measurement for the element
Cholesterol does not exceed 250mg/dL.

Medical applications exemplify the need for dynamic
access rules. For example, a researcher may be granted an
exceptional and time-limited access to a fragment of all
medical folders where the rate of Cholesterol exceeds
300mg/dL (a rather rare situation). A patient having
subscribed to a protocol to test the effectiveness of a new
treatment may revoke this protocol at any time due to a
degradation of her state of health or for any other personal
reasons. Models compiling access control policies in the
data encryption cannot tackle this dynamicity. However,
the reasons to encrypt the data and delegate the access
control to the clients are manifold: exchanging data among
medical research teams in a protected peer-to-peer fashion,
protect the data from external attacks as well as from
internal attacks. The latter aspect is particularly important
in the medical domain due to the very high level of
confidentiality attached to the data and to the very high
level of decentralization of the information system (e.g.,
small clinics and general practitioners are prompted to
subcontract the management of their information system).

86

Doctor access control policy
D1: ⊕, //Folder/Admin
D2: ⊕, //MedActs[//RPhys = USER]
D3: y, //Act[RPhys != USER]/Details
D4: ⊕, //Folder[MedActs//RPhys = USER]/Analysis
Researcher access control policy
R1: ⊕, //Folder[Protocol]//Age
R2: ⊕, //Folder[Protocol/Type=G3//LabResults//G3
R3: y, //G3[Cholesterol > 250]
Rules 2 & 3 occur for each of the 10 groups {G1..G10}
Secretary access control policy
S1: ⊕, //Admin

Figure 1: Hospital XML document

Target architectures

Figure 2 pictures an abstract representation of the
target architecture for the motivating example as well as
for the applications mentioned in the introduction. The
access control being evaluated on the client, the client
device has to be made tamper resistant thanks to a Secure
Operating Environment (SOE). As discussed in the
introduction, this SOE can rely on software or hardware
solutions or on a mix of them. In the sequel of this paper,
and up to the performance evaluation section, we make no
assumption on the SOE, except the traditional ones: 1) the
code executed by the SOE cannot be corrupted, 2) the
SOE has at least a small quantity of secure stable storage
(to store secrets like encryption keys, 3) the SOE has at
least a small quantity of secure working memory (to
protect sensitive data structures at processing time). In our
context, the SOE is in charge of decrypting the input
document, checking its integrity and evaluating the access
control policy corresponding to a given (document,
subject) pair. This access control policy as well as the
key(s) required to decrypt the document can be
permanently hosted by the SOE, refreshed or downloaded
via a secure channel from different sources (trusted third
party, security server, parent or teacher, etc).

Figure 2: Abstract target architecture

3. Streaming the access control
While several access control models for XML have been
proposed recently, few papers address the enforcement of
these models and, to the best of our knowledge, no one
considers access control in a streaming fashion. At first
glance, streaming access control resembles the well-known
problem of XPath processing on streaming documents.
There is a large body of work on this latter problem in the
context of XML filtering [DF03, GMO03, CFG02]. These
studies consider a very large number of XPath expressions
(typically tens of thousands). The primary goal here is to
select the subset of queries matching a given document
(the query result is not a concern) and the focus is on
indexing and/or combining a large amount of queries. One
of the first works addressing the precise evaluation of
complex XPath expressions over streaming documents is
due to [PfC03] which proposes a solution to deliver parts
of a document matching a single XPath. While access
rules are expressed in XPath, the nature of our problem
differs significantly from the preceding ones. Indeed, the
rule propagation principle along with its associated
conflict resolution policies (see section 2) makes access
rules not independent. The interference between rules
introduces two new important issues:
− Access rules evaluation: for each node of the input

document, the evaluator must be capable of
determining the set of rules that applies to it and for
each rule determining if it applies directly or is
inherited. The nesting of the access rules scopes
determines the authorization outcome for that node.
This problem is made more complex by the fact that
some rules are evaluated lazily due to pending
predicates.

− Access control optimization: the nesting of rule scopes
associated with the conflict resolution policies inhibits the
effect of some rules. The rule evaluator must take
advantage of this inhibition to suspend the evaluation of
these rules and even to suspend the evaluation of all rules
if a global decision can be reached for a given subtree.

3.1 Access rules evaluation

As streaming documents are considered, we make the
assumption that the evaluator is fed by an event-based
parser (e.g., SAX [SAX]) raising open, value and close
events respectively for each opening, text and closing tag
in the input document.

We represent each access rule (i.e., XPath expression)
by a non-deterministic finite automaton (NFA) [HjU79].
Figure 3.b pictures the Access Rules Automata (ARA)
corresponding to two rather simple access rules expressed
on an abstract XML document. This abstract example,
used in place of the motivating example introduced in
Section 2, gives us the opportunity to study several
situations (including the trickiest ones) on a simple
document. In our ARA representation, a circle denotes a
state and a double circle a final state, both identified by a
unique StateId. Directed edges represent transitions,

S
S

N

Folder

Admin

F
na

m
e

Protocol MedActs

Details

Act Act…

Analysis

LabResults

G1

LabResults

LabResults…

Folder …

Immunology

etc…
Ln

am
e

ag
e Id

Ty
pe

D
at

e

R
P

hy
s

D
at

e

V
ita

lS
ig

ns

S
ym

pt
om

s
D

ia
gn

os
tic

C
om

m
en

ts R
P

hy
s

C
ho

le
st

er
ol

R
P

hy
s

G2 G3

G2 G3

S
S

N

Folder

Admin

F
na

m
e

Protocol MedActs

Details

Act Act…

Analysis

LabResults

G1

LabResults

LabResults…

Folder …

Immunology

etc…
Ln

am
e

ag
e Id

Ty
pe

D
at

e

R
P

hy
s

D
at

e

V
ita

lS
ig

ns

S
ym

pt
om

s
D

ia
gn

os
tic

C
om

m
en

ts R
P

hy
s

C
ho

le
st

er
ol

R
P

hy
s

G2 G3

G2 G3

Client device

Encrypted XML doc.

