
A Framework for Using Materialized XPath Views in
XML Query Processing

Andrey Balmin Fatma Özcan Kevin S. Beyer Roberta J. Cochrane
Hamid Pirahesh

IBM Almaden Research Center, San Jose CA 95120
{abalmin, fozcan, kbeyer, bobbiec, pirahesh}@us.ibm.com

Abstract

XML languages, such as XQuery, XSLT and
SQL/XML, employ XPath as the search and
extraction language. XPath expressions often
define complicated navigation, resulting in ex-
pensive query processing, especially when ex-
ecuted over large collections of documents. In
this paper, we propose a framework for ex-
ploiting materialized XPath views to expe-
dite processing of XML queries. We explore a
class of materialized XPath views, which may
contain XML fragments, typed data values,
full paths, node references or any combination
thereof. We develop an XPath matching algo-
rithm to determine when such views can be
used to answer a user query containing XPath
expressions. We use the match information
to identify the portion of an XPath expres-
sion in the user query which is not covered by
the XPath view. Finally, we construct, possi-
bly multiple, compensation expressions which
need to be applied to the view to produce the
query result. Experimental evaluation, using
our prototype implementation, shows that the
matching algorithm is very efficient and usu-
ally accounts for a small fraction of the total
query compilation time.

1 Introduction

With large amounts of data represented and exchanged
as XML documents, there is a pressing need to per-
sistently store and efficiently query large XML collec-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

tions. To address this requirement, W3C has proposed
an XML query language, XQuery [17]. At the same
time, ANSI and ISO has defined SQL/XML [1] (XML-
Related Specifications), a new part of SQL standard
which extends SQL to handle XML data.

XPath [16] is the W3C recommendation for navi-
gating XML documents, which is designed to be em-
bedded in a host language such as XQuery, XSLT or
SQL/XML1. It is a reference based language; hence,
subsequent expressions on the results an XPath ex-
pression may traverse the document in both forward
and reverse directions.

XPath expressions often define complicated navi-
gation, resulting in expensive query processing, espe-
cially when executed over large collections of docu-
ments. As a result, optimization of XPath expressions
is vital to efficiently process XML queries.

In this paper we propose a framework for exploit-
ing materialized XPath views to expedite processing
of XML queries. The views may contain copies of
XML fragments, or node references which point into
the original document. The framework also considers
value and structure indexes built on top of the views to
efficiently locate information within them. We do not
propose any particular structure to assist query pro-
cessing, but rather a general framework for exploiting
a large class of such structures.

Our framework addresses rewriting of XPath ex-
pressions that are embedded in XQuery. Consider the
following XQuery:

Q1 : for $i in collection(′URI ′)//order
where $i//@price > 100
return <order> {$i//lineitem} </order>

This query contains three XPath expressions, and
all three return different types of values. In the for
binding, the XPath expression //order returns node
references to order nodes. In the where clause, the
comparison $i//@price > 10 requires the typed value

1The latest draft of SQL/XML embeds XQuery which in-
cludes XPath

60

of the price attributes, and finally within the element
constructor copied subtrees rooted at lineitem nodes
are needed.

As the above example illustrates, it is worthwhile
to store additional ”values” with the results of XPath
expressions. In this paper, we explore XPath views
containing XML fragments, typed data values, node
references, full paths and a combination thereof.

The problem of rewriting queries using material-
ized views becomes even more relevant in the world
of XML query processing, since XML indexes also can
be modeled as materialized views. Indeed, most of
the recently proposed XML indexing schemes (e.g.,
[14, 9, 3, 5, 11, 7]), can be viewed as materialized views
that contain a value and a node reference for every el-
ement in the collection. Similarly relational indexes
can be viewed as very limited materialized views that
contain column values and row IDs. The materialized
view model is especially accurate for partial XML in-
dexes, which contain only nodes that satisfy a certain
XPath expression. An index does not have to contain
all elements in the collection. After all, relational in-
dexes are rarely defined for all columns of all tables in
the database. A partial XML index is likely to improve
access time and reduce index maintenance costs. We
envision such indexes to be very useful for XML query
processing.

Consider a query Q = collection(′uri1′)
//order[date > ”Jan 1, 2004” and price > 100],
which asks for recent expensive orders. First, let
us consider a view V1 = collection(′uri1′)//∗ which
contains data values and node references of all
elements in a collection. We model this view as a
table with attributes value and reference. One way
to execute the query using this view is to find all
elements with values greater than 100, then follow
the node references to the original documents and
select only price elements that have order parent with
date > ”Jan1, 2004”.

Now let’s assume that, in addition to values and
node references, V1 also contains elements’ full path,
i.e., a list of all ancestor tags. This enables us to specif-
ically locate price elements with order parents and
then follow node references to execute the expression
..[date > ”Jan1, 2004”].

Of course not all materialized XPath
views can be used to answer a query. For
example, it is not beneficial to use the
view V2 = collection(′uri1′)//order[date >
”Feb 1, 2004”]/price, since it does not contain
January orders. The document collection needs to be
scanned anyway to locate January orders.

The above examples illustrate two main problems
associated with answering XML queries using materi-
alized XPath views. First, an XPath query contain-
ment is required to make sure that a view can be used
to answer a query. Second, a compensation expres-

sion needs to be constructed, that would compute the
query result using the information available from the
view.

We address the XPath query containment problem
with an XPath matching algorithm. The containment
problem was shown to be co-NP complete for a re-
stricted subset of XPath by [10]. We propose an ef-
ficient polynomial-time matching algorithm which is
sound and works in most practical cases.

The algorithm is based on the observation made
in [10] that a total node mapping from view nodes
to query nodes implies containment for conjunctive
XPath expressions. We build on the same observation,
but extend it to a more functional subset of XPath that
includes value predicates, disjunction and the six axes
allowed in XQuery.

The mappings produced by the algorithm are used
to construct the compensation expression. A mapping
between view and query trees is not necessarily unique.
Multiple mappings imply that the view can answer dif-
ferent predicates and/or fragments of the query. In
those cases the compensation needs to combine infor-
mation from multiple instances of the view.

To enable the best compensation expression, the
matching algorithm produces all possible mappings.
The number of tree mappings may be exponential, but
we are able to encode them in a polynomial size struc-
ture. The running time of the matching algorithm is
also polynomial.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the XPath materialized views sup-
ported by our framework. We present our XPath query
matching algorithm in Section 3. In Section 4 we dis-
cuss the framework that uses the matching algorithm
to decide when and how to use the materialized views
to answer a query. We present experimental evalua-
tion of the matching algorithm in Section 5. Finally,
we discuss related work in Section 6 and conclude in
Section 7.

