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Abstract 
The erosion of trust put in traditional database servers 
and in Database Service Providers, the growing 
interest for different forms of data dissemination and 
the concern for protecting children from suspicious 
Internet content are different factors that lead to move 
the access control from servers to clients. Several 
encryption schemes can be used to serve this purpose 
but all suffer from a static way of sharing data. With 
the emergence of hardware and software security 
elements on client devices, more dynamic client-based 
access control schemes can be devised. This paper 
proposes an efficient client-based evaluator of access 
control rules for regulating access to XML documents. 
This evaluator takes benefit from a dedicated index to 
quickly converge towards the authorized parts of a – 
potentially streaming – document. Additional security 
mecanisms guarantee that prohibited data can never be 
disclosed during the processing and that the input 
document is protected from any form of tampering. 
Experiments on synthetic and real datasets 
demonstrate the effectiveness of the approach. 

1. Introduction 
Access control management is one of the foundation stone 
of database systems and is traditionally performed by the 
servers, the place where the trust is. This situation, 
however, is rapidly evolving due to very different factors: 
the suspicion about Database Service Providers (DSP) 
regarding data confidentiality preservation [HIL02, 
BoP02], the increasing vulnerability of database servers 
facing external and internal attacks [FBI03], the emergence 
of decentralized ways to share and process data thanks to 
peer-to-peer databases [NOT03] or license-based 
distribution systems [XrM] and the ever-increasing concern 
of parents and teachers to protect children by controlling 
and filtering out what they access on the Internet [PIC]. 

The common consequence of these orthogonal factors 
is to move access control from servers to clients. Due to 
the intrinsic untrustworthiness of client devices, all client-
based access control solutions rely on data encryption. The 
data are kept encrypted at the server and a client is granted 
access to subparts of them according to the decryption 
keys in its possession. Sophisticated variations of this 
basic model have been designed in different context, such 
as DSP [HIL02], database server security [HeW01], non-
profit and for-profit publishing [MiS03, BCF01, Med] and 
multilevel databases [AkT82, BZN01, RRN02]. These 
models differ in several ways: data access model (pulled 
vs. pushed), access right model (DAC, RBAC, MAC), 
encryption scheme, key delivery mechanism and 
granularity of sharing. However these models have in 
common to minimize the trust required on the client at the 
price of a static way of sharing data. Indeed, whatever the 
granularity of sharing, the dataset is split in subsets 
reflecting a current sharing situation, each encrypted with 
a different key, or composition of keys. Thus, access 
control rules intersections are precompiled by the 
encryption. Once the dataset is encrypted, changes in the 
access control rules definition may impact the subset 
boundaries, hence incurring a partial re-encryption of the 
dataset and a potential redistribution of keys.  

Unfortunately, there are many situations where access 
control rules are user specific, dynamic and then difficult to 
predict. Let us consider a community of users (family, 
friends, research team) sharing data via a DSP or in a peer-
to-peer fashion (agendas, address books, profiles, research 
experiments, working drafts, etc.). It is likely that the 
sharing policies change as the initial situation evolves 
(relationship between users, new partners, new projects 
with diverging interest, etc.). The exchange of medical 
information is traditionally ruled by strict sharing policies 
to protect the patient’s privacy but these rules may suffer 
exceptions in particular situations (e.g., in case of 
emergency) [ABM03], may evolve over time (e.g., 
depending on the patient’s treatment) and may be subject to 
provisional authorizations [KmS00]. In the same way, there 
is no particular reason for a corporate database hosted by a 
DSP to have more static access control rules than its home-
administered counterpart [BoP02]1 . Regarding parental 
                                                           
1 In [BoP02], we identified the need for separating the concern between 

encryption and access right management and we proposed a solution to 
protect a relational database server from internal attacks conducted by a 
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control, neither Web site nor Internet Service Provider can 
predict the diversity of access control rules that parents 
with different sensibility are willing to enforce. Finally, the 
diversity of publishing models (non-profit or lucrative) 
leads to the definition of sophisticated access control 
languages like XrML or ODRL [XrM, ODR]. The access 
control rules being more complex, the encrypted content 
and the licenses are managed through different channels, 
allowing different privileges to be exercised by different 
users on the same encrypted content. 

In the meantime, software and hardware architectures 
are rapidly evolving to integrate elements of trust in client 
devices. Windows Media9 [Med] is an example of 
software solution securing published digital assets on PC 
and consumer electronics. Secure tokens and smart cards 
plugged or embedded into different devices (e.g., PC, 
PDA, cellular phone, set-top-box) are hardware solutions 
exploited in a growing variety of applications 
(certification, authentication, electronic voting, e-payment, 
healthcare, digital right management, etc.). Finally, TCPA 
[TCP] is a hybrid solution where a secured chip is used to 
certify the software’s installed on a given platform, 
preventing them from hacking2 . Thus, Secure Operating 
Environments (SOE) become a reality on client devices 
[Vin02]. SOE guarantee a high tamper-resistance, 
generally on limited resources (e.g., a small portion of 
stable storage and RAM is protected to preserve secrets 
like encryption keys and sensitive data structures). 

The objective of this paper is to exploit these new 
elements of trust in order to devise smarter client-based 
access control managers. The goal pursued is being able to 
evaluate dynamic and personalized access control rules on 
a ciphered input document, with the benefit of dissociating 
access rights from encryption. The considered input 
documents are XML documents, the de-facto standard for 
data exchange. Authorization models proposed for 
regulating access to XML documents use XPath 
expressions to delineate the scope of each access control 
rule [BCF01, GaB01, DDP02]. Having this context in 
mind, the problem addressed in this paper can be stated as 
follows. 

Problem statement   

• To propose an efficient streaming access control rules 
evaluator 
The streaming requirement is twofold. First, the 
evaluator must adapt to the memory constrained SOE, 
thereby precluding materialization (e.g., building a 
DOM representation of the document). Second, some 
target applications mentioned above are likely to 
consume streaming documents. Efficiency is, as usual, 
an important concern.  

                                                                                               
Database Administrator. 

2 Architectures like TCPA are controversial today. Our objective is not to 
fuel this debate. But, clearly, secured client-based architectures are on 
the way and considering them to design new security models, new 
ways to protect data confidentiality and privacy is undoubtedly an 
important challenge. The real danger would be to leave a single actor 
or consortium decide about a unique security model that imposes to 
everyone. 