Secured channel
Access control rules
Encryption keys

[Query]

Authorized
doc view

Authorized
query result

or

SOE
Decryption

Integrity control
Access control

Client device

Encrypted XML doc.

Secured channel
Access control rules
Encryption keys

[Query]

Authorized
doc view

Authorized
query result

or

SOE
Decryption

Integrity control
Access control

87

triggered by open events matching the edge label (either
an element name or *). Thus, directed edges represent the
child (/) XPath axis or a wildcard depending on the label.
To model the descendant axis (//), we add a self-transition
with a label * matched by any open event. An ARA
includes one navigational path and optionally one or
several predicate paths (in grey in the figure). To manage
the set of ARA representing a given access control policy,
we introduce the following data structures:
− Tokens and Token Stack: we distinguish between

navigational tokens (NT) and predicate tokens (PT)
depending on the ARA path they are involved in. To
model the traversal of an ARA by a given token, we
actually create a token proxy each time a transition is
triggered and we label it with the destination StateId.
The terms token and token proxy are used
interchangeably in the rest of the paper. The navigation
progress in all ARA is memorized thanks to a unique
stack-based data structure called Token Stack. The top
of the stack contains all active NT and PT tokens, i.e.
tokens that can trigger a new transition at the next
incoming event. Tokens created by a triggered
transition are pushed in the stack. The stack is popped
at each close event. The goal of Token Stack is
twofold: allowing a straightforward backtracking in all
ARA and reducing the number of tokens to be checked
at each event (only the active ones, at the top of the
stack, are considered).

− Rule status and Authorization Stack: Let assume for
the moment that access rule expressions do not exploit
the descendant axis (no //). In this case, a rule is said to
be active, – meaning that its scope covers the current
node and its subtree – if all final states of its ARA
contain a token. A rule is said pending if the final state
of its navigational path contains a token while the final
state of some predicate path has not yet been reached.
The Authorization Stack registers the NT tokens having
reached the final state of a navigational path, at a given
depth in the document. The scope of the corresponding
rule is bounded by the time the NT token remains in
the stack. This stack is used to solve conflicts between
rules. The status of a rule present in the stack can be
fourfold: positive-active (denoted by ⊕), positive-
pending (denoted by ⊕?), negative-active (denoted by
y), negative-pending (denoted by y?). By
convention, the bottom of the stack contains an implicit
negative-active rule materializing a closed access
control policy (i.e., by default, the set of objects the
user is granted access to is empty).

− Rule instances materialization: Taking into account the
descendant axis (//) in the access rules expressions
makes things more complex to manage. Indeed, the
same element names can be encountered at different
depths in the same document, leading several tokens to
reach the final state of a navigational path and
predicate paths in the same ARA, without being related

together3. To tackle this situation, we label
navigational and predicate token proxies with the depth
at which the original predicate token has been created,
materializing their participation in the same rule
instance4.

− Consequently, a token (proxy) must hold the following
information: RuleId (denoted by R, S, …),
Navigational/Predicate status (denoted by n or p),
StateId and Depth5. For example, Rn22 and Rp42 (also
noted 22, 42 to simplify the figures) denotes the
navigational and predicate tokens created in Rule R’s
ARA at the time element b is encountered at depth 2 in
the document. If the transition between states 4 and 5
of this ARA is triggered, a token proxy Rp52 will be
created and will represent the progress of the original
token Rp42 in the ARA. All these tokens refer to the
same rule instance since they are labeled by the same
depth. A rule instance is said active or pending under
the same condition as before, taking into account only
the tokens related to this instance.

− Predicate Set: this set registers the PT tokens having
reached the final state of a predicate path. A PT token,
representing a predicate instance, is discarded from this
set at the time the current depth in the document
becomes less than its own depth.
Stack-based data structures are well adapted to the

traversal of a hierarchical document. However, we need a
direct access to any stack level to update pending
information and to allow some optimizations detailed
below. Figure 3.c represents an execution snapshot based
on these data structures. This snapshot being almost self-
explanatory, we detail only a small subset of steps.
− Step 2: the open event b generates two tokens Rn22 and

Rp42, participating in the same rule instance.
− Step 3: the ARA of the negative rule S reaches its final

state and an active instance of S is pushed in the
Authorization Stack. The current authorization remains
negative. Token Rp52 enters the Predicate Set. The
corresponding predicate will be considered true until
level 2 of the Token Stack is popped (i.e., until event /b
is produced at step 9). Thus, there is no need to
continue to evaluate this predicate in this subtree and
token Rp42 can be discarded from the Token Stack.

− Step 5: An active instance of the positive rule R is
pushed in the Authorization Stack. The current
authorization becomes positive, allowing the delivery
of element d.

3 The complexity of this problem has been highlighted in [PfC03].
4 To illustrate this, let us consider the rule R and the right subtree of the

document presented in Figure 3. The predicate path final state 5
(expressing //b[c]) can be reached from two different instances of b,
respectively located at depth 2 and 3 in the document, while the
navigational path final state 3 (expressing //b/d) can be reached only
from b located at depth 3. Thus, a single rule instance is valid here,
materialized by navigational and predicate tokens proxies labeled with
the same depth 3.

5 If a same ARA contains different predicate paths starting at different
levels of the navigational path, a NT token will have in addition to
register all PT tokens related to it.

88

− Step 16: A new instance of R is pushed in the
Authorization Stack, represented by token Rn33. This
instance is pending since the token Rp52 pushed in the
Predicate Set at step 12 (event c) does not participate in
the same rule instance.

− Step 18: Token Rp53 enters the Predicate Set, changing
the status of the associated rule instance to positive-
active.