2 Materialized XPath Views
In relational databases, indexes and materialized views
are two well-known techniques to accelerate processing
of expensive SQL queries. In this section, we explore
a class of materialized XPath views to speed-up pro-
cessing of XQuery or SQL/XML queries. We consider
XPath views containing XML fragments, typed data
values, node references, full paths and a combination
thereof.

One class of XPath views may contain only typed
data values of nodes. Storing typed values facili-
tates computation of value based comparison predi-
cates. B+-tree indexes on typed values further ex-
pedites query processing. For example, if an XPath
view contains the typed values of /lineitem/@price,
then it can be used to answer the comparison predi-
cate /lineitem/@price > 1000.

61

data copy

path

reference

Figure 1: Extraction Type Hierarchy

Note that this type of XPath views can also be con-
sidered as a regular value index. However, there is
one important restriction of such XPath views: The
XPath expression in the comparison has to be exactly
the same as the view XPath expression. Because the
XPath view does not contain enough information if the
query XPath expression does not exactly match. Con-
sider the query /lineitem/@price < 100. An XPath
view V = //lineitem/@price cannot be used to evalu-
ate this comparison predicate, because there is no way
to determine from the view that lineitem nodes are
top-level element nodes.

To remedy this problem, one may also store full
paths in an XPath view. A full path of a node is
defined as a list of ancestor tags. Such paths can
be computed when XML data is processed and in-
serted into the view results. These full paths can
be very useful if the defining XPath expression of
the view contains descendant axes and/or wildcard
name tests. For example, we can use the XPath
view V = //@∗ to evaluate comparison predicates
/lineitem/@price > 100, /lineitem/order/@quantity
< 10, /lineitem/ ∗ /@amount = 1000, and etc.

Storing typed values is only helpful to evaluate
comparison predicates, whether in where clause of a
FLWOR expression, or in a predicate of an XPath
step expression. However as shown in Q1 in the In-
troduction, XPath expressions are also used in other
contexts. To evaluate those queries, it is often required
to apply further navigation to the results of an XPath
view. In such scenarios, we need to store node refer-
ences in the materialized XPath view.

Consider the query Q1 and the XPath view V =
//order. If V only contains typed values of orders, we
cannot use it to process Q1. However, if V contains
references to order nodes, then we can use this view,
as we can execute the XPath expressions $i//@price
and $i//lineitem, by using the results of V .

Sometimes it is also beneficial to store actual copies
of XML fragments in an XPath view. For example,
it might be sufficient to store copies to answer value-
based expressions of SQL/XML. Furthermore, concur-
rency control is easier in the case of copy semantics.
Note that copy semantics loses the parent property as
well as node identity. This implies that XPath views
containing copies can only be used to answer XQueries
when subsequent operations on the results of the view
do not require to navigate to the parent or ancestors,
or require node identity, such as node comparisons,
and sequence operations of XQuery.

One can think of different kinds of materialized
XPath views which contain a combination of node ref-

erences, full paths, typed data values and copied XML
fragments. We refer to node references simply as ref-
erences, typed data values as data, copied XML frag-
ments as copy and full paths simply as paths in the
rest of this paper. A view definition language to cre-
ate these different kinds of materialized XPath views
is beyond the scope of this paper. Here, we assume
that views are relations with the schema (reference,
copy, data, path) and are defined with XPath expres-
sions where view extraction point is marked with copy,
data, path and reference extraction types. Figure 1
summarizes the relationships between these extraction
types in terms of the information they represent. We
explain how these different extraction points are used
in Section 4.

3 XPath Matching Algorithm
In this section, we present an algorithm to decide if
a given XPath view can be utilized in a user query.
The algorithm finds tree mappings between the view
and the query expression trees, and records them in a
match structure. If a mapping exists then the view can
potentially be used to evaluate the XPath expression
in the user query. However, further computation may
be necessary. We use the match structure produced
by the algorithm to derive the compensation, which is
an expression applied to the contents of the view to
compute the query result.

In the remainder of this section, we first introduce
our XPath representation. We then describe the ba-
sic algorithm, which concentrates on “structure-only”
XPath queries, followed by an extension to handle
comparison predicates.

3.1 XPath Representation
We represent XPath expressions as labeled binary
trees, called XPS trees. An XPS node is labeled with
its axis and test, where axis is either the special ”root”,
or one of the 6 axes allowed in XQuery [17]: ”child”,
”descendant”, ”self”, ”attribute”, ”descendant-or-
self”, or ”parent”. The test is either a name test, a
wildcard test, or a kind test, such as node() or text().
The first child of an XPS node is called predicate, and it
can be a conjunction (and), a disjunction (or), a com-
parison operator (<,≤,≥, >, =, 6=, eq, ne, lt, le, gt, ge),
a constant, or an XPath Step (XPS) node. The sec-
ond child, called next, points to the next step, and is
always an XPS node. Next and predicate are optional.
We use “null” nodes to denote missing children. An
XPS node which does not have a next step, and is
reachable from the root of the XPS tree by visiting
only next children, is called the extraction point, since
this node represents the result of the XPath expres-
sion. Example XPS trees can be found in Figure 2.

3.2 Basic Matching Algorithm
The algorithm described in this section traverses both
the view and the query expression trees and computes

62

1 matchStep(v, q)
1.1 if (q = q1 ∧ q2) matchStep(v, q) → matchStep(v, q1) ∨matchStep(v, q2)
1.2 else if (q = q1 ∨ q2) matchStep(v, q) → matchStep(v, q1) ∧matchStep(v, q2)
1.3 else if (vaxis = “descendant”) matchStep(v, q) → ∨ {matchChildren(v, c)}, ∀c ∈ { preorder traversal of q},

such that caxis 6= “attribute”, unless vtest = node()
1.4 else if (vaxis = qaxis) matchStep(v, q) → matchChildren(v, q)
1.5 else matchStep(v, q) → False

2 matchChildren(v, q)
2.1 if (vtest = ”*”) ∨ (vtest=qtest) matchChildren(v, q) → matchPred(vpred, q) ∧matchNext(vnext, q))
2.2 else matchChildren(v, q) → False

3 matchPred(vpred, q)
3.1 if (vpred = null) matchPred(vpred, q) → True
3.2 else if (q = null) matchPred(vpred, q) → False
3.3 else if (vpred = v1 ∧ v2) matchPred(vpred, q) → matchPred(v1, q) ∧matchPred(v2, q)
3.4 else if (vpred = v1 ∨ v2) matchPred(vpred, q) → matchPred(v1, q) ∨matchPred(v2, q)
3.5 else matchPred(vpred, q) → matchStep(vpred, qpred) ∨matchStep(vpred, qnext)

4 matchNext(vnext, q)
4.1 if (vnext = null) matchNext(vnext, q) → True
4.2 else if (q = null) matchNext(vnext, q) → False
4.3 else matchNext(vnext, q) → matchStep(vnext, qpred) ∨matchStep(vnext, qnext)

Table 1: Rules for finding containment mappings between expression trees

all possible mappings from XPS nodes of the view to
XPS nodes of the query expression, in a single top-
down pass of the view tree. For the ease of readability,
we denote the XPath expression defining the view with
V , and the XPath expression in the user query with
Q.