• To guarantee that prohibited information is never 
disclosed 
The access control being realized on the client device, 
no clear-text data but the authorized ones must be 
made accessible to the untrusted part of this client 
device.  

• To protect the input document from any form of 
tampering 
Under the assumption that the SOE is secure, the only 
way to mislead the access control rule evaluator is to 
tamper the input document, for example by substituting 
or modifying encrypted blocks. 

Contributions   

To tackle this problem, this paper makes the following 
contributions: 
1. Accurate streaming access control rules evaluator 

We propose a streaming evaluator of XML access 
control rules, supporting a robust subset of the XPath 
language. At first glance, one may consider that 
evaluating a set of XPath-based access control rules 
and a set of XPath queries over a streaming document 
are equivalent problems [DF03, GMO03, CFG02]. 
However, access control rules are not independent. 
They may generate conflicts or become redundant on 
given parts of the document. The proposed evaluator 
detects accurately these situations and exploits them to 
stop eagerly rules becoming irrelevant.  

2. Skip index 
We design a streaming and compact index structure 
allowing to quickly converge towards the authorized 
parts of the input document, while skipping the others, 
and to compute the intersection with a potential query 
expressed on this document (in a pull context). 
Indexing is of utmost importance considering the two 
limiting factors of the target architecture: the cost of 
decryption in the SOE and the cost of communication 
between the SOE, the client and the server. This 
second contribution complements the first one to match 
the performance objective.  

Combined together, these two contributions form the core 
of our client-based XML access control solution. 
Additional mechanisms are however required to guarantee 
that prohibited data can never be disclosed during the 
processing and that the input document is protected from 
any form of tampering. For the sake of conciseness, these 
mechanisms are mentioned below but are not discussed 
further in the paper. The reader interested by these aspects 
is referred to [BDP04]: 
• Pending predicates management 

Pending predicates (i.e., a predicate P conditioning the 
delivery of a subtree S but encountered after S while 
parsing the document) are difficult to manage in a 
streaming fashion. We propose a strategy to detect 
eagerly the pending parts of the document, to skip 
them at parsing time and to reassemble afterwards the 
relevant pending parts at the right place in the final 
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result. The way pending predicates are managed 
guarantees that prohibited data can never be disclosed 
on the client device. 

• Random integrity checking  
We combine hashing (Merkle hash tree [Mer90]) and 
encryption (Cypher Block Chaining [Sch96]) techniques 
to make the integrity of the document verifiable in a 
streaming way, despite the forward and backward 
random accesses generated by the use of the skip index 
and by the management of pending predicates. 
The paper is organized as follows. Section 2 introduces 

the XML access control model we consider and illustrates 
it on a motivating example. Sections 3 and 4 detail the two 
main contributions mentioned above. Section 5 presents 
experimental results based on both synthetic and real 
datasets. Section 6 concludes. Related works are addressed 
throughout each section. 

2. Access control model 
Access control model semantics 

Several authorization models have been recently proposed 
for regulating access to XML documents. Most of these 
models follow the well-established Discretionary Access 
Control (DAC) model [BCF01, GaB01, DDP02], even 
though RBAC and MAC models have also been 
considered [Cha00, CAL02]. We introduce below a 
simplified access control model for XML, inspired by 
Bertino’s model [BCF01] and Samarati’s model [DDP02] 
that roughly share the same foundation. Subtleties of these 
models are ignored for the sake of simplicity.   

In this simplified model, access control rules, or access 
rules for short, take the form of a 3-uple <sign, subject, 
object>. Sign denotes either a permission (positive rule) or 
a prohibition (negative rule) for the read operation. Subject 
is self-explanatory. Object corresponds to elements or 
subtrees in the XML document, identified by an XPath 
expression. The expressive power of the access control 
model, and then the granularity of sharing, is directly 
bounded by the supported subset of the XPath language. In 
this paper, we consider a rather robust subset of XPath 
denoted by XP{[],*,//} [MiS02]. This subset, widely used in 
practice, consists of node tests, the child axis (/), the 
descendant axis (//), wildcards (*) and predicates or 
branches […]. Attributes are handled in the model 
similarly to elements and are not further discussed. 

The cascading propagation of rules is implicit in the 
model, meaning that a rule propagates from an object to all 
its descendants in the XML hierarchy. Due to this 
propagation mechanism and to the multiplicity of rules for 
a same user, a conflict resolution principle is required. 
Conflicts are resolved using two policies: Denial-Takes-
Precedence and Most-Specific-Object-Takes-Precedence. 
Let assume two rules R1 and R2 of opposite sign. These 
rules may conflict either because they are defined on the 
same object, or because they are defined respectively on 
two different objects O1 and O2, linked by an 

ancestor/descendant relationship (i.e., O1 is ancestor of 
O2). In the former situation, the Denial-Takes-Precedence 
policy favors the negative rule. In the latter situation, the 
Most-Specific-Object-Takes-Precedence policy favors the 
rule that applies directly to an object against the inherited 
one (i.e., R2 takes precedence over R1 on O2). Finally, if a 
subject is granted access to an object, the path from the 
document root to this object is granted too (names of 
denied elements in this path can be replaced by a dummy 
value). This Structural rule keeps the document structure 
consistent with respect to the original one. 

The set of rules attached to a given subject on a given 
document is called an access control policy. This policy 
defines an authorized view of this document and, depending 
on the application context, this view may be queried. We 
consider that queries are expressed with the same XPath 
fragment as access rules, namely XP{[],*,//}. Semantically, the 
result of a query is computed from the authorized view of 
the queried document (e.g., predicates cannot be expressed 
on denied elements even if these elements do not appear in 
the query result). However, access rules predicates can 
apply on any part of the initial document. 

Motivating example 

We use an XML document representing medical folders to 
illustrate the semantics of the access control model and to 
serve as motivating example. A sample of this document is 
pictured in Figure 1, along with the access control policies 
associated to three profiles of users: secretaries, doctors 
and medical researchers. A secretary is granted access only 
to the patient’s administrative subfolders. A doctor is 
granted access to the patient’s administrative subfolders 
and to all medical acts and analysis of her patients, except 
the details for acts she didn’t carry out herself. Finally, a 
researcher is granted access only to the laboratory results 
and the age of patients who have subscribed to a protocol 
test of type G3, provided the measurement for the element 
Cholesterol does not exceed 250mg/dL. 