Figure 3: Execution Snapshot

3.2 Conflict Resolution

From the information kept in the Authorization Stack, the
outcome of the current document node can be easily
determined. The conflict resolution algorithm presented in
Figure 4 integrates the closed access control policy (line 1),
the Denial-Takes-Precedence (line 2) and Most-Specific-
Object-Takes-Precedence (lines 5 and 7) policies to reach a
decision. In the algorithm, AS denotes the Authorization
Stack and AS[i].RuleStatus denotes the set of status of all
rules registered at level i in this stack. In the first call of this
recursive algorithm, depth corresponds to the top of AS.
Recursion captures the fact that a decision may be reached
even if the rules at the top of the stack are pending,
depending on the rule status found in the lower stack levels.
Note, however, that the decision can remain pending if a
pending rule at the top of the stack conflicts with other
rules. In that case, the current node has to be buffered,
waiting for a delivery condition. This issue is tackled in
[BDP04]. The rest of the algorithm is self-explanatory and
examples of conflict resolutions are given in the figure.

The DecideNode algorithm presented below considers
only the access rules. Things are slightly more complex if
queries are considered too. Queries are expressed in XPath
and are translated in a non-deterministic finite automaton
in a way similar to access rules. However, a query cannot
be regarded as an access rule at conflict resolution time.
The delivery condition for the current node of a document
becomes twofold: (1) the delivery decision must be true
and (2) the query must be interested in this node. The first
condition is the outcome of the DecideNode algorithm.
The second condition is matched if the query is active, that
is if all final states of the query ARA contain a token,
meaning that the current node is part of the query scope.

DecideNode(depth) → Decision ∈ {⊕, y,?}

1: If depth = 0 then return ‘y’
2: elseif ‘y’∈ AS[depth].RuleStatus then return ‘y’
3: elseif ‘⊕’ ∈ AS[depth].RuleStatus and
4: ‘y?’ ∉ AS[depth].RuleStatus then return ‘⊕’
5: elseif DecideNode(depth -1) = ‘y’ and
6: ∀t∈{‘⊕?’,‘⊕’} t∉ AS[depth].RuleStatus then return ‘y’
7: elseif DecideNode(depth -1) = ‘⊕’ and
8: ‘y?’ ∉ AS[depth] RuleStatus then return ‘⊕’
9: else return ‘?’

Figure 4: Conflict resolution algorithm

3.3 Optimization issues

The first optimization that can be devised is doing a static
analysis of the system of rules composing an access
control policy. Query containment property can be
exploited to decrease the complexity of this system of
rules. Let us denote by ⊆ the containment relation between
rules R, S …T. If S⊆R ∧ (R.Sign=S.Sign), the elimination
of S could be envisioned. However, this elimination is
precluded if, for example, ∃T / T⊆R ∧ (T.Sign≠R.Sign) ∧
(S⊆T). Thus, rules cannot be pairwise examined and the
problem turns to check whether some partial order among
rules can be defined wrt. the containment relation, e.g.,
{Ti, …Tk} ⊂ {Si, …Sk} ⊆ {Ri, …Rk} ∧ ∀i,
(Ri.Sign=Si.Sign ∧ Si.Sign≠Ti.Sign) ⇒ {Si, …Sk} can be
eliminated. Note that this strong elimination condition is
sufficient but not necessary. For instance, let R and S be
two positive rules respectively expressed by /a and
/a/b[P1] and T be a negative rule expressed by /a/b[P2]/c.
S can still be eliminated while T⊄S, because the
containment holds for each subtree where the two rules are
active together. The problem is particularly complex
considering that the query containment problem itself has
been shown co-NP complete for the class of XPath
expressions of interest, that is XP{[],//,*} [MiS02]. This issue

T
T ?
⊕

T
T ?
⊕

T
⊕

T ? ⊕

T
⊕

T ? ⊕

T
⊕?

T ?

T
⊕?

T ?

T
⊕
T

T
⊕
T

⊕ T ? ?

Examples of conflict resolution

T
(3) c

52

6
6
6

42

52

1
221

T71

T
(3) c

52

6
6
6

42

52

1
221

T71 Pop

(c) Snapshots of the stack structure

b 2 d 31

c
b

4 5

*
b 2 d 31

c
b

4 5

*

S: T , //c
c 76

*
c 76

*

R: ⊕, //b[c]/d

(a) XML document (b) Access control automata

Pop

a

bb

d c d c b

d c

c

a

bb

d c d c b

d c

c

T
(1) a

61

T
(1) a

61

T
(2) b

42

61
6221

T
(2) b

42

61
6221

T
(4) /c

52

61
6221

T
(4) /c

52

61
6221

T
(5) d

52

61
6221

⊕6321

T
(5) d

52

61
6221

⊕6321

6221

T
(15) b

52

43

61

6231
6221

T
(15) b

52

43

61

6231
⊕?6331

6221

T
(16) d

52

43

61

6231
⊕?6331

6221

T
(16) d

52

43

61

6231
6221

T
(17) /d

52

43

61

6231
6221

T
(17) /d

52

43

61

6231
6221

T
(18) c

52 53

6

6
6

43

53

1

231
T71

6221

T
(18) c

52 53

6

6
6

43

53

1

231
T71

(#event), Event
Predicate Set

Token
Stack

(#event), Event
Predicate Set

Token
Stack

A
u

th
. S

ta
ck

Legend:

22: Navigational Token
42: Predicate Token

: Token in a final state32

89

could be further investigated since more favorable results
have been found for subclasses of XP{[],//,*} [ACL01], but
this work is outside the scope of this paper.