In the basic algorithm we restrict the view and
query XPS trees to contain only AND, OR nodes and
XPS nodes with child, attribute, or descendant axis.

Table 1 summarizes the basic algorithm in terms of
the four functions used. Every function of the table
evaluates to Boolean. The algorithm is invoked by the
initial call matchStep(v root, q root), and there exists
a match if this call evaluates to true. The first rule
whose condition is satisfied is fired for each function.

VV ������������������
QQ11 �����	
�	������	
�	��
��
����
��
���

���	
�����
�

����������	
�����
�

�������

XPS1 (root)

XPS2(//*)null

XPS3(@*) null

XPS4 (root)

XPS5(//order)null

XPS6(/lineitem)null

XPS8(@price) XPS9(/discount)

AND7 null

QQ22 ���������
��
����
��
���

���	
����	��	
������	
����	��	
���

XPS10 (root)

null XPS11(/lineitem)

XPS13(@price)

XPS14(/price)

OR12 null

Figure 2: Example view definition, matching and non-
matching query expressions

Rule 1.1 handles the situation where the query ex-
pression can be more restrictive than the view def-
inition. It is sufficient for one of the conjuncts of

qpred to be mapped by a node of V . For example, the
view V = // ∗ [@∗], which contains all XML element
nodes which have an attribute, can be used to evalu-
ate Q1 = //order/lineitem[@price and discount] as
shown in Figure 2. Dotted lines denote the mapping.

Rule 1.2 says that if one disjunct of qpred is mapped
by a node v ∈ V , then v also has to map to some
node in the other disjunct of Q. For example, the
same V of Figure 2 cannot be used to evaluate the
expression Q2 = //order/lineitem[@price or price],
which asks for lineitem nodes, which have either a
price attribute or a price element.

When the view node contains a “descendant”
axis, we need to keep looking for matches down in
the tree, even if the current query expression node
matches (rules 1.3). For example, in Figure 2, we
will try to map XPS2(//*) to XPS5 (//order),
XPS6(/lineitem), and XPS9(/discount). We do not
include rules that handle “self” and “descendent-or-
self” due to lack of space. “Parent” axis is handled by
rewriting the expression into an equivalent XPS tree
that uses forward axes only. The rewriting is done
using transformations similar to the ones proposed in
[13]. If the axes match, we try to match the predicate
and next children of the view node (rule 1.4). If there
is no match (rule 1.5), the algorithm returns false.

When matching children, if the tests match, then
we try to match the predicate and the next step of
v (rule 2.1). If v does not have a predicate then the
step trivially matches (rule 3.1). Recall that the view
expression can not be more restrictive than the query.
Hence, if v has a predicate and q does not, then the
match fails (rule 3.2). The next children of XPS nodes
are matched in the same fashion.

The rule 3.3 states that if there is a conjunction

63

in V , then both conjuncts has to map to some node
in Q. However, it is sufficient for one disjunct in V
to participate in the mapping (rule 3.4). For example,
the view V = //order[@price or lineitem/@price] can
be used to evaluate Q1 of Figure 2.

The rules of matchNext() are similar to those of
matchPred().

As the predicate of an XPath step may contain a
nested XPath expression, we try to match vpred both
to qpred and qnext (rule 3.5), and match vnext to both
qpred and qnext (rule 4.3). For example, a view ex-
pression V = //a[b/c] matches the XPath expression
Q = //a/b[c].

matchChildren(1,10)

matchStep(2, ∅) ∨∨∨∨ matchStep(2, 11)

matchChildren(2,11) matchChildren(2,14)

∨∨∨∨

matchPred(3,11) ∧∧∧∧ matchNext(∅,11)

matchStep(3, 12) ∨∨∨∨ matchStep(3, ∅)

matchStep(3, 13) ∧∧∧∧ matchStep(3, 14)
T F

FF

F

F F

FF

T

matchPred(∅,10) ∧∧∧∧ matchNext(2,10)
FT

F

matchStep(1,10) F

Figure 3: Execution of the matching algorithm for V
and Q2 of Figure 2

Figure 3 shows the execution of the algorithm as
the rules fire, and return false. There is no match
because there is no XPS node in the view that maps
to XPS14(/price). That is, the view does not contain
lineitem elements with a price sub-element, but no
attribute.

3.3 Recording the Match
We need to preserve information about all tree map-
pings found by the algorithm to fully take advantage
of data stored in the view, when constructing the com-
pensation expression. We keep track of all mappings in
a match matrix structure, which also facilitates match-
ing intradocument joins (discussed in Section 3.5), and
reduces time complexity of the algorithm by eliminat-
ing redundant computation.

The basic matching algorithm may generate expo-
nential (in the number of XPS nodes) number of tree
mappings. For example, consider a view that consists
of n nodes //a//a . . . //a and a query expression that
consists of m nodes /a/a . . . /a, where m > n. Any
view node v can map to any query expression node
q such that v’s parent maps to some ancestor of q.
Thus for any subset of n query nodes, there is ex-
actly one mapping from the nodes of the view to these
query expression nodes. Hence, there are Cm

n distinct
tree mappings of the view to the query expression.
However, a lot of information in these mappings is
redundant, since the space of mapping options for a
node v depends only on the mapping of v’s parent

(which we will refer to as mapping context) and is in-
dependent of all other view node mappings. In other
words, matchStep() function of our algorithm may be
called multiple times with the same parameters v and
q, which is wasteful, since it is guaranteed to return
the same result, due to the top-down nature of the
algorithm.

Match matrix allows us to encode an exponential
number of tree mappings in a polynomial size struc-
ture, by recording all possible contexts for each node
mapping. It also reduces running time of the algorithm
to polynomial, by eliminating redundant computation.