Medical applications exemplify the need for dynamic 
access rules. For example, a researcher may be granted an 
exceptional and time-limited access to a fragment of all 
medical folders where the rate of Cholesterol exceeds 
300mg/dL (a rather rare situation). A patient having 
subscribed to a protocol to test the effectiveness of a new 
treatment may revoke this protocol at any time due to a 
degradation of her state of health or for any other personal 
reasons. Models compiling access control policies in the 
data encryption cannot tackle this dynamicity. However, 
the reasons to encrypt the data and delegate the access 
control to the clients are manifold: exchanging data among 
medical research teams in a protected peer-to-peer fashion, 
protect the data from external attacks as well as from 
internal attacks. The latter aspect is particularly important 
in the medical domain due to the very high level of 
confidentiality attached to the data and to the very high 
level of decentralization of the information system (e.g., 
small clinics and general practitioners are prompted to 
subcontract the management of their information system). 
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Doctor access control policy 
D1: ⊕, //Folder/Admin     
D2: ⊕, //MedActs[//RPhys = USER]    
D3: y, //Act[RPhys != USER]/Details    
D4: ⊕,  //Folder[MedActs//RPhys = USER]/Analysis 
Researcher access control policy 
R1:  ⊕, //Folder[Protocol]//Age 
R2:  ⊕, //Folder[Protocol/Type=G3//LabResults//G3 
R3: y, //G3[Cholesterol > 250] 
Rules 2 & 3 occur for each of the 10 groups {G1..G10} 
Secretary access control policy 
S1: ⊕,  //Admin  

Figure 1: Hospital XML document 

Target architectures 

Figure 2 pictures an abstract representation of the 
target architecture for the motivating example as well as 
for the applications mentioned in the introduction. The 
access control being evaluated on the client, the client 
device has to be made tamper resistant thanks to a Secure 
Operating Environment (SOE). As discussed in the 
introduction, this SOE can rely on software or hardware 
solutions or on a mix of them. In the sequel of this paper, 
and up to the performance evaluation section, we make no 
assumption on the SOE, except the traditional ones: 1) the 
code executed by the SOE cannot be corrupted, 2) the 
SOE has at least a small quantity of secure stable storage 
(to store secrets like encryption keys, 3) the SOE has at 
least a small quantity of secure working memory (to 
protect sensitive data structures at processing time). In our 
context, the SOE is in charge of decrypting the input 
document, checking its integrity and evaluating the access 
control policy corresponding to a given (document, 
subject) pair.  This access control policy as well as the 
key(s) required to decrypt the document can be 
permanently hosted by the SOE, refreshed or downloaded 
via a secure channel from different sources (trusted third 
party, security server, parent or teacher, etc). 

 
 

 
 
 
 
 
 
 

Figure 2: Abstract target architecture  

3. Streaming the access control 
While several access control models for XML have been 
proposed recently, few papers address the enforcement of 
these models and, to the best of our knowledge, no one 
considers access control in a streaming fashion. At first 
glance, streaming access control resembles the well-known 
problem of XPath processing on streaming documents. 
There is a large body of work on this latter problem in the 
context of XML filtering [DF03, GMO03, CFG02]. These 
studies consider a very large number of XPath expressions 
(typically tens of thousands). The primary goal here is to 
select the subset of queries matching a given document 
(the query result is not a concern) and the focus is on 
indexing and/or combining a large amount of queries. One 
of the first works addressing the precise evaluation of 
complex XPath expressions over streaming documents is 
due to [PfC03] which proposes a solution to deliver parts 
of a document matching a single XPath. While access 
rules are expressed in XPath, the nature of our problem 
differs significantly from the preceding ones. Indeed, the 
rule propagation principle along with its associated 
conflict resolution policies (see section 2) makes access 
rules not independent. The interference between rules 
introduces two new important issues: 
− Access rules evaluation: for each node of the input 

document, the evaluator must be capable of 
determining the set of rules that applies to it and for 
each rule determining if it applies directly or is 
inherited. The nesting of the access rules scopes 
determines the authorization outcome for that node. 
This problem is made more complex by the fact that 
some rules are evaluated lazily due to pending 
predicates. 

− Access control optimization: the nesting of rule scopes 
associated with the conflict resolution policies inhibits the 
effect of some rules. The rule evaluator must take 
advantage of this inhibition to suspend the evaluation of 
these rules and even to suspend the evaluation of all rules 
if a global decision can be reached for a given subtree.  

3.1   Access rules evaluation 

As streaming documents are considered, we make the 
assumption that the evaluator is fed by an event-based 
parser (e.g., SAX [SAX]) raising open, value and close 
events respectively for each opening, text and closing tag 
in the input document.  

We represent each access rule (i.e., XPath expression) 
by a non-deterministic finite automaton (NFA) [HjU79]. 
Figure 3.b pictures the Access Rules Automata (ARA) 
corresponding to two rather simple access rules expressed 
on an abstract XML document. This abstract example, 
used in place of the motivating example introduced in 
Section 2, gives us the opportunity to study several 
situations (including the trickiest ones) on a simple 
document. In our ARA representation, a circle denotes a 
state and a double circle a final state, both identified by a 
unique StateId. Directed edges represent transitions, 
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triggered by open events matching the edge label (either 
an element name or *). Thus, directed edges represent the 
child (/) XPath axis or a wildcard depending on the label. 
To model the descendant axis (//), we add a self-transition 
with a label * matched by any open event. An ARA 
includes one navigational path and optionally one or 
several predicate paths (in grey in the figure). To manage 
the set of ARA representing a given access control policy, 
we introduce the following data structures: 
− Tokens and Token Stack: we distinguish between 

navigational tokens (NT) and predicate tokens (PT) 
depending on the ARA path they are involved in. To 
model the traversal of an ARA by a given token, we 
actually create a token proxy each time a transition is 
triggered and we label it with the destination StateId. 
The terms token and token proxy are used 
interchangeably in the rest of the paper. The navigation 
progress in all ARA is memorized thanks to a unique 
stack-based data structure called Token Stack. The top 
of the stack contains all active NT and PT tokens, i.e. 
tokens that can trigger a new transition at the next 
incoming event. Tokens created by a triggered 
transition are pushed in the stack. The stack is popped 
at each close event. The goal of Token Stack is 
twofold: allowing a straightforward backtracking in all 
ARA and reducing the number of tokens to be checked 
at each event (only the active ones, at the top of the 
stack, are considered). 