A second form of optimization is to suspend
dynamically the evaluation of ARA that become irrelevant
or useless inside a subtree. The knowledge gathered in the
Token Stack, Authorization Stack and Predicate Set can be
exploited to this end. The first optimization is to suspend
the evaluation of a predicate in a subtree as soon as an
instance of this predicate has been evaluated to true in this
subtree. This optimization has been illustrated by Step 3 of
Figure 3.c. The second optimization is to evaluate
dynamically the containment relation between active and
pending rules and take benefit of the elimination condition
mentioned above. From the Authorization Stack, we can
detect situations where the following local condition
holds: (T ⊂ S ⊆ R) ∧ (R.Sign=S.Sign ∧ S.Sign≠T.Sign),
the stack levels reflecting the containment relation inside
the current subtree. S can be inhibited in this subtree. If
stopping the evaluation of some ARA is beneficial, one
must keep in mind that the two limiting factors of our
architecture are the decryption cost and the
communication cost. Therefore, the real challenge is being
able to take a common decision for complete subtrees, a
necessary condition to detect and skip prohibited subtrees,
thereby saving both decryption and communication costs.

Without any additional information on the input
document, a common decision can be taken for a complete
subtree rooted at node n iff: (1) the DecideNode algorithm
can deliver a decision D (either ⊕ or y) for n itself and
(2) a rule R whose sign contradicts D cannot become
active inside this subtree (meaning that all its final states,
of navigational path and potential predicate paths, cannot
be reached altogether). These two conditions are compiled
in the algorithm presented in Figure 5. In this algorithm,
AS denotes the Authorization Stack, TS the Token Stack,
TS[i].NT (resp. TS[i].PT) the set of NT (resp. PT) tokens
registered at level i in this stack and top is the level of the
top of a stack. In addition, t.RuleInst denotes the rule
instance associated with a given token, Rule.Sign the sign
of this rule and Rule.Pred a boolean indicating if this rule
includes predicates in its definition.

DecideSubtree() → Decision ∈ {⊕, y,?}
1: D = DecideNode(AS.top)
2: if D = ‘?’ then return ‘?’
3: if not (∃ nt ∈TS[top].NT / nt.Rule.Sign ≠ D
4: and (not nt.Rule.Pred
5: or (∃ pt ∈TS[top].PT / pt.RuleInst = nt.RuleInst))
6: then TS[top].NT = ∅; return (D)
7: else return ‘?’

Figure 5: Decision on a complete subtree

The immediate benefit of this algorithm is to stop the
evaluation for any active NT tokens and the main expected
benefit is to skip the complete subtree if this decision is
y. Note however that only NT tokens are removed from
the stack at line 6. The reason for this is that active PT
tokens must still be considered, otherwise pending

predicates could remain pending forever. As a conclusion,
a subtree rooted at n can be actually skipped iff: (1) the
decision for n is y, (2) the DecideSubtree algorithm
decides y and (3) there are no PT token at the top of the
Token Stack (which turns to be empty). Unfortunately,
these conditions are rarely met together, especially when
the descendant axis appears in the expression of rules and
predicates. The next section introduces a Skip index
structure that gives useful information about the
forthcoming content of the input document. The goal of
this index is to detect a priori rules and predicates that will
become irrelevant, thereby increasing the probability to
meet the aforementioned conditions.

When queries are considered, any subtree not
contained in the query scope is candidate to a skip. This
situation holds as soon as the NT token of the query (or
NT tokens when several instances of the same query can
co-exist) becomes inactive (i.e., is no longer element of
TS[top].NT). This token can be removed from the Token
Stack but potential PT tokens related to the query must
still be considered, again to prevent pending predicate to
remain pending forever. As before, the subtree will be
actually skipped if the Token Stack becomes empty.

4. Skip index

This section introduces a new form of indexation structure,
called Skip Index, designed to detect and skip the
unauthorized fragments (wrt. an access control policy) and
the irrelevant fragments (wrt. a potential query) of an
XML document, while satisfying the constraints
introduced by the target architecture (streaming encrypted
document, scarce SOE storage capacity).

The first distinguishing feature of the required index is
the necessity to keep it encrypted outside of the SOE to
guarantee the absence of information disclosure. The
second distinguishing feature (related to the first one and
to the SOE storage capacity) is that the SOE must manage
the index in a streaming fashion, similarly to the document
itself. These two features lead to design a very compact
index (its decryption and transmission overhead must not
exceed its own benefit), embedded in the document in a
way compatible with streaming. For these reasons, we
concentrate on indexing the structure of the document,
pushing aside the indexation of its content. Structural
summaries [ABC04] or XML skeleton [BGK03] could be
considered as candidate for this index. Beside the fact that
they may conflict with the size and streaming
requirements, these approaches do not capture the
irregularity of XML documents (e.g., medical folders are
likely to differ from one instance to another while sharing
the same general structure).

In the following, we propose a highly compact
structural index, encoded recursively into the XML
document to allow streaming. An interesting side effect of
the proposed indexation scheme is to provide new means
to further compress the structural part of the document.

90

4.1 Skip Index encoding scheme

The primary objective of the index is to detect rules and
queries that cannot apply inside a given subtree, with the
expected benefit to skip this subtree if the conditions
stated in section 3.3 are met. Keeping the compactness
requirement in mind, the minimal structural information
required to achieve this goal is the set of element tags, or
tags for short, that appear in each subtree. While this
metadata does not capture the tags nesting, it reveals
oneself as a very effective way to filter out irrelevant
XPath expressions. We propose below data structures
encoding this metadata in a highly compact way. These
data structures are illustrated in Figure 7.a on an abstract
XML document.
− Encoding the set of descendant tags: The size of the

input document being a concern, we make the rather
classic assumption that the document structure is
compressed thanks to a dictionary of tags [ABC04,
TpH02]6. The set of tags that appear in the subtree
rooted by an element e, named DescTage, can be
encoded by a bit array, named TagArraye, of length Nt,
where Nt is the number of entries of the tag dictionary.
A recursive encoding can further reduce the size of this
metadata. Let us call DescTag(e) the bijective function
that maps TagArraye into the tag dictionary to compute
DescTage. We can trade storage overhead for
computation complexity by reducing the image of
DescTag(e) to DescTagparent(e) in place of the tag
dictionary. The length of the TagArray structure
decreases while descending into the document hierachy
at the price of making the DescTag() function
recursive. Since the number of element generally
increases with the depth of the document, the gain is
substantial. To distinguish between intermediate nodes
and leaves (that do not need the TagArray metadata),
an additional bit is added to each node.