Intuitively, each cell of the match matrix corre-
sponds to a pair of view and query XPS tree nodes.
Result of each matchStep() call is cached in the cor-
responding cell of the matrix. Before executing each
matchStep() the matrix is checked, and if the same
pair of nodes has already been matched, we return
the result stored in the matrix instead of running the
matchStep() again. More precisely, each row of the
matrix corresponds to an XPS node of the view tree,
and each column corresponds to an XPS node of the
query expression. Each cell of the matrix may con-
tain one of three possible values: “empty”, “true” or
“false”. All cells are initialized as “empty”.

In addition to the cell values, we also record di-
rected edges between cells to represent the context in
which the mapping was detected for a pair of nodes.
An edge (i, j) → (k, l) means that (a successful)
matchStep(vk, ql) was called (possibly through other
functions) from matchStep(vi, qj). Recall that match-
ing proceeds in a top-down traversal of the view tree,
which means that vi is a guaranteed to be an ancestor
of vk. Thus the edges form a directed acyclic graph
(DAG) of matrix cells.

The matchStep() function of the algorithm of Ta-
ble 1 is modified as follows: Before executing a call
matchStep(vi, qj), cell (i, j) of the matrix is checked.
If the cell is empty, the function is executed. Other-
wise the function returns the content of the cell. After
a call matchStep(vi, qj) is executed and returns true or
false, we store this value in the matrix cell (i, j). If the
result was true, we also create the edge (k, l) → (i, j)
to the structure, where matchStep(vk, ql) is the first
matchStep() function on the call stack. This edge sig-
nifies that node vi matches qj in the context of the
match of vk to ql.

EXAMPLE 3.1 Consider a hierarchy of employees,
where each employee element has salary and bonus
attributes, and zero or more employee sub-elements.
Consider a view that contains all attributes in a sub-
tree of any employee, and an XPath expression that
asks for the salary of employees who, together with
their direct managers, have bonuses. The XPS trees
for these view and query are shown in Figure 4. Note
that according to XPath standard //@∗ is translated
into /descendent−or−self :: node()/@∗. The result-

64

VV = //employee//@*= //employee//@*

XPS1 (root)

XPS2(//employee)null

null XPS4(@*)

XPS11 (root)

XPS12(//employee)null

XPS14(/employee)XPS3(desc-or-self::*)null XPS13(@bonus)

XPS16 (@salary)XPS15(@bonus)

QQ = = ////employee[@bonusemployee[@bonus]/]/

employee[@bonusemployee[@bonus]/]/@salary@salary

Figure 4: Example view and query expression trees.

ing match matrix for these view and query expression
is shown in Figure 5. For clarity we only show “true”
cells.

The matching starts by calling matchStep() on root
nodes XPS1 and XPS11, which in turn tries to match
XPS2(//employee) to all XPS nodes of the query2.
Two of these match attempts will succeed. Let us
consider them one at a time.

First, matchStep(XPS2, XPS12) calls
matchStep(XPS3, XPS12), which in turn calls
matchStep(XPS4, XPS13). The later returns true,
which is recorded in cell (4,13) of the matrix. At this
point the first edge (3, 12) → (4, 13) is added to the
structure.
matchStep(XPS3, XPS12) also returns true, so we
set (3, 12) = true and add edge from (2,12) to (3,12).
Similarly we find matches (3,14), (4,15) and add edges
(2, 12) → (3, 14) and (3, 14) → (4, 15).

Now consider execution of the call
matchStep(XPS2, XPS14). It starts by calling
matchStep(XPS3, XPS14). However, cell (3,14) is
not empty – it has already been set to true, so we
immediately return true, without re-executing the
call. We also add an edge from (2,14) to (3,14),
since the same match has been found in a new
context. Finally, we set (3, 12) = true and add edge
(1, 11) → (2, 14) to complete the structure.

Notice that this structure encodes five distinct map-
pings of the view tree into the query. 2

3.4 Handling Comparison Predicates
In this section, we extend our matching algorithm to
handle comparison predicates, i.e., expressions of the
form L op R, where op is one of XQuery general or
value comparison operators, and L and R are either
an XPS node or a constant.

Needless to say, predicate conditions complicate the
matching algorithm. For example, consider the view
V = //order/ ∗ [@price > 60] that matches the query
expression Q = //order[lineitem/@price > 100].

2For simplicity we omit intermediate matchChildren(),
matchPred(), and matchNext() calls in this example.

TTTXPS4

@*

XPS16

@salary

XPS15

@bonus

TTXPS3

dos::*

TTXPS2

//employee

TXPS1

/root

XPS14

/employee

XPS13

@bonus

XPS12

//employee

XPS11

rootV
Q

Figure 5: Match matrix for view and query expression
trees of Figure 4.

Their XPS trees are shown in the upper part of Fig-
ure 6. Notice that view XPS node XPS2(/∗) should
match query expression node XPS5(/lineitem). How-
ever, in the view tree “>” appears under XPS2(/∗),
while in the query “>” is above XPS5(/lineitem).

To enable matching in the presence of comparison
nodes, we normalize the expression trees by extracting
the predicate conditions from the expression trees as a
pre-process of the matching algorithm. For example,
we create the trees V ′ and Q′ shown in the lower half
of Figure 6.

>

VV = //order/*[@price > 60]= //order/*[@price > 60] QQ = //= //order[lineitemorder[lineitem /@price>100]/@price>100]

60

QQ’’ = //= //order[lineitemorder[lineitem /@price] /@price]
++ {@price > 100}{@price > 100}

Filter: XPS6 > 100

VV’’ = //order/*[@price]] = //order/*[@price]]
++ {@price > 60}{@price > 60}

Filter: XPS3 > 60

XPS1(//order)

XPS2(/*)null

XPS3(@price)

null

>

60

XPS4(//order)

XPS5(/lineitem)

null

XPS6(@price)null

XPS1(//order)

null

XPS3(@price)

XPS2(/*)

null

XPS4(//order)

null

XPS6(@price)

XPS5(/lineitem)

null

Figure 6: Normalizing the expression trees by extract-
ing predicate conditions.

Both trees are traversed bottom-up and all com-
parison predicates are moved into a filter list. Each
filter in the list is associated with the XPS node(s) it
includes.

There are two types of filters: local predicates fn of
the form n op const, where n is an XPS node, and in-
tradocument join filters fnm of the form n op m, where
both n and m are XPS nodes. During normalization,
for each local predicate fn, we replace its compari-
son operator node, with the subtree rooted at n, and
associate fn with n’s extraction point ne, which is an
XPS node obtained by starting at n and following next
children. For each intradocument join filter fnm, we
replace the comparison operator with an AND node,
and associate fnm with extraction points of both n and
m.