− Rule status and Authorization Stack: Let assume for 
the moment that access rule expressions do not exploit 
the descendant axis (no //). In this case, a rule is said to 
be active, – meaning that its scope covers the current 
node and its subtree – if all final states of its ARA 
contain a token. A rule is said pending if the final state 
of its navigational path contains a token while the final 
state of some predicate path has not yet been reached. 
The Authorization Stack registers the NT tokens having 
reached the final state of a navigational path, at a given 
depth in the document. The scope of the corresponding 
rule is bounded by the time the NT token remains in 
the stack. This stack is used to solve conflicts between 
rules. The status of a rule present in the stack can be 
fourfold: positive-active (denoted by ⊕), positive-
pending (denoted by ⊕?), negative-active (denoted by 
y), negative-pending (denoted by y?). By 
convention, the bottom of the stack contains an implicit 
negative-active rule materializing a closed access 
control policy (i.e., by default, the set of objects the 
user is granted access to is empty). 

− Rule instances materialization: Taking into account the 
descendant axis (//) in the access rules expressions 
makes things more complex to manage. Indeed, the 
same element names can be encountered at different 
depths in the same document, leading several tokens to 
reach the final state of a navigational path and 
predicate paths in the same ARA, without being related 

together3. To tackle this situation, we label 
navigational and predicate token proxies with the depth 
at which the original predicate token has been created, 
materializing their participation in the same rule 
instance4.  

− Consequently, a token (proxy) must hold the following 
information: RuleId (denoted by R, S, …), 
Navigational/Predicate status (denoted by n or p), 
StateId and Depth5. For example, Rn22 and Rp42 (also 
noted 22, 42 to simplify the figures) denotes the 
navigational and predicate tokens created in Rule R’s 
ARA at the time element b is encountered at depth 2 in 
the document. If the transition between states 4 and 5 
of this ARA is triggered, a token proxy Rp52 will be 
created and will represent the progress of the original 
token Rp42 in the ARA. All these tokens refer to the 
same rule instance since they are labeled by the same 
depth. A rule instance is said active or pending under 
the same condition as before, taking into account only 
the tokens related to this instance. 

− Predicate Set: this set registers the PT tokens having 
reached the final state of a predicate path. A PT token, 
representing a predicate instance, is discarded from this 
set at the time the current depth in the document 
becomes less than its own depth.  
Stack-based data structures are well adapted to the 

traversal of a hierarchical document. However, we need a 
direct access to any stack level to update pending 
information and to allow some optimizations detailed 
below. Figure 3.c represents an execution snapshot based 
on these data structures. This snapshot being almost self-
explanatory, we detail only a small subset of steps.  
− Step 2: the open event b generates two tokens Rn22 and 

Rp42, participating in the same rule instance. 
− Step 3: the ARA of the negative rule S reaches its final 

state and an active instance of S is pushed in the 
Authorization Stack. The current authorization remains 
negative. Token Rp52 enters the Predicate Set. The 
corresponding predicate will be considered true until 
level 2 of the Token Stack is popped (i.e., until event /b 
is produced at step 9). Thus, there is no need to 
continue to evaluate this predicate in this subtree and 
token Rp42 can be discarded from the Token Stack. 

− Step 5: An active instance of the positive rule R is 
pushed in the Authorization Stack. The current 
authorization becomes positive, allowing the delivery 
of element d. 

                                                           
3 The complexity of this problem has been highlighted in [PfC03]. 
4 To illustrate this, let us consider the rule R and the right subtree of the 

document presented in Figure 3. The predicate path final state 5 
(expressing //b[c]) can be reached from two different instances of b, 
respectively located at depth 2 and 3 in the document, while the 
navigational path final state 3 (expressing //b/d) can be reached only 
from b located at depth 3. Thus, a single rule instance is valid here, 
materialized by navigational and predicate tokens proxies labeled with 
the same depth 3. 

5 If a same ARA contains different predicate paths starting at different 
levels of the navigational path, a NT token will have in addition to 
register all PT tokens related to it. 
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− Step 16: A new instance of R is pushed in the 
Authorization Stack, represented by token Rn33. This 
instance is pending since the token Rp52 pushed in the 
Predicate Set at step 12 (event c) does not participate in 
the same rule instance.  

− Step 18: Token Rp53 enters the Predicate Set, changing 
the status of the associated rule instance to positive-
active.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Execution Snapshot 

3.2   Conflict Resolution 

From the information kept in the Authorization Stack, the 
outcome of the current document node can be easily 
determined. The conflict resolution algorithm presented in 
Figure 4 integrates the closed access control policy (line 1), 
the Denial-Takes-Precedence (line 2) and Most-Specific-
Object-Takes-Precedence (lines 5 and 7) policies to reach a 
decision. In the algorithm, AS denotes the Authorization 
Stack and AS[i].RuleStatus denotes the set of status of all 
rules registered at level i in this stack. In the first call of this 
recursive algorithm, depth corresponds to the top of AS. 
Recursion captures the fact that a decision may be reached 
even if the rules at the top of the stack are pending, 
depending on the rule status found in the lower stack levels. 
Note, however, that the decision can remain pending if a 
pending rule at the top of the stack conflicts with other 
rules. In that case, the current node has to be buffered, 
waiting for a delivery condition. This issue is tackled in 
[BDP04]. The rest of the algorithm is self-explanatory and 
examples of conflict resolutions are given in the figure. 

The DecideNode algorithm presented below considers 
only the access rules. Things are slightly more complex if 
queries are considered too. Queries are expressed in XPath 
and are translated in a non-deterministic finite automaton 
in a way similar to access rules. However, a query cannot 
be regarded as an access rule at conflict resolution time. 
The delivery condition for the current node of a document 
becomes twofold: (1) the delivery decision must be true 
and (2) the query must be interested in this node. The first 
condition is the outcome of the DecideNode algorithm. 
The second condition is matched if the query is active, that 
is if all final states of the query ARA contain a token, 
meaning that the current node is part of the query scope. 

