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Abstract

We introduce an auditing framework for determin-
ing whether a database system is adhering to its
data disclosure policies. Users formulate audit ex-
pressions to specify the (sensitive) data subject to
disclosure review. An audit component accepts
audit expressions and returns all queries (deemed
“suspicious”) that accessed the specified data dur-
ing their execution.

The overhead of our approach on query processing
is small, involving primarily the logging of each
query string along with other minor annotations.
Database triggers are used to capture updates in
a backlog database. At the time of audit, a static
analysis phase selects a subset of logged queries
for further analysis. These queries are combined
and transformed into an SQL audit query, which
when run against the backlog database, identifies
the suspicious queries efficiently and precisely.

We describe the algorithms and data structures
used in a DB2-based implementation of this
framework. Experimental results reinforce our de-
sign choices and show the practicality of the ap-
proach.

1 Introduction

The requirement for responsibly managing privacy sensi-
tive data is being mandated internationally through legis-
lations and guidelines such as the United States Fair In-
formation Practices Act, the European Union Privacy Di-
rective, the Canadian Standard Association’s Model Code
for the Protection of Personal Information, the Australian
Privacy Amendment Act, the Japanese Personal Informa-
tion Protection Law, and others. A vision for a Hippocratic
database [2] proposes ten privacy principles for managing
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private data responsibly. A vital principle among these is
compliance, which requires the database to verify that it ad-
heres to its declared data disclosure policy.

Consider Alice who gets a blood test done at Healthco,
a company whose privacy policy stipulates that it does not
release patient data to external parties without the patient’s
consent. After some time, Alice starts receiving advertise-
ments for an over-the-counter diabetes test. She suspects
that Healthco might have released the information that she
is at risk of developing diabetes. The United States Health
Insurance Portability and Accountability Act (HIPAA) em-
powers Alice to demand from Healthco the name of ev-
ery entity to whom Healthco has disclosed her informa-
tion. As another example, consider Bob who consented that
Healthco can provide his medical data to its affiliates for
the purposes of research, provided his personally identifi-
able information was excluded. Later on, Bob could ask
Healthco to show that they indeed did exclude his name,
social security number, and address when they provided
his medical record to the Cardio Institute. The demand for
demonstrating compliance need not only arise from an ex-
ternally initiated complaint — a company may institute pe-
riodic internal audits to proactively guard against potential
exposures.

One approach to verifying that a database adheres to its
disclosure policies might be to support data disclosure au-
diting by physically logging the results of each query. Prob-
lems with this approach include the following:

e itimposes a substantial overhead on normal query pro-
cessing, particularly for queries that produce many re-
sults, and

e the actual disclosure auditing it supports is limited,
since data disclosed by a query is not necessarily re-
flected by its output.

As an example of the limitations on disclosure audit-
ing, consider P3P [5], which allows individuals to specify
whether an enterprise can use their data in an aggregation.
Verifying that database accesses have been compliant with
such user preferences is not possible given only a log of ag-
gregated results. To address this issue, one might instead
consider logging the tuples “read” by a query during its ex-
ecution instead of its output. However, determining which
tuples accessed during query processing were actually dis-
closed is non-trivial. In addition, such a change dramati-
cally increases logging overhead.
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1.1 Our Contribution

We propose a system that can be used to audit whether the
database system executed a query in the past that accessed
the specified data. The ideal system should have the follow-
ing properties:
e Non-disruptive: The system should put minimal bur-
den on normal query processing.

e Fast and precise: The system should be able to
quickly and precisely identify all the queries that ac-
cessed the specified data.

e Fine-grained: It should be possible to audit even a
single field of a specific record.

e Convenient: The language for specifying data of in-
terest should be intuitive and user friendly.

The proposed audit system satisfies the above desider-
ata.  Figure 1 shows the overall architecture of our sys-
tem. During normal operation, the text of every query pro-
cessed by the database system is logged along with annota-
tions such as the time when the query was executed, the user
submitting the query, and the query’s purpose. The system
uses database triggers to capture and record all updates to
base tables in backlog tables for recovering the state of the
database at any past point in time. Read queries, which are
usually predominant, do not write any tuple to the backlog
database.