65

EXAMPLE 3.2 Consider an XPath expression
//order[date = lineitem[@price > 100]/shipdate].
It contains one local predicate and one in-
tradocument join filter. Its normal form is
//order[date AND lineitem[@price]/shipdate] with
two filters:

1. price > 100, associated with @price XPS node

2. date = shipdate, associated with /date and
/shipdate XPS nodes. /shipdate is an extraction
point, obtained by following the next step of the
/lineitem XPS node.

2

We extend the basic algorithm to match local pred-
icates in the view during a single pass of the view tree.
While the matching algorithm builds the mapping of
view nodes to query expression nodes, it also checks
whether for every local predicate fv, that is associated
with the current XPS node v ∈ V , there exists a pred-
icate fq associated with node q ∈ Q, such that v maps
to q and fq implies fv (fq → fv). Note that for local
predicates implication can be detected in polynomial
time, by examining the comparison operators and the
constants in the predicates. Disjunction and conjunc-
tions are handled as part of the matching algorithm.

EXAMPLE 3.3 The matching of V and Q of Fig-
ure 6 proceeds as follows. First, we extract the pred-
icates, by replacing the > nodes with their XPS chil-
dren, producing trees V ′ and Q′. The extracted view
predicate is associated with the XPS3(@price) node
of the view. The query expression predicate is con-
nected to XPS6(@price). Next, the algorithm of
Table 1 proceeds by matching view node XPS1 to
query node XPS4, which requires matching XPS2

to XPS5, which in turn attempts to match the view
node XPS3(@price), to the query expression node
XPS6(@price). At this point we find out that a
view predicate XPS3 > 60 is associated with node
XPS3, so we look for query expression predicates as-
sociated with the XPS6 node. We find the predicate
XPS6 > 100, which is more restrictive than the view
predicate. As a result, the algorithm matches XPS3

to XPS6. 2

Notice that query expression predicates do not re-
quire any additional matching, since the query expres-
sion can be more restrictive than the view.

To match intradocument join filters in views re-
quires matching both sides of the join predicate first.
Hence, intradocument join filters are matched in a post
processing step which is described next.

3.5 Matching Intradocument Joins
Recall that intradocument join filters represent joins
that occur inside a single document. For example,

VV = = //employee[//employee[

salarysalary��bonus[christmasbonus[christmas]]]]

XPS1 (root)

XPS2(//employee)null

XPS5(/christmas)

XPS11 (root)

XPS12(//employee)null

XPS4(/bonus)

EE = = ////employee[salaryemployee[salary and bonus/and bonus/cristmascristmas]/]/

employee[salaryemployee[salary==bonus[christmasbonus[christmas]]]]

��

XPS3(/salary)

XPS15(/christmas)

XPS14(/bonus)

ANDAND

XPS13(/salary)

XPS16(/employee)

XPS19(/christmas)

XPS18(/bonus)

==

XPS17(/salary)

Figure 7: View and query expression trees with in-
tradocument joins.

the expression //employee[@bonus > @salary]/name
contains an intradocument join filter @bonus >
@salary. To match a view predicate fv of the form
v1 op v2, we first need to find mappings for both XPS
nodes v1 and v2. Given a match matrix that contains
all node mappings for v1 and v2, we may need to prune
some of these mappings if there is no query expression
filter that implies fv. In other words, the query has to
contain a matching filter that is at least as restrictive.

Once we construct the match matrix, we analyze
each intradocument join filter fv = v1 op v2 in the
view.

If there is no query predicate fq = q1 op q2 that
implies fv, such that v1 maps to q1 and v2 maps to
q2, we prune (i.e. set matrix cell to false) all node
mappings that involve v1 or v2.

Finally, we clean-up the matrix, by repeating the
following steps until no more modifications can be
made.

• Remove all dangling edges for which either source
or target matrix cell is not set to true.

• Remove orphan node matches, i.e., matrix cells
with value true that do not have at least one in-
coming edge, are set to false.

We test that the resulting matrix is valid (i.e. en-
codes at least one tree mapping) by a single bottom
up traversal of the view tree. An XPS node is valid,
if its row in the matrix contains at least one true cell,
and all its children are valid. An OR node is valid if
at least one of its children is valid. An AND node is
valid if all its children are valid. A matrix is valid, if
the root of the view tree is valid.

EXAMPLE 3.4 Consider a view that lists all
employees with Christmas bonuses no less than
their salaries: V = //employee[salary ≤
bonus[christmas]], and an XPath expression that
asks for employees that have salaries, Christmas
bonuses and are managers of employees whose Christ-
mas bonuses are equal to their salaries: Q =
//employee[salary and bonus/cristmas]/employee

66

T

XPS13

/salary

T

XPS16

/empl

T

XPS14

/bonus

T
XPS4

/bonus

TTXPS4

/cristmas

XPS15

/cristms

XPS15

/cristms

T
XPS3

/salary

TXPS2

//employee

TXPS1

/root

XPS14

/bonus

XPS13

/salary

XPS12

//empl

XPS11

rootV
E

Figure 8: Match matrix for XPS trees of Figure 7 and
its pruning.

[salary = bonus[christmas]]. The XPS trees of these
expressions are shown in Figure 7.

Intuitively, employee node in the view can map
to either of the two employee nodes in the query.
However, the first mapping (XPS2(//employee) →
XPS12(//employee)) is not valid because the in-
tradocument join [salary3 ≤ bonus4] is not implied
by any query filter (there is no filter involving
XPS13(/salary) and XPS14(/bonus)). Thus,
node mappings (XPS3(/salary), XPS13(/salary))
and (XPS4(/bonus), XPS14(/bonus)) are
pruned from the matrix. The node mappings
(XPS2(//employee), XPS12(//employee)) and
(XPS5(/cristmas), XPS15(/cristmas)) are removed
from the matrix by the clean-up phase that eliminates
dangling DAG edges.

The second mapping (XPS2(//employee) →
XPS12(//employee)) is valid, because the query pred-
icate bonus = salary is more restrictive than salary ≤
bonus, and hence implies the view predicate.

Figure 8 shows match matrix for this example.
Node mappings removed by pruning are crossed with
an “X”. Circled portion of the match is removed by
the clean-up phase. 2

3.6 Complexity of the Algorithm
Let us, first, consider space complexity of the algo-
rithm. The size of the match matrix is O(|V | ∗ |Q|),
where |V | and |Q| are the number of XPS nodes in the
view and query expressions respectively. Each matrix
cell can have at most |Q| incoming edges (by construc-
tion an edge (i, j) → (l, k) may exist only if vi is the
parent of vl). Thus the number of edges in the DAG
is O(|V | ∗ |Q|2).