− Encoding the element tags: In a dictionary-based
compression, the tag of each element e in the document
is replaced by a reference to the corresponding entry in
the dictionary. Log2(Nt) bits are necessary to encode
this reference. The recursive encoding of the set of
descendant tags can be exploited as well to compress
further the encoding of tags themselves. Using this
scheme, Log2(DescTagparent(e)) bits suffice to encode the
tag of an element e.

− Encoding the size of a subtree: Encoding the size of
each subtree is mandatory to implement the skip
operation. At first glance, log2(size(document)) bits are
necessary to encode SubtreeSizee, the size of the
subtree rooted by an element e. Again, a recursive
scheme allows to reduce the encoding of this size to
log2(SubtreeSize parent(e)) bits. Storing the SubtreeSize
for each element makes closing tags unnecessary.

6 Considering the compression of the document content itself is out of

the scope of this paper. Anyway, value compression does not interfere
with our proposal as far as the compression scheme remains
compatible with the SOE resources.

− Decoding the document structure: The decoding of the
document structure must be done by the SOE,
efficiently, in a streaming fashion and without
consuming much memory. To this end, the SOE stores
the tag dictionary and uses an internal SkipStack to
record the DescTag and SubtreeSize of the current
element. When decoding an element e, DescTagparent(e)
and SubtreeSizeparent(e) are retrieved from this stack and
used to decode in turn TagArraye, SubtreeSizee and the
encoded tag of e.

− Updating the document: In the worst case, updating an
element e induces an update of the SubtreeSize, the
TagArray and the encoded tag of each e ancestors and
of their direct children. In the best case, only the
SubtreeSize of e ancestors need be updated. The worst
case occurs in two rather infrequent situations. The
SubtreeSize of e ancestor’s children have to be updated
if the size of e father grows (resp. shrinks) and jumps a
power of 2. The TagArray and the encoded tag of e
ancestor’s children have to be updated if the update of
e generates an insertion or deletion in the tag
dictionary.

4.2 Skip index usage

As said before, the primary objective of the Skip index
is to detect rules and queries that cannot apply inside a
given subtree. This means that any active token that cannot
reach a final state in its ARA can be removed from the top
of the Token Stack. Let us call RemainingLabels(t) the
function that determines the set of transition labels
encountered in the path separating the current state of a
token t from the final state of its ARA, and let us call e the
current element in the document. A token t, either
navigational or predicate, will be unable to reach a final
state in its ARA if RemainingLabels(t) ⊄ DescTage. Note
that this condition is sufficient but not necessary since the
Skip index does not capture the element tags nesting.

SkipSubtree () → Decision ∈ {true,false}

1: For each token t ∈TS[top].NT ∪ TS[top].PT
2: if RemainingLabels(t) ⊄ DescTage then remove t from TS[top]
3: if DecideSubTree() ∈ {‘y’, ‘?’} and (TS[top].NT = ∅) and
4: (TS[top].PT = ∅) then return true
5: else return false

Figure 6: Skipping decision

Once this token filtering has been done, the probability

for the DecideSubtree algorithm to reach a global decision
about the subtree rooted by the current element e is greatly
increased since many irrelevant rules have been filtered. If
this decision is negative (y) or pending (?), a skip of the
subtree can be envisioned. This skip is actually possible if
there are no more active tokens, either navigational or
predicate, at the top of the Token Stack. The algorithm
SkipSubtree given in Figure 6 decides whether the skip is
possible or not. Let us remark that this algorithm should be
triggered both on open and close events. Indeed, each

91

element may change the decision delivered by the
algorithm DecideNode, then DecideSubtree and finally
SkipSubtree with the benefit of being able to skip a bigger
subtree at the next step.

Figure 7 shows an illustrative XML document and its
encoding, a set of access rules and the skips done while
analyzing the document. The information in grey is
presented to ease the understanding of the indexing
scheme but is not stored in the document.

Let us consider the document analysis (for clarity, we
use below the real element tags instead of their encoding).
At the time element b (leftmost subtree) is reached, all the
active rules are stopped thanks to TagArrayb and the
complete subtree can be skipped (the decision is y due to
the closed access control policy). When element c is
reached, Rule R becomes pending. However, the analysis
of the subtree continues since TagArrayc does not allow
more filtering. When element e is reached, TagArraye
filters out rules R, T and U. Rule S becomes negative-
active when the value ‘3’ is encountered below element m.
On the closing event, SkipSubtree decides to skip the e
subtree. This situation illustrate the benefit to trigger the
SkipSubtree at each opening and closing events. The
analysis continues following the same principle and leads
to deliver the elements underlined in Figure 7.c.

Figure 7: Skip Index example

5. Experimental results
This section presents experimental results obtained from
both synthetic and real datasets. We first give details about
the experimentation platform. Then, we analyze the
storage overhead incurred by the Skip index and compare
it with possible variants. Next, we study the performance
of access control management and query evaluation.

Finally, the global performance of the proposed solution is
assessed on four datasets that exhibit different
characteristics.

Experimentation platform

The abstract target architecture presented in Section 2 can
be instantiated in many different ways. In this
experimentation, we consider that the SOE is embedded in
an advanced smart card platform. While existing smart
cards are already powerful (32 bits CPU running at
30Mhz, 4 KB of RAM, 128KB of EEPROM), they are still
too limited to support our architecture, especially in terms
of communication bandwidth (9.6Kbps). Our industrial
partner, Axalto (the Schlumberger’s smart card
subsidiary), announces by the end of this year a more
powerful smart card equipped with a 32 bits CPU running
at 40Mhz, 8KB of RAM, 1MB of Flash and supporting an
USB protocol at 1MBps. Axalto provided us with a
hardware cycle-accurate simulator for this forthcoming
smart card. Our prototype has been developed in C and has
been measured using this simulator. Cycle-accuracy
guarantees an exact prediction of the performance that will
be obtained with the target hardware platform.