To perform an audit, the auditor formulates an audit ex-
pression that declaratively specifies the data of interest. Au-
dit expressions are designed to be identical to the SQL
queries, allowing audits to be performed at the level of
an individual cell of a table. The audit expression is pro-
cessed by the audit query generator, which first performs
a static analysis of the expression to select a subset of
logged queries that could potentially disclose the speci-
fied information. It then combines and transforms the se-
lected queries into a single audit query by augmenting them
with additional predicates derived from the audit expres-
sion. This audit query, expressed in standard SQL, when
run against the backlog database yields the precise set of
logged queries that accessed the designated data. Indices
on the backlog tables make the execution of the audit query
fast.
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1.2 Assumptions

e There are subtle ways in which the combination of the
results of a series of queries may reveal certain in-
formation. For example, the statistical database lit-
erature [1] discusses how individual information can
be deduced by running several aggregate queries and
the database security literature [3] shows how covert
channels can be used to leak information. We limit
ourselves to the problem of determining if the spec-
ified data was disclosed by a single query when that
query is considered in isolation. We also assume that
the queries do not use outside knowledge to deduce
information without detection.

e The SQL queries we consider comprise a single select
clause. A large class of queries (including those con-
taining existential subqueries) can be converted into
this form [12]. Specifically, we consider queries con-
taining selection, projection (including distinct), rela-
tional join, and aggregation (including having) opera-
tions.

1.3 Paper Layout

The rest of the paper is organized as follows. Section 2 pro-
vides the syntax of an audit expression. We then propose
the concept of an indispensable tuple, which in turn is used
to identify suspicious queries with respect to an audit ex-
pression. Section 3 describes the system structures needed
to support the proposed auditing capability. Specifically,
we discuss the use of triggers to implement recovery of past
database states. We also provide temporal extensions used
to support the execution of an audit query, and give details
of the query log. Section 4 states the algorithm for gener-
ating the audit query from an audit expression. Section 5
presents performance results, Section 6 discusses related
work, and Section 7 concludes with a summary and direc-
tions for future work.

2 Definitions

We have a database D, which is a collection of base tables.
We denote the scheme of table T as T(Co,Cq,...,Cm) and
use t.C to refer to the value of the field C in tuplet. We will
use the following schema in our examples:

Customer (cid, name, address, phone, zip, contact)

Treatment (pcid, date, rcid, did, disease, duration)
Doctor (did, name)

The primary keys have been underlined. A customer can
be a patient, someone accepting financial responsibility for
a patient’s treatment, or an emergency contact. The Treat-
ment table uses pcid to identify the patient receiving the
treatment and uses rcid to identify the customer assuming
financial responsibility for the treatment (who could be the
same person as the patient). The date is the start date of the
treatment and duration reflects the length of the treatment.
Other column names are self-explanatory. To simplify ex-
position, we will assume that the database has referential
integrity and that no field value is null.



2.1 Audit Expressions

We propose to use expressions that are very close to SQL
queries to enable an auditor to conveniently specify the
queries of interest, termed suspicious queries.

Specifically, the proposed syntax of an audit expression
is identical to that of a select-project-join (SPJ) query with-
out any distinct in the select list, except that audit replaces
the key word select and the elements of the audit list are
restricted to be column names:

audit  audit list
from tablelist
where conditionlist

Let U be the cross product of all the base tables in the
database. The audit expression marks a set of cells in the
table . The marked cells belong to the columns in the au-
dit list for the tuples that satisfy the predicate in the where
clause. We are interested in finding those queries that access
all the marked cells in any of the tuples in . These are the
suspicious queries with respect to the audit expression.

Example 1 We want to audit if the disease information of
anyone living in the ZIP code 95120 was disclosed. Here is
the audit expression:

audit  disease
from  Customer c, Treatment t
where c.cid =t.pcid and c.zip = ‘95120’

This audit expression marks the cells corresponding to the
disease column of those tuples in the Customer x Treat-
ment table that have c.cid = t.pcid and c.zip = 95120. Any
query that accesses the disease column of any of these tu-
ples will be considered suspicious.

2.2 Informal Definitions

We introduce the notion of the indispensability of a tuple
and then use it to define suspicious queries.

Informal Definition 1 (Indispensable Tuple - ind(t, Q))
A tuple t € U is indispensable in the computation of a
query Q, if its omission makes a difference.