The cost of constructing the matrix is also polyno-
mial. The matchStep function has only |V | ∗ |Q| dis-
tinct sets of parameters. By definition of a match ma-
trix, the same pair of nodes cannot be matched more
than once. In the worst case (rule 1.3) a function call
may expand into |Q| function calls. Thus the algo-
rithm runs in O(|V | ∗ |Q|2) time.

The cost of pruning the matrix is a product of size
of the matrix and the number of predicates extracted

from V and Q, which is O(|V |2∗|Q|3). Note that pred-
icate subsumption (fq → fv) can be checked in con-
stant time, since fq and fv can only contain compari-
son operators: Disjunction or conjunction are handled
by normalization and the matching algorithm, and no
negation is allowed.

4 Matching Framework
The previous section defines matching of XPS view
and query trees. In this section we exploit the re-
sulting matches in a framework for rewriting XPath
expressions using materialized XPath views.

When a view does not contain the exact results of
an XPath query, we need to compensate, by applying
some computation to the content of the view. This
extra computation, called compensation, depends on
what information is stored in the view.

Recall that a view expression extraction point is
marked with one or more of four types: reference,
copy, path and data. Thus a view is a relation with
one attribute for each extraction type. To express
compensation we use a variant of a relational alge-
bra which consists of “select”, “project” and “inter-
section” operators. These operators are extended to
handle XML type. The select operator allows any
XML comparison on data extraction type, any XPath
expression on reference and copy extractions, and a
new match path operation, denoted ∼, on path ex-
tractions. We do not elaborate on the details of the
algebra due to lack of space.

We construct compensation expressions by a two
step process. First, we take a copy of the query XPS
tree and relax it, i.e., eliminate conditions that are
guaranteed to be satisfied given the view definition.
For example, given V = //a[@b] and Q = //a[@b∧@c],
the relaxed expression doesn’t need to include a [@b]
predicate, since it is implied by the view. Second, we
optimize the relaxed XPS tree and produce a compen-
sation algebraic expression that fully utilizes informa-
tion stored in the view. Since different extraction types
may have the same information there may be multiple
equivalent compensation expressions. We must chose
amongst the alternatives.

In Sections 4.1 and 4.2 we describe compensation
construction for a single mapping case. I.e. a single
view whose extraction point maps to exactly one query
node. We’ll generalize the compensation for the case
of multiple views and mappings in Section 4.3.

4.1 Eliminating unnecessary conditions
At this stage, a copy of the query XPS tree is relaxed,
i.e. made less restrictive. We consider three possible
types of XPS tree relaxation: removing a filter, replac-
ing a name test with a *, and eliminating a step. The
relaxed query produces the same result as the original
query, when applied to the result of the view expres-
sion.

67

Notice that a relaxed query is always simpler than
the original. We do not consider relaxations that com-
plicate query processing, e.g. replacing child axis with
descendant.

First, we identify a compensation root node, i.e., an
XPS node in the query tree, that was mapped by the
view extraction point. In this section we assume that
the compensation root is unique. We will relax this
assumption in Section 4.3.

The relaxation starts by constructing a Q′ expres-
sion that is equivalent to the query Q, but starts at
the compensation root. This is achieved by moving
all XPS ancestors of the compensation root into it’s
predicate and reversing their axes. I.e. a “child” axis
becomes “parent” and “descendant” axis is changed
into “ancestor”. For example, consider a query Q =
//a[b]/c[d]//e[f]/g. If node e is the compensation
root, we transform the query into:
Q′ = self :: e[f ∧ ancestor :: c[d∧ parent :: a[b]]]/g. If
the compensation root is inside an intradocument join
predicate, the new path expression starts with an up-
ward traversal to the first XPS node outside of all such
predicates, and then continues as if that node was the
compensation root. For example, Q = //a[b = c[d]]/e,
where d is the compensation root, translates into
Q′ = self :: d/parent :: c/parent :: a[b = c[d]]/e. This
Q′ start with upward traversal to the a node, which is
the first XPS node outside the equality predicate.

While constructing the Q′ expression we also trans-
form the predicate of the new root node. All next
steps inside the predicate are converted into an equiv-
alent predicate step. E.g. a[b[c]/d] is normalized into
a[b[c ∧ d]].

Next, we construct a V ′ expression that is equiva-
lent to the view V , but starts at the view extraction
point. This process is identical to Q′ construction, fur-
ther simplified by the fact that the extraction point,
by definition, cannot occur in a predicate.

A “relaxed” query Qr is obtained from Q′ by the
algorithm of Figure 9. The algorithm compares root
node predicates of Q′ and V ′ and eliminates all con-
juncts of the Q′ predicate, such that there is exactly
the same conjunct in the predicate of V ′. If the root of
Q′ or V ′ is not an AND node, we say that the entire
predicate is a single conjunct.

4.2 Compensation Optimization
The result of query relaxation, Qr, could be used as a
compensation expression if reference extraction type
is available. However, following the reference to the
data storage may be significantly more expensive than
using data stored directly with the view. Thus, it is
desirable to use other extraction types in the compen-
sation expression. We decompose Qr into one or more
expressions, one per available extraction type, using
the following rules.

1. If data extraction is available, it is used to answer

RelaxQuery(q,v)
copy Qr = Q′;
call RelaxQueryRec(Qr.root,V ′.root);
return Qr;

RelaxQueryRec(q,v)
if (q.axis 6= v.axis) ∨

(q.axis = “descendant” ∧ q.name 6= v.name)
exit;

if (q.axis = “parent” ∧ q.name = v.name)
set q.name = “*”;

foreach qc in conjuncts of q.pred do
foreach vc in conjuncts of v.pred do

call RelaxQueryReq(qc,vc);
// If the recursive calls removed the entire predicate,
// and there is no next step, this step can be
removed
if (q.pred==null ∧ q.next==null)

remove q from Qr;

Figure 9: Algorithm to eliminate unnecessary query
conditions.

any local predicate on the compensation root.

2. If path is available, it provides information about
labels of ancestors of the compensation root.

3. If copy is available, use it if it can answer the
portion of Qr, not covered by data and path.

4. If reference is available, it is used to answer all
query conditions not covered by other extractions.

The compensation construction algorithm applies
each rule in turn and marks nodes of the Qr XPS tree
that were covered by each extraction. Rules 3 and 4
construct an expression from all unmarked nodes in
Qr and execute it against the view or data storage
respectively.