As this section will make clear, our solution is strongly
bounded by the decryption and the communication costs.
The numbers given in Table 1 allow projecting the
performance results given in this section on different target
architectures. The number given for the smart card
communication bandwidth corresponds to a worst case
where each data entering the SOE takes part in the result.
The decryption cost corresponds to the 3DES algorithm,
hardwired in the smart card (line 1) and measured on a PC
at 1Ghz (lines 2 and 3).

Table 1: Communication and decryption costs

In the experiment, we consider three real datasets:
WSU corresponding to university courses, Sigmod records
containing index of articles and Tree Bank containing
English sentences tagged with parts of speech [UWX]. In
addition, we generate a synthetic content for the Hospital
document depicted in Section 2 (real datasets are very
difficult to obtain in this area), thanks to the ToXgene
generator [ToX]. The characteristics of interest of these
documents are summarized in Table 2.

Table 2: Documents characteristics

Context Communication Decryption
Hardware based (e.g., future smartcards) 0.5 MB/s 0.15 MB/s
Software based - Internet connection 0.1 MB/s 1.2 MB/s
Software based - LAN connection 10 MB/s 1.2 MB/s

 WSU Sigmod Treebank Hospital
Size 1.3 MB 350KB 59MB 3.6 MB

Text size 210KB 146KB 33MB 2,1 MB
Maximum depth 4 6 36 8
Average depth 3.1 5.1 7.8 6.8
distinct tags 20 11 250 89
text nodes 48820 8383 1391845 98310
elements 74557 11526 2437666 117795

1

14
‘4’

2 6

R:⊕, / a [d = 4] / c
S:y, // c / e[m=3]
T:⊕, // c [// i = 3] // f
U:⊕ , // h [k = 2]

31
g

2
g

3
g

6
g

9
‘3’

5 7

1
g

2
‘2’

1
‘3’

3
g

2
g

m t p

1
g

2
g

m p m k

fm o p e g h i

b c d

a

(a) Encoded XML document

a b mgogpgc em3 tgpgfmgpgggh mgk2i3d4
(c) Skipping

a b mgogpgc em3 tgpgfmgpgggh mgk2i3d4a b mgogpgc em3 tgpgfmgpgggh mgk2i3d4
(c) Skipping

(b) Access Control Rules

dikhgftecpomba dikhgftecpomba

00000000011100
mop

00000000011100
mop

01111111010100
ikhgftepm
01111111010100

ikhgftepm

000001011
tpm

000001011
tpm

010000001
km
010000001

km
000000011

pm
000000011

pm

Tag dictionary

92

Index storage overhead

The Skip index is an aggregation of three techniques for
encoding respectively tags, lists of descendant tags and
subtree sizes. Variants of the Skip index could be devised
by combining these techniques differently (e.g., encoding
the tags and the subtree sizes without encoding the lists of
descendant tags makes sense). Thus, to evaluate the
overhead ascribed to each of these metadata, we compare
the following techniques. NC corresponds to the original
Non Compressed document. TC is a rather classic Tag
Compression method and will serve as reference. In TC,
each tag is encoded by a number expressed with
log2(#distinct tags) bits. We denote by TCS (Tag
Compressed and Subtree size) the method storing the
subtree size to allow subtrees to be skipped. The subtree
size is encoded with log2(compressed document size) bits.
In TCS, the closing tag is useless and can be removed.
TCSB complements TCS with a bitmap of descendant tags
encoded with #dictinct tags bits for each element. Finally,
TCSBR is the recursive variant of TCSB and corresponds
actually to the Skip Index detailed in Section 4. In all these
methods, the metadata need be aligned on a byte frontier.
Figure 8 compares these five methods on the datasets
introduced formerly. These datasets having different
characteristics, the Y-axis is expressed in terms of the ratio
structure/(text length).

Clearly, TC drastically reduces the size of the structure
in all datasets. Adding the subtree size to nodes (TCS)
increases the structure size by 50%, up to 150% (big
documents require an encoding of about 5 bytes for both
the subtree size and the tag element while smaller
documents need only 3 bytes). The bitmap of descendant
tags (TCSB) is even more expensive, especially in the case
of the Bank document which contains 250 distinct tags.
TCSBR drastically reduces this overhead and brings back
the size of the structure near the TC one. The reason is that
the subtree size generally decreases rapidly, as well as the
number of distinct tags inside each subtree. For the
Sigmod document, TCSBR becomes even more compact
than TC.

Figure 8: Index storage overhead

Access control overhead

To assess the efficiency of our strategy (based on
TCSBR), we compare it with: (i) a Brute-Force strategy
(BF) filtering the document without any index and (ii) a
time lower bound LWB. LWB cannot be reached by any
practical strategy. It corresponds to the time required by an
oracle to read only the authorized fragments of a document
and decrypt it. Obviously, a genuine oracle will be able to
predict the outcome of all predicates – pending or not –
without checking them and to guess where the relevant
data are in the document.

Figure 9 shows the execution time required to evaluate
the authorized view of the three profiles (Secretary, Doctor
and Researcher) introduced in Section 2 on the Hospital
document. Integrity checking is not taken into account
here. The size of the compressed document is 2.5MB and
the evaluation of the authorized view returns 135KB for
the Secretary, 575KB for the Doctor and 95 KB for the
Researcher. In order to compare the three profiles despite
this size discrepancy, the Y-axis represents the ratio
between each execution time and its respective LWB. The
real execution time in seconds is mentioned on each
histogram. To measure the impact of a rather complex
access control policy, we consider that the Researcher is
granted access to 10 medical protocols instead of a single
one, each expressed by one positive and one negative rule,
as in Section 2.