  
DecideNode(depth) → Decision ∈ {⊕, y,?} 
 
1:  If depth = 0 then  return ‘y’  
2:   elseif ‘y’∈ AS[depth].RuleStatus then return ‘y’   
3:    elseif ‘⊕’ ∈ AS[depth].RuleStatus and  
4:       ‘y?’ ∉ AS[depth].RuleStatus then return ‘⊕’ 
5:     elseif DecideNode(depth -1) = ‘y’ and  
6:       ∀t∈{‘⊕?’,‘⊕’} t∉ AS[depth].RuleStatus then return ‘y’ 
7:      elseif DecideNode(depth -1) = ‘⊕’ and  
8:         ‘y?’ ∉ AS[depth] RuleStatus then return ‘⊕’ 
9:       else return ‘?’ 
 
 
 
 
 
 
 
 
 
 

Figure 4: Conflict resolution algorithm 

3.3   Optimization issues 

The first optimization that can be devised is doing a static 
analysis of the system of rules composing an access 
control policy. Query containment property can be 
exploited to decrease the complexity of this system of 
rules. Let us denote by ⊆ the containment relation between 
rules R, S …T. If S⊆R ∧ (R.Sign=S.Sign), the elimination 
of S could be envisioned. However, this elimination is 
precluded if, for example, ∃T / T⊆R ∧ (T.Sign≠R.Sign) ∧ 
(S⊆T). Thus, rules cannot be pairwise examined and the 
problem turns to check whether some partial order among 
rules can be defined wrt. the containment relation, e.g., 
{Ti, …Tk} ⊂ {Si, …Sk} ⊆ {Ri, …Rk} ∧ ∀i, 
(Ri.Sign=Si.Sign ∧ Si.Sign≠Ti.Sign) ⇒ {Si, …Sk} can be 
eliminated. Note that this strong elimination condition is 
sufficient but not necessary. For instance, let R and S be 
two positive rules respectively expressed by /a and 
/a/b[P1] and T be a negative rule expressed by /a/b[P2]/c. 
S can still be eliminated while T⊄S, because the 
containment holds for each subtree where the two rules are 
active together. The problem is particularly complex 
considering that the query containment problem itself has 
been shown co-NP complete for the class of XPath 
expressions of interest, that is XP{[],//,*} [MiS02]. This issue 
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could be further investigated since more favorable results 
have been found for subclasses of XP{[],//,*} [ACL01], but 
this work is outside the scope of this paper. 

A second form of optimization is to suspend 
dynamically the evaluation of ARA that become irrelevant 
or useless inside a subtree. The knowledge gathered in the 
Token Stack, Authorization Stack and Predicate Set can be 
exploited to this end. The first optimization is to suspend 
the evaluation of a predicate in a subtree as soon as an 
instance of this predicate has been evaluated to true in this 
subtree. This optimization has been illustrated by Step 3 of 
Figure 3.c. The second optimization is to evaluate 
dynamically the containment relation between active and 
pending rules and take benefit of the elimination condition 
mentioned above. From the Authorization Stack, we can 
detect situations where the following local condition 
holds: (T ⊂ S ⊆ R) ∧ (R.Sign=S.Sign ∧ S.Sign≠T.Sign), 
the stack levels reflecting the containment relation inside 
the current subtree. S can be inhibited in this subtree. If 
stopping the evaluation of some ARA is beneficial, one 
must keep in mind that the two limiting factors of our 
architecture are the decryption cost and the 
communication cost. Therefore, the real challenge is being 
able to take a common decision for complete subtrees, a 
necessary condition to detect and skip prohibited subtrees, 
thereby saving both decryption and communication costs. 

Without any additional information on the input 
document, a common decision can be taken for a complete 
subtree rooted at node n iff: (1) the DecideNode algorithm 
can deliver a decision D (either ⊕ or y) for n itself and 
(2) a rule R whose sign contradicts D cannot become 
active inside this subtree (meaning that all its final states, 
of navigational path and potential predicate paths, cannot 
be reached altogether). These two conditions are compiled 
in the algorithm presented in Figure 5. In this algorithm, 
AS denotes the Authorization Stack, TS the Token Stack, 
TS[i].NT (resp. TS[i].PT) the set of NT (resp. PT) tokens 
registered at level i in this stack and top is the level of the 
top of a stack. In addition, t.RuleInst denotes the rule 
instance associated with a given token, Rule.Sign the sign 
of this rule and Rule.Pred a boolean indicating if this rule 
includes predicates in its definition.  
 
DecideSubtree() → Decision ∈ {⊕, y,?} 
1:  D = DecideNode(AS.top)  
2:  if D = ‘?’ then return ‘?’ 
3:  if not (∃ nt ∈TS[top].NT / nt.Rule.Sign ≠ D 
4:                  and (not nt.Rule.Pred 
5:                           or (∃ pt ∈TS[top].PT / pt.RuleInst = nt.RuleInst)) 
6:  then TS[top].NT = ∅; return (D) 
7:   else return ‘?’ 

Figure 5:  Decision on a complete subtree 

The immediate benefit of this algorithm is to stop the 
evaluation for any active NT tokens and the main expected 
benefit is to skip the complete subtree if this decision is 
y. Note however that only NT tokens are removed from 
the stack at line 6. The reason for this is that active PT 
tokens must still be considered, otherwise pending 

predicates could remain pending forever. As a conclusion, 
a subtree rooted at n can be actually skipped iff: (1) the 
decision for n is y, (2) the DecideSubtree algorithm 
decides y and (3) there are no PT token at the top of the 
Token Stack (which turns to be empty). Unfortunately, 
these conditions are rarely met together, especially when 
the descendant axis appears in the expression of rules and 
predicates. The next section introduces a Skip index 
structure that gives useful information about the 
forthcoming content of the input document. The goal of 
this index is to detect a priori rules and predicates that will 
become irrelevant, thereby increasing the probability to 
meet the aforementioned conditions. 

When queries are considered, any subtree not 
contained in the query scope is candidate to a skip. This 
situation holds as soon as the NT token of the query (or 
NT tokens when several instances of the same query can 
co-exist) becomes inactive (i.e., is no longer element of 
TS[top].NT). This token can be removed from the Token 
Stack but potential PT tokens related to the query must 
still be considered, again to prevent pending predicate to 
remain pending forever. As before, the subtree will be 
actually skipped if the Token Stack becomes empty. 

4. Skip index 

This section introduces a new form of indexation structure, 
called Skip Index, designed to detect and skip the 
unauthorized fragments (wrt. an access control policy) and 
the irrelevant fragments (wrt. a potential query) of an 
XML document, while satisfying the constraints 
introduced by the target architecture (streaming encrypted 
document, scarce SOE storage capacity). 