Informal Definition 2 (Candidate Query - cand(Q, A))

A query Q is a candidate query with respect to an audit
expression A, if Q accesses all the columns that A specifies
in its audit list.

Informal Definition 3 (Suspicious Query - susp(Q, A))
A candidate query Q is suspicious with respect to an audit
expression A, if Q and A share an indispensable tuple.

Example 2 Consider the audit expression A given in Ex-
ample 1 and the following query Q:

select address
from  Customer c, Treatment t
where c.cid =t.pcid and t.disease = ‘diabetes
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We see that Q is a candidate query with respect to A as it
accesses the disease column that A is auditing. Consider the
Customer x Treatment table. Clearly, tuples that match the
join condition and have diabetes in the disease column are
indispensable for Q. Similarly, tuples that match the join
condition and have 95120 as the zip code are indispensable
for A. Therefore Q will be deemed suspicious with respect
to A if there was some customer who lived in the ZIP code
95120 and was also treated for diabetes.

Example 3 Consider the query Q from Example 2 and the
following audit expression A:

audit  address
from  Customer c, Treatment t
where c.cid =t.pcid and t.disease = ‘ cancer’

Q will not be deemed suspicious with respect to A because
no tuple in Customer x Treatment can simultaneously sat-
isfy the predicates of Q and A. But how about Alice who
has both cancer and diabetes? Although Q discloses Alice’s
address, the fact that Alice has cancer is not relevant to the
query: Q only asks for people who have diabetes. In other
words, anyone looking at the output of the query will not
learn that Alice has cancer. Hence it is reasonable to not
consider the query to be suspicious. Note that all the tuples
of Customer x Treatment marked by A have cancer in the
disease column and Q does not access any one of them.

2.3 Formal Definitions

Let the query Q and audit expression A be of the form:
Q - (0rg(Tx R)) (1)
A ﬁ-COA(O-PA(TX‘S)) (2)

where 7, R, S are virtual tables of the database D, that is,
cross products of base tables:

T = TixTox...xTy
R = RixRox...xRnp
S = S1XxSyx...x Sk

The operator Ttis the multi-set projection operator that pre-
serves duplicates in the output (as opposed to the relational
projection operator 1t which eliminates duplicates). Note
that 7" is common to Q and A.

We denote by Cq the column names that appear any-
where in a query Q, and by Coq the column names appear-
ing in the select list of Q. Similarly, Coa denotes the column
names present in the audit list of an audit expression A. Pg
denotes the predicate of the query and Py is the predicate of
the audit expression. We refer to the tuples of any virtual
table as virtual tuples.

We now formalize the definition of indispensability, for
all classes of queries of interest. Specifically, we discuss (a)
SPJ queries, (b) queries with aggregation without having,
and (c) queries with aggregation and having.



23.1

Consider first a SPJ query that does not contain a distinct
in its select list. This case is the most important case on
which the rest of the cases will be based. For such queries,
the form of the query of Eq. (1) is specialized to:

Q =Tl (Or (T X R))- 3)

We can now formalize the definition of an indispensable
tuple for an SPJ query:

Indispensability - SPJ queries

Definition 1 (Indispensability - SPJ) A (virtual) tuplev €
T is indispensable for an SPJ query Q if the result of Q
changes when we delete v:

ind(v.Q) & Tieg(Ory (7 x R)) # Teg (Ory (7 — {¥}) x R)).

Theorem 1 A (virtual) tuple v € 7 of the SPJ query Q is
indispensable if and only if

Opo({V} x &) # 0.
Proof From Definition 1, we have
iNdwQ) & Ty (Ory(T X R)) # Ticg (O, (T~ {V}) x R)).
Since the projections Ttmaintain the duplicates, we have
ind(v,Q) & 0py(T xR)# 0ry((T-{V}) x R)
& Op(TxR)#0po(T x R) = Opy({V} x R)
& opp({vixR) #0. |

Queries with distinct in the select clause produce a
duplicate-free table. Such queries have the form Q =
Too(Oro(7 x R )). Let Q' be the SPJ query obtained from
the original query Q after removing distinct from the query
text. Then, we have the following definition:

Definition 2 (Indispensability - Distinct) A (virtual) tu