EXAMPLE 4.1 A view V = //a with
copy, data, and path extractions can answer a
query Q = /b/a[. > 0]/c utilizing only informa-
tion stored in the view, without accessing the
data storage. The relaxed query in this case is
Qr = self :: ∗[. > 0 ∧ parent :: b[parent :: root]]/c.
A [. > 0] filter on the compensation root is answered
using data extraction. Labels of the compensation
root’s parent and grandparent are checked using path.
The rest of the query (/c) is answered using the copy
information. Hence, QC is:

πcopy/self ::∗/c(σdata>0∧path∼/b/∗(V))

Symbol ∼ stands for match path operation that ap-
plies regular pattern matching between a linear XPath
expression derived from Qr and path extraction. Note
that we inverted parent :: b[parent :: root] into /b/∗.
2

68

If a view does not contain a reference extraction,
the compensation may not exist, even if the matching
algorithm was successful. The compensation construc-
tion algorithm detects these cases. If a reference ex-
traction is not available, every node in the Qr has to
be marked by the first 3 rules. Otherwise, the com-
pensation cannot be built, which means that the query
cannot be answered using the view.

EXAMPLE 4.2 The view V = //a[b]/c with ex-
traction copy cannot be used to answer query Q =
//a[b/d]/c/e. Even though there is an obvious match,
the view only contains copies of “c” nodes without
their original context. So we cannot check weather
sibling node “b” had a “d” child.

Our algorithm will detect this by constructing Qr

= self::*[parent::*[b/d]]/e. According to rule 3 copy
extraction can answer self :: ∗/e part of Qr, so nodes
self :: ∗ and /e of the Qr are marked as covered by
the compensation. Nodes /b and d remain unmarked.
Since Qr contains unmarked nodes, the compensation
cannot be constructed, and the view is not usable. 2

4.3 Utilizing Multiple Views
Up to now we only considered using a single view and
a single compensation root to construct compensa-
tion. However, a query can benefit from using mul-
tiple views. Similarly the same view could potentially
be used multiple times, if the view extraction point
mapped to multiple query nodes.

We construct a compensation plan using the fol-
lowing four-step algorithm, which takes as input a set
of compensation roots produced by matching one or
more views into the query.

1. Find an XPS node in the query tree, that is a low-
est common ancestor (LCA) of all compensation
roots.

2. For each compensation root qi , construct an
XPath expression Qi that starts at the compensa-
tion root and traverses upward to the LCA node.
The Qi includes local predicates of qi if the cor-
responding view contains data extraction.

3. Optimize each Qi, as if it was a compensation,
using the algorithm of Section 4.2; construct an
intersection of all Qi expressions.

4. Construct the compensation expression with
⋂

Qi

as the view and LCA as the compensation root.

Note that every view involved in the plan, has to
store node references to facilitate upward traversal
from the compensation roots to the LCA node.

EXAMPLE 4.3 Consider Q = //order[@date >
”Jan 1, 2004” and lineitem/@price > 100]/number,
and a view V = //@∗ with data, path, and reference

extractions. The view maps into the query in two dif-
ferent ways. The two compensation roots are @date
and @price. Thus the LCA node is //order.

In the second step we construct expressions Q1 and
Q2 which start at the compensation roots and nav-
igate to //order. Q1 = self :: attribute(date)[. >
”Jan 1, 2004”]/parent :: order. Q2 = self ::
attribute(price)[. > 100]/parent :: lineitem/parent ::
order. Both Q1 and Q2 contain local predicates on
the compensation roots, because V can answer these
predicates directly using the data extraction.

The Q1 and Q2 are optimized into the expressions
P1 and P2, shown below, using the three types of ex-
tractions stored in the view.

P1 = πreference/parent::∗(
σdata>”Jan 1,2004”∧path∼//order/@date(V))

P2 = πreference/parent::∗/parent::∗(
σdata>100∧path∼//order/lineitem/@price(V))

Finally, the compensation expression is computed
using //order (LCA) as the compensation root and
Q1 ∩Q2 as the view. The resulting plan is:

πself ::∗/number(P1 ∩ P2) 2

Note that the above algorithm provides only one
of many ways to construct compensation from mul-
tiple materialized views. For some queries and some
datasets it might make sense to apply a portion of the
compensation before the structural join on the LCA.
We are currently investigating cost-based optimization
of compensation expressions.

5 Experiments
We implemented the matching framework in the con-
text of XML database research prototype that is under
development at IBM Almaden Research Center.

In this section we report on the experimental evalu-
ation of the matching algorithm. We investigated scal-
ability of the algorithm for different classes of queries
and view definitions. We do not report compensation
construction time, since our algorithm always heuris-
tically picks one compensation to construct, which is
relatively cheap. We are currently considering a cost
based algorithm, that would construct and estimate
costs of various compensations.

Figure 10 shows the performance of the match-
ing algorithm for queries of the following structure:
Qn = /a[@a1 = 1 and @a2 = 2 and . . . and @an = n].
The query was matched against a view V = //@∗ re-
sulting in n matches. We varied the value of n from
4 to 64. The bars show the relative3 time it took to
do predicate normalization and matrix construction
(matching) steps.

Both predicate normalization and matrix construc-
tion time grows linearly with the size of the query. The

3The matching and predicate normalization time is reported
relative to matching time for the query and view of size one

69

1

10

100

Ti
m

e

4 8 16 32 64

Number of Matches

Predicate Normalization Time Matching Time

Figure 10: Matching algorithm performance for differ-
ent sized queries with a single view.

normalization step takes more time since it requires
memory allocation to create filter lists and other sup-
porting structures.

1

10

100

1000

Ti
m

e

1 4 16 64 256

Number of Views

Predicate Normalization Time Matching Time

Figure 11: Matching algorithm performance for the
same query with a different number of views.

Figure 11 shows that (relative) matching time is
a linear function of the number of views defined on
the collection of documents that is being queried. For
this experiment we used the smallest query expres-
sion of the previous experiment: Q4 = /a[@a1 =
1 and @a2 = 2 and @a3 = 3 and @a4 = 4]. The view
definitions where of the form //@ak, where 1 ≤ k ≤ 4,
so that there was exactly one mapping from each view
into the query. Notice that the normalization time
plays a much smaller role now, since we normalize the
query expression only once.

4
8

16
32

64
1

4

16

64
256

0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 C

om
pi

la
tio

n
Ti

m
e

Query Size

Figure 12: The sum of predicate normalization and
matching time as a fraction of total compilation time
under various query sizes and number of views.

Figure 12 shows matching time (including predicate
normalization), as a fraction of the total query compi-

lation time. The matching time grows linearly in the
size of the query and number of views, while the total
compiler time grows slower. As a result, the share of
the matching algorithm in the total query compilation
time increases from 4% in the lower left corner to 48%
in the upper right. Note that 64 local predicates may
be unrealistically large for a query. It is also unlikely
that 256 views are defined over a single document col-
lection. However, some applications do require a large
number of views. To address this situation, we are
currently exploring pre-filtering techniques that would
avoid matching irrelevant views.