Figure 9: Access control overhead

The conclusions that can be drawn from this figure are

threefold. First, the Brute-Force strategy exhibits dramatic
performance, explained by the fact that the smart card has
to read and decrypt the whole document in order to
analyze it. Second, the performance of our TCSBR
strategy is generally very close to the LWB (let us recall
that LWB is a theoretical and unreachable lower bound),
exemplifying the importance of minimizing the input flow
entering the SOE. The more important overhead noticed
for the Researcher profile compared to LWB is due to the
predicate expressed on the protocol element that can

77
6771

16 15 11

106

24

36

16

31

8278

15
23

14

142142

0

20

40

60

80

100

120

140

WSU Sigmod R. Treebank hospital

S
tru

ct
/te

xt
 (%

) NC
TC
TCS
TCSB
TCSBR

254538

0

20

40

60

80

100

120

140

160

180

200

E
xe

cT
im

e/
LW

B
 (%

)

Access Control
Communication
Decryption

B
F

=1
9.

5s

B
F

=2
0.

4s

B
F

=1
9.

5s

T
C

S
B

R
=1

.4
s

T
C

S
B

R
=6

.4
s

T
C

S
B

R
=2

.4
s

L
W

B
=1

.8
s

L
W

B
=5

.8
s

L
W

B
=1

.3
s

Secretary Doctor Researcher

93

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 20 40 60 80 100
Result Size (KB)

E
xe

c.
 T

im
e(

s)

JR
SR
PTD
FTD
Sec 0

2

4

6

0 200 400 40

50

60

70

80

90

100

110

120

Sigmod WSU Bank Secr. Doc. Res.

Th
ro

ug
hp

ut
 (K

B
/s

)

TCSBR-Integrity LWB-Integrity
TCSBR-NoIntegrity LWB-NoIntegrity

remain pending until the end of each folder. Indeed, if this
predicate is evaluated to false, the access rule evaluator
will continue – needlessly in the current case – to look at
another instance of this predicate. Third, the cost of access
control (from 2% to 15%) is largely dominated by the
decryption cost (from 53% to 60%) and by the
communication cost (from 30% to 38%). The cost of
access control is determined by the number of active
tokens that are to be managed at the same time. This
number depends on the number of ARA in the access
control policy and the number of descendant transitions
(//) and predicates inside each ARA. This explain the
larger cost of evaluating the Researcher access control
policy.

Impact of queries

To measure accurately the impact of a query in the global
performance, we consider the query //Folder[//Age>v] (v
allows us to vary the query selectivity), executed over five
different views built from the preceding profiles and
corresponding to: a secretary (S), a part-time doctor (PTD)
having in charge few patients, a full-time doctor (FTD)
having in charge many patients, a junior researcher (JR)
being granted access to few analysis results and a senior
researcher (SR) being granted access to several analysis
results. Figure 10 plots the query execution time
(including the access control) as a function of the query
result size. The execution time decreases linearly as the
query and view selectivity’s increase, showing the
accuracy of TCSBR. Even if the query result is empty, the
execution time is not null since parts of the document have
to be analysed before being skipped. The parts of the
document that need be analysed depends on the view and
on the query. The embedded figure shows the same
linearity for larger values of the query result size.

Figure 10: Impact of queries

Performance on real datasets

To assess the robustness of our approach when different
document structures are faced, we measured the
performance of our prototype on the three real datasets
WSU, Sigmod and Bank. For these documents we
generated random access rules (including // and
predicates). Each document exhibits interesting
characteristics. The Sigmod document is well-structured,
non-recursive, of medium depth and the generated access
control policy was simple and not much selective (50% of
the document was returned). The WSU document is rather
flat and contains a large amount of very small elements (its
structure represents 78% of the document size after
TCSBR indexation). The Bank document is very large,
contains a large amount of tags that appear recursively in
the document and the generated access control policy was
complex (8 rules). Figure 11 reports the results. We added
in the figure the measures obtained with the Hospital
document to serve as a basis for comparisons. The figure
plots the execution time in terms of throughput for our
method and for LWB, both with and without integrity
checking. Although integrity checking is not discussed in
this paper (see [BDP04] for details), taking its cost into
account is mandatory to fully assess our solution. We
show that our method tackles well very different situations
and produces a throughput ranging from 55KBps to
85KBps depending on the document and the access control
policy. These preliminary results as encouraging when
compared with xDSL Internet bandwidth available
nowadays (ranging from 16KBps to 128KBps).

Figure 11: Performance on real datasets

6. Conclusion
Important factors motivate today the access control to be
delegated to client devices. By compiling the access
control policies into the data encryption, existing client-
based access control solutions minimize the trust required
on the client at the price of a rather static way of sharing
data. Our objective is to take advantage of new elements of
trust in client devices to propose a client-based access
control manager capable of evaluating dynamic access
rules on a ciphered XML document.

94

The contribution of this paper is twofold. First, we
proposed a streaming evaluator of access control rules
supporting a rather robust fragment of the XPath language.
To the best of our knowledge, this is the first paper dealing
with XML access control in a streaming fashion. Second, we
designed a streaming index structure allowing skipping the
irrelevant parts of the input document, with respect to the
access control policy and to a potential query. This index is
essential to circumvent the inherent bottlenecks of the target
architecture, namely the decryption cost and the
communication cost. Combined together, these two
mechanisms form the core of our client-based XML access
control solution. Pending predicate management and random
integrity checking complement this solution [BDP04].

Our experimental results have been obtained from a C
prototype running on a hardware cycle-accurate smart card
simulator provided by Axalto. The global throughput
measured is around 70KBps and the relative cost of the
access control is less than 20% of the total cost. These first
measurements are promising and demonstrate the
applicability of the solution. A JavaCard prototype is
currently developed and will be submitted to the e-gate’04
software contest organized by SUN and Axalto.

Open issues concern the better use of query
containment techniques to improve the optimization before
and during the access rules evaluation as well as the
definition of more accurate streaming indexation
techniques. More generally, client-based security solutions
deserve a special attention for the new research
perspectives they broaden and for their foreseeable impact
on a growing scale of applications.