The first distinguishing feature of the required index is 
the necessity to keep it encrypted outside of the SOE to 
guarantee the absence of information disclosure. The 
second distinguishing feature (related to the first one and 
to the SOE storage capacity) is that the SOE must manage 
the index in a streaming fashion, similarly to the document 
itself. These two features lead to design a very compact 
index (its decryption and transmission overhead must not 
exceed its own benefit), embedded in the document in a 
way compatible with streaming. For these reasons, we 
concentrate on indexing the structure of the document, 
pushing aside the indexation of its content. Structural 
summaries [ABC04] or XML skeleton [BGK03] could be 
considered as candidate for this index. Beside the fact that 
they may conflict with the size and streaming 
requirements, these approaches do not capture the 
irregularity of XML documents (e.g., medical folders are 
likely to differ from one instance to another while sharing 
the same general structure).  

In the following, we propose a highly compact 
structural index, encoded recursively into the XML 
document to allow streaming. An interesting side effect of 
the proposed indexation scheme is to provide new means 
to further compress the structural part of the document. 
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4.1   Skip Index encoding scheme 

The primary objective of the index is to detect rules and 
queries that cannot apply inside a given subtree, with the 
expected benefit to skip this subtree if the conditions 
stated in section 3.3 are met. Keeping the compactness 
requirement in mind, the minimal structural information 
required to achieve this goal is the set of element tags, or 
tags for short, that appear in each subtree. While this 
metadata does not capture the tags nesting, it reveals 
oneself as a very effective way to filter out irrelevant 
XPath expressions. We propose below data structures 
encoding this metadata in a highly compact way. These 
data structures are illustrated in Figure 7.a on an abstract 
XML document. 
− Encoding the set of descendant tags: The size of the 

input document being a concern, we make the rather 
classic assumption that the document structure is 
compressed thanks to a dictionary of tags [ABC04, 
TpH02]6. The set of tags that appear in the subtree 
rooted by an element e, named DescTage, can be 
encoded by a bit array, named TagArraye, of length Nt, 
where Nt is the number of entries of the tag dictionary. 
A recursive encoding can further reduce the size of this 
metadata. Let us call DescTag(e) the bijective function 
that maps TagArraye into the tag dictionary to compute 
DescTage. We can trade storage overhead for 
computation complexity by reducing the image of 
DescTag(e) to DescTagparent(e) in place of the tag 
dictionary. The length of the TagArray structure 
decreases while descending into the document hierachy 
at the price of making the DescTag() function 
recursive. Since the number of element generally 
increases with the depth of the document, the gain is 
substantial. To distinguish between intermediate nodes 
and leaves (that do not need the TagArray metadata), 
an additional bit is added to each node. 

− Encoding the element tags:  In a dictionary-based 
compression, the tag of each element e in the document 
is replaced by a reference to the corresponding entry in 
the dictionary. Log2(Nt) bits are necessary to encode 
this reference. The recursive encoding of the set of 
descendant tags can be exploited as well to compress 
further the encoding of tags themselves. Using this 
scheme, Log2(DescTagparent(e)) bits suffice to encode the 
tag of an element e. 

− Encoding the size of a subtree: Encoding the size of 
each subtree is mandatory to implement the skip 
operation. At first glance, log2(size(document)) bits are 
necessary to encode SubtreeSizee, the size of the 
subtree rooted by an element e. Again, a recursive 
scheme allows to reduce the encoding of this size to 
log2(SubtreeSize parent(e)) bits. Storing the SubtreeSize 
for each element makes closing tags unnecessary.  

                                                           
6 Considering the compression of the document content itself is out of 

the scope of this paper. Anyway, value compression does not interfere 
with our proposal as far as the compression scheme remains 
compatible with the SOE resources. 

− Decoding the document structure: The decoding of the 
document structure must be done by the SOE, 
efficiently, in a streaming fashion and without 
consuming much memory. To this end, the SOE stores 
the tag dictionary and uses an internal SkipStack to 
record the DescTag and SubtreeSize of the current 
element. When decoding an element e, DescTagparent(e) 
and  SubtreeSizeparent(e) are retrieved from this stack and 
used to decode in turn TagArraye, SubtreeSizee and the 
encoded tag of e.   

− Updating the document: In the worst case, updating an 
element e induces an update of the SubtreeSize, the 
TagArray and the encoded tag of each e ancestors and 
of their direct children. In the best case, only the 
SubtreeSize of e ancestors need be updated. The worst 
case occurs in two rather infrequent situations. The 
SubtreeSize of e ancestor’s children have to be updated 
if the size of e father grows (resp. shrinks) and jumps a 
power of 2. The TagArray and the encoded tag of e 
ancestor’s children have to be updated if the update of 
e generates an insertion or deletion in the tag 
dictionary.  

4.2   Skip index usage 

As said before, the primary objective of the Skip index 
is to detect rules and queries that cannot apply inside a 
given subtree. This means that any active token that cannot 
reach a final state in its ARA can be removed from the top 
of the Token Stack. Let us call RemainingLabels(t) the 
function that determines the set of transition labels 
encountered in the path separating the current state of a 
token t from the final state of its ARA, and let us call e the 
current element in the document. A token t, either 
navigational or predicate, will be unable to reach a final 
state in its ARA if RemainingLabels(t) ⊄ DescTage. Note 
that this condition is sufficient but not necessary since the 
Skip index does not capture the element tags nesting. 

 
SkipSubtree () → Decision ∈ {true,false} 
 

1: For each token t ∈TS[top].NT ∪ TS[top].PT 
2:  if RemainingLabels(t) ⊄ DescTage  then remove t from TS[top] 
3: if DecideSubTree() ∈ {‘y’, ‘?’} and  (TS[top].NT = ∅) and  
4:  (TS[top].PT = ∅)  then return true 
5: else return false 

Figure 6: Skipping decision 
 
Once this token filtering has been done, the probability 

for the DecideSubtree algorithm to reach a global decision 
about the subtree rooted by the current element e is greatly 
increased since many irrelevant rules have been filtered. If 
this decision is negative (y) or pending (?), a skip of the 
subtree can be envisioned. This skip is actually possible if 
there are no more active tokens, either navigational or 
predicate, at the top of the Token Stack. The algorithm 
SkipSubtree given in Figure 6 decides whether the skip is 
possible or not. Let us remark that this algorithm should be 
triggered both on open and close events. Indeed, each 
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element may change the decision delivered by the 
algorithm DecideNode, then DecideSubtree and finally 
SkipSubtree with the benefit of being able to skip a bigger 
subtree at the next step. 