1

10

100

Ti
m

e

4 8 16 32

Query Depth

Predicate Normalization Time Matching Time

Figure 13: Matching time in case of an exponential
number of mappings.

Figure 13 reports the matching algorithm perfor-
mance for the combinatorial case discussed in Sec-
tion 3.3, where the match matrix encodes an expo-
nential number of tree mappings. For this experi-
ment the view definition was V = //a//a//@∗ and the
queries were of the form Qm = /a[@a1 = 1]/a[@a2 =
2]/ . . . /a[@am = m] resulting in 2 ∗ Cm

4 possible tree
mappings. Our matching algorithm constructs a sin-
gle match matrix that encodes all of these mappings.
The matching time depends almost linearly on the pa-
rameter m.

In summary, the overhead of matching for typical
queries is not significant. The matching time grows
linearly with the number of views defined on a collec-
tion. Both predicate normalization and matching time
grows almost linearly with the size of the query.

6 Related Work
The problem of rewriting queries using materialized
views has been studied extensively in the relational
setting [2, 8, 6, 18]. Our XPath matching and com-
pensation algorithms complement this previous work
with support for XPath queries.

XPath query containment is a necessary condi-
tion for using materialized views, and has recently
been studied in [4, 10, 12]. Miklau and Suciu [10]
showed that for a subset of XPath containing de-
scendant edges, wildcard tests, and branching, de-
noted XP {//,∗,[]}, query containment is co-NP com-
plete. Neven and Schwentick [12] showed that adding
disjunction to the problem of XPath containment does
not increase computational complexity, but did not

70

provide any algorithms for deciding the containment.
They also proved that even with a very simple form of
negation, the problem becomes undecidable.

Miklau and Suciu [10] outline an incomplete, but
sound and efficient algorithm based on tree mappings,
which is able to find containment in vast majority of
cases. Our matching algorithm is also based on tree
mappings, but considers a richer subset of XPath, in-
cluding comparison predicates, disjunction, and a full
set of axes. They also do not distinguish between next
steps and predicates in their XPath representation, as
they do not consider disjunctions or comparison pred-
icates.

To the best of our knowledge, the problem of com-
puting compensation to enable rewriting queries using
materialized XPath views is not addressed in the lit-
erature.

7 Conclusion
We presented a framework for utilizing materialized
XPath view in XML Query processing. Our tech-
niques are also applicable in the context of materi-
alized SQL/XML views which contain XML querying
functions, such as XMLQuery and XMLExists [15].
The problem of rewriting XML queries using material-
ized XPath views can be vital for efficient XML query
processing, as XML indexes can also be modeled as
materialized views.

We addressed two main problems to exploit materi-
alized XPath views: XPath query matching and com-
pensation construction. Our matching algorithm han-
dles a rich subset of XPath, including disjunctions and
value-based comparisons. We believe that value based
comparison predicates are vital to accelerate process-
ing of XML queries. This is based on the fact that
value based comparison predicates are in general more
selective than existential structural tests, and a B+-
tree index on typed data values might be exploited to
further speed up evaluation of such predicates. The
matching algorithm records all mappings which are
later used to construct compensation.

The algorithm has polynomial time complexity in
the size of the view and query. Moreover, the experi-
mental study shows that in most cases matching time
is actually linear in the size of the input.

We also provided algorithms to compute compen-
sation. We investigated exploiting different kinds of
extractions in compensation expressions and described
heuristics to exploit these extraction types.

In the future, we plan to investigate a cost-based
compensation construction, that will produce a num-
ber of compensation plans and chose the one based on
a cost estimate. Using this cost model, we also plan to
investigate algorithms to choose the most effective set
of materialized XPath views given a query workload.

We also plan to employ this framework in a larger
scope of rewriting XQuery using materialized XQuery
views.

References

[1] ISO/IEC 9075-14:2003. Information technology –
database languages – sql – part 14: Xml-related spec-
ifications (sql/xml).

[2] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views.
In Proceedings of ICDE, pages 190–200, 1995.

[3] B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjalta-
son, and M. Shadmon. A fast index for semistructured
data. In Proceedings of VLDB, pages 341–350, Roma,
Italy, 2001.

[4] A. Deutsch and V. Tannen. Containment and integrity
constraints for xpath. In Proceedings of KRDB, 2001.

[5] R. Goldman and J. Widom. Dataguides:enabling
query formulation and optimization in semistructured
databases. In Proceedings of VLDB, pages 436–445,
1997.

[6] J. Goldstein and P. Larson. Optimizing queries using
materialized views: A practical, scalable solution. In
Proceedings of SIGMOD, Santa Barbara, CA, 2001.

[7] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F.
Korth. Covering indexes for branching path queries.
In Proceedings of SIGMOD, 2002.

[8] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivas-
tava. Answering queries using views. In Proceedings
of PODS, pages 95–104, 1995.

[9] Quanzhong Li and Bongki Moon. Indexing and
querying xml data for regular path expressions. In
Proceedings of the 27th International Conference on
Very Large Databases (VLDB), pages 361–370, Roma,
Italy, September 2001.

[10] G. Miklau and D. Suciu. Containment and equivalence
for an xpath fragment. In Proceedings of PODS, pages
65–76, 2002.

[11] S. Nestorov, J. D. Ullman, J. L. Wiener, and S. S.
Chawathe. Representative objects: Concise represen-
tations of semistructured, hierarchial data. In Pro-
ceedings of ICDE, pages 79–90, 1997.

[12] F. Neven and T. Schwentick. Xpath containment in
the presence of disjunction, dtds and variables. In
Proceedings of ICDT, 2003.

[13] D. Olteanu, H. Meuss, T. Furche, and F. Bry. Xpath:
Looking forward. In Workshop on XML-Based Data
Management, 2002.

[14] F. Rizzolo and A. O. Mendelzon. Indexing xml data
with toxi. In Proceedings of WebDB, pages 49–54,
2001.

[15] SQL/XML. See http://www.sqlx.org.

[16] XML Path Language (XPath) Version 2.0,
November 2003. W3C Working Draft, See
http://www.w3.org/TR/xpath20.

[17] XQuery 1.0: An XML Query Language,
November 2003. W3C Working Draft, See
http://www.w3.org/TR/xquery.

[18] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pira-
hesh, and M. Urata. Answering complex sql queries
using automatic summary tables. In Proceedings of
SIGMOD, pages 105–116, 2000.

71