Acknowledgments
Special thanks are due to Anaenza Maresca, physician at the
Tenon hospital (Paris), for her contribution to the definition
of the motivating example, inspired by a real-life experience.

References
[ABC04] A. Arion, A. Bonifati, G. Costa, S. D'Aguanno, I.

Manolescu, A. Puglies, "Efficient Query Evaluation over
Compressed Data", EDBT, 2004.

[ABM03] A. El Kalam, S. Benferhat, A. Miege, R. Baida, F.
Cuppens, C. Saurel, P. Balbiani, Y. Deswarte, G.
Trouessin, "Organization based access control", IEEE 4th
International Workshop on Policies for Distributed
Systems and Networks, 2003.

[AkT82] S. Akl and P. Taylor, “Cryptographic solution to a
problem of access control in a hierarchy”. ACM TOCS,
1983.

[ACL01] S. Amer-Yahia, S. Cho, L. Lakshmanan, and D.
Srivastava, “Minimization of tree pattern queries”, ACM
SIGMOD, 2001.

[BCF00] E.Bertino, S.Castano, E.Ferrari, M.Mesiti, "Specifying
and Enforcing Access Control Policies for XML
Document Sources", WWW Journal, vol.3, n.3, 2000.

[BCF01] E. Bertino, S. Castano, E. Ferrari, "Securing XML
documents with Author-X", IEEE Internet Computing,
2001.

[BDP04] L. Bouganim, F. Dang Ngoc, P. Pucheral, "Client-Based
Access Control Management for XML Documents",
INRIA internal report, june 2004.

 www-smis.inria.fr/~bouganim/Publis/BDP04.pdf

[BGK03] P. Buneman, M. Grobe, C. Koch, "Path Queries on
Compressed XML", VLDB, 2003

[BoP02] L. Bouganim, P. Pucheral, "Chip-Secured Data Access:
Confidential Data on Untrusted Servers", VLDB, 2002.

[BZN01] J.-C. Birget, X. Zou, G. Noubir, B. Ramamurthy,
“Hierarchy-Based Access Control in Distributed
Environments”, IEEE ICC, 2001.

[CAL02] S. Cho, S. Amer-Yahia, L. Lakshmanan, D. Srivastava,
“Optimizing the secure evaluation of twig queries”,
VLDB, 2002.

[CFG02] C Chan, P. Felber, M. Garofalakis, R. Rastogi, "Efficient
Filtering of XML Documents with Xpath Expressions",
ICDE, 2002.

[Cha00] R.Chandramouli, “Application of XML Tools for
Enterprise-Wide RBAC Implementation Tasks”, 5th ACM
workshop on Role-based Access Control, 2000.

[DDP02] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P.
Samarati, "A Fine-Grained Access Control System for
XML Documents", ACM TISSEC, vol. 5, n. 2, 2002.

[DF03] Y. Diao, M. Franklin, "High-Performance XML Filtering:
An Overview of YFilter", ICDE, 2003.

[FBI03] Computer Security Institute, "CSI/FBI Computer Crime
and Security Survey", www.gocsi.com/forms/fbi/pdf.html

[GaB01] A. Gabillon and E. Bruno, “Regulating access to XML
documents. IFIP Working Conference on Database and
Application Security, 2001.

[GMO03] T. Green, G. Micklau, M. Onizuka, D. Suciu, "Processing
XML streams with Deterministic Automata", ICDT, 2003.

[HeW01] J. He, M. Wang, "Cryptography and Relational Database
Management Systems", IDEAS, 2001.

[HIL02] H. Hacigumus, B. Iyer, C. Li, S. Mehrotra, "Executing
SQL over encrypted data in the database-service-provider
model", ACM SIGMOD, 2002.

[HjU79] J. Hopcroft, J. Ullman, "Introduction to Automata Theory,
Languages and Computation", Addison-Wesley, 1979.

[KmS00] M. Kudo, S. Hada, "XML document security based on
provisional authorization", ACM CCS, 2000.

[Med] Windows Microsoft Windows Media 9,
 http://www.microsoft.com/windows/windowsmedia/.
[Mer90] R. Merkle, “A Certified Digital Signature”, Advances in

Cryptology--Crypto'89, 1989.
[MiS02] G. Miklau and D. Suciu, “Containment and equivalence

for an XPath fragment”, ACM PODS, 2002.
[MiS03] G. Micklau, D. Suciu, "Controlling Access to Published

Data Using Cryptography", VLDB, 2003.
[NOT03] W. Ng, B. Ooi, K. Tan, A. Zhou, “Peerdb: A p2p-based

system for distributed data sharing”, ICDE, 2003.
[ODR] The Open Digital Rights Language Initiative,

http://odrl.net/.
[PfC03] F. Peng, S. Chawathe, "XPath Queries on Streaming

Data", ACM SIGMOD, 2003.
[PIC] W3C consortium, “PICS: Platform for Internet Content

Selection”, http://www.w3.org/PICS.
[RRN02] I. Ray, I. Ray, N. Narasimhamurthi, “A Cryptographic

Solution to Implement Access Control in a Hierarchy and
More”, ACM SACMAT, 2002.

[SAX] Simple API for XML, http://www.saxproject.org/.
[Sch96] B. Schneier, “Applied Cryptography”, 2nd Edition, John

Wiley & Sons, 1996.
[TCP] Trusted Computing Platform Alliance,
 http://www.trustedcomputing.org/.
[ToX] ToXgene - the ToX XML Data Generator,
 http://www.cs.toronto.edu/tox/toxgene/.
[TpH02] P. Tolani, J. Haritsa, "XGRIND: A Query-Friendly XML

Compressor", ICDE, 2002.
[UWX] UW XML Data Repository,
 www.cs.washington.edu/research/xmldatasets/.
[Vin02] R. Vingralek, "GnatDb: A Small-Footprint, Secure

Database System", VLDB, 2002.
[XrM] XrML eXtendible rights Markup Language,

www.xrml.org/

95