Figure 7 shows an illustrative XML document and its 
encoding, a set of access rules and the skips done while 
analyzing the document. The information in grey is 
presented to ease the understanding of the indexing 
scheme but is not stored in the document.  

Let us consider the document analysis (for clarity, we 
use below the real element tags instead of their encoding). 
At the time element b (leftmost subtree) is reached, all the 
active rules are stopped thanks to TagArrayb and the 
complete subtree can be skipped (the decision is y due to 
the closed access control policy).  When element c is 
reached, Rule R becomes pending. However, the analysis 
of the subtree continues since TagArrayc does not allow 
more filtering. When element e is reached, TagArraye 
filters out rules R, T and U. Rule S becomes negative-
active when the value ‘3’ is encountered below element m. 
On the closing event, SkipSubtree decides to skip the e 
subtree. This situation illustrate the benefit to trigger the 
SkipSubtree at each opening and closing events. The 
analysis continues following the same principle and leads 
to deliver the elements underlined in Figure 7.c. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Skip Index example 

5. Experimental results 
This section presents experimental results obtained from 
both synthetic and real datasets. We first give details about 
the experimentation platform. Then, we analyze the 
storage overhead incurred by the Skip index and compare 
it with possible variants. Next, we study the performance 
of access control management and query evaluation. 

Finally, the global performance of the proposed solution is 
assessed on four datasets that exhibit different 
characteristics. 

Experimentation platform 

The abstract target architecture presented in Section 2 can 
be instantiated in many different ways. In this 
experimentation, we consider that the SOE is embedded in 
an advanced smart card platform. While existing smart 
cards are already powerful (32 bits CPU running at 
30Mhz, 4 KB of RAM, 128KB of EEPROM), they are still 
too limited to support our architecture, especially in terms 
of communication bandwidth (9.6Kbps). Our industrial 
partner, Axalto (the Schlumberger’s smart card 
subsidiary), announces by the end of this year a more 
powerful smart card equipped with a 32 bits CPU running 
at 40Mhz, 8KB of RAM, 1MB of Flash and supporting an 
USB protocol at 1MBps. Axalto provided us with a 
hardware cycle-accurate simulator for this forthcoming 
smart card. Our prototype has been developed in C and has 
been measured using this simulator. Cycle-accuracy 
guarantees an exact prediction of the performance that will 
be obtained with the target hardware platform.  

As this section will make clear, our solution is strongly 
bounded by the decryption and the communication costs. 
The numbers given in Table 1 allow projecting the 
performance results given in this section on different target 
architectures. The number given for the smart card 
communication bandwidth corresponds to a worst case 
where each data entering the SOE takes part in the result. 
The decryption cost corresponds to the 3DES algorithm, 
hardwired in the smart card (line 1) and measured on a PC 
at 1Ghz (lines 2 and 3).  

 

Table 1: Communication and decryption costs 

In the experiment, we consider three real datasets: 
WSU corresponding to university courses, Sigmod records 
containing index of articles and Tree Bank containing 
English sentences tagged with parts of speech [UWX]. In 
addition, we generate a synthetic content for the Hospital 
document depicted in Section 2 (real datasets are very 
difficult to obtain in this area), thanks to the ToXgene 
generator [ToX]. The characteristics of interest of these 
documents are summarized in Table 2. 

 

Table 2: Documents characteristics 

Context Communication Decryption 
Hardware based (e.g., future smartcards) 0.5 MB/s 0.15 MB/s 
Software based - Internet connection 0.1 MB/s 1.2 MB/s 
Software based - LAN connection 10  MB/s 1.2 MB/s 

 WSU Sigmod Treebank Hospital 
Size 1.3 MB 350KB 59MB 3.6 MB 

Text size 210KB 146KB 33MB 2,1 MB 
Maximum depth 4 6 36 8 
Average depth 3.1 5.1 7.8 6.8 
# distinct  tags 20 11 250 89 
# text nodes 48820 8383 1391845 98310 
# elements 74557 11526 2437666 117795 
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Index storage overhead 

The Skip index is an aggregation of three techniques for 
encoding respectively tags, lists of descendant tags and 
subtree sizes. Variants of the Skip index could be devised 
by combining these techniques differently (e.g., encoding 
the tags and the subtree sizes without encoding the lists of 
descendant tags makes sense). Thus, to evaluate the 
overhead ascribed to each of these metadata, we compare 
the following techniques. NC corresponds to the original 
Non Compressed document. TC is a rather classic Tag 
Compression method and will serve as reference. In TC, 
each tag is encoded by a number expressed with 
log2(#distinct tags) bits. We denote by TCS (Tag 
Compressed and Subtree size) the method storing the 
subtree size to allow subtrees to be skipped. The subtree 
size is encoded with log2(compressed document size) bits. 
In TCS, the closing tag is useless and can be removed. 
TCSB complements TCS with a bitmap of descendant tags 
encoded with #dictinct tags bits for each element. Finally, 
TCSBR is the recursive variant of TCSB and corresponds 
actually to the Skip Index detailed in Section 4. In all these 
methods, the metadata need be aligned on a byte frontier. 
Figure 8 compares these five methods on the datasets 
introduced formerly. These datasets having different 
characteristics, the Y-axis is expressed in terms of the ratio 
structure/(text length).  

Clearly, TC drastically reduces the size of the structure 
in all datasets. Adding the subtree size to nodes (TCS) 
increases the structure size by 50%, up to 150% (big 
documents require an encoding of about 5 bytes for both 
the subtree size and the tag element while smaller 
documents need only 3 bytes). The bitmap of descendant 
tags (TCSB) is even more expensive, especially in the case 
of the Bank document which contains 250 distinct tags. 
TCSBR drastically reduces this overhead and brings back 
the size of the structure near the TC one. The reason is that 
the subtree size generally decreases rapidly, as well as the 
number of distinct tags inside each subtree. For the 
Sigmod document, TCSBR becomes even more compact 
than TC. 

 

 

 

 

 

 

 

Figure 8: Index storage overhead 

Access control overhead 

To assess the efficiency of our strategy (based on 
TCSBR), we compare it with: (i) a Brute-Force strategy 
(BF) filtering the document without any index and (ii) a 
time lower bound LWB. LWB cannot be reached by any 
practical strategy. It corresponds to the time required by an 
oracle to read only the authorized fragments of a document 
and decrypt it. Obviously, a genuine oracle will be able to 
predict the outcome of all predicates – pending or not –  
without checking them and to guess where the relevant 
data are in the document. 

Figure 9 shows the execution time required to evaluate 
the authorized view of the three profiles (Secretary, Doctor 
and Researcher) introduced in Section 2 on the Hospital 
document. Integrity checking is not taken into account 
here. The size of the compressed document is 2.5MB and 
the evaluation of the authorized view returns 135KB for 
the Secretary, 575KB for the Doctor and 95 KB for the 
Researcher. In order to compare the three profiles despite 
this size discrepancy, the Y-axis represents the ratio 
between each execution time and its respective LWB. The 
real execution time in seconds is mentioned on each 
histogram. To measure the impact of a rather complex 
access control policy, we consider that the Researcher is 
granted access to 10 medical protocols instead of a single 
one, each expressed by one positive and one negative rule, 
as in Section 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Access control overhead 
 
The conclusions that can be drawn from this figure are 

threefold. First, the Brute-Force strategy exhibits dramatic 
performance, explained by the fact that the smart card has 
to read and decrypt the whole document in order to 
analyze it. Second, the performance of our TCSBR 
strategy is generally very close to the LWB (let us recall 
that LWB is a theoretical and unreachable lower bound), 
exemplifying the importance of minimizing the input flow 
entering the SOE. The more important overhead noticed 
for the Researcher profile compared to LWB is due to the 
predicate expressed on the protocol element that can 
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remain pending until the end of each folder. Indeed, if this 
predicate is evaluated to false, the access rule evaluator 
will  continue – needlessly in the current case – to look at 
another instance of this predicate. Third, the cost of access 
control (from 2% to 15%) is largely dominated by the 
decryption cost (from 53% to 60%) and by the 
communication cost (from 30% to 38%). The cost of 
access control is determined by the number of active 
tokens that are to be managed at the same time. This 
number depends on the number of ARA in the access 
control policy and the number of descendant transitions 
(//) and predicates inside each ARA. This explain the 
larger cost of evaluating the Researcher access control 
policy. 

Impact of queries 

To measure accurately the impact of a query in the global 
performance, we consider the query //Folder[//Age>v] (v 
allows us to vary the query selectivity), executed over five 
different views built from the preceding profiles and 
corresponding to: a secretary (S), a part-time doctor (PTD) 
having in charge few patients,  a full-time doctor (FTD) 
having in charge many patients, a junior researcher (JR) 
being granted access to few analysis results and a senior 
researcher (SR) being granted access to several analysis 
results. Figure 10 plots the query execution time 
(including the access control) as a function of the query 
result size. The execution time decreases linearly as the 
query and view selectivity’s increase, showing the 
accuracy of TCSBR. Even if the query result is empty, the 
execution time is not null since parts of the document have 
to be analysed before being skipped. The parts of the 
document that need be analysed depends on the view and 
on the query. The embedded figure shows the same 
linearity for larger values of the query result size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Impact of queries 

Performance on real datasets  

To assess the robustness of our approach when different 
document structures are faced, we measured the 
performance of our prototype on the three real datasets 
WSU, Sigmod and Bank. For these documents we 
generated random access rules (including // and 
predicates). Each document exhibits interesting 
characteristics. The Sigmod document is well-structured, 
non-recursive, of medium depth and the generated access 
control policy was simple and not much selective (50% of 
the document was returned). The WSU document is rather 
flat and contains a large amount of very small elements (its 
structure represents 78% of the document size after 
TCSBR indexation). The Bank document is very large, 
contains a large amount of tags that appear recursively in 
the document and the generated access control policy was 
complex (8 rules). Figure 11 reports the results. We added 
in the figure the measures obtained with the Hospital 
document to serve as a basis for comparisons. The figure 
plots the execution time in terms of throughput for our 
method and for LWB, both with and without integrity 
checking. Although integrity checking is not discussed in 
this paper (see [BDP04] for details), taking its cost into 
account is mandatory to fully assess our solution. We 
show that our method tackles well very different situations 
and produces a throughput ranging from 55KBps to 
85KBps depending on the document and the access control 
policy. These preliminary results as encouraging when 
compared with xDSL Internet bandwidth available 
nowadays (ranging from 16KBps to 128KBps). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11: Performance on real datasets 

6. Conclusion 
Important factors motivate today the access control to be 
delegated to client devices. By compiling the access 
control policies into the data encryption, existing client-
based access control solutions minimize the trust required 
on the client at the price of a rather static way of sharing 
data. Our objective is to take advantage of new elements of 
trust in client devices to propose a client-based access 
control manager capable of evaluating dynamic access 
rules on a ciphered XML document. 
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The contribution of this paper is twofold. First, we 
proposed a streaming evaluator of access control rules 
supporting a rather robust fragment of the XPath language. 
To the best of our knowledge, this is the first paper dealing 
with XML access control in a streaming fashion. Second, we 
designed a streaming index structure allowing skipping the 
irrelevant parts of the input document, with respect to the 
access control policy and to a potential query. This index is 
essential to circumvent the inherent bottlenecks of the target 
architecture, namely the decryption cost and the 
communication cost. Combined together, these two 
mechanisms form the core of our client-based XML access 
control solution. Pending predicate management and random 
integrity checking complement this solution [BDP04]. 

Our experimental results have been obtained from a C 
prototype running on a hardware cycle-accurate smart card 
simulator provided by Axalto. The global throughput 
measured is around 70KBps and the relative cost of the 
access control is less than 20% of the total cost. These first 
measurements are promising and demonstrate the 
applicability of the solution. A JavaCard prototype is 
currently developed and will be submitted to the e-gate’04 
software contest organized by SUN and Axalto. 

Open issues concern the better use of query 
containment techniques to improve the optimization before 
and during the access rules evaluation as well as the 
definition of more accurate streaming indexation 
techniques. More generally, client-based security solutions 
deserve a special attention for the new research 
perspectives they broaden and for their foreseeable impact 
on a growing scale of applications. 
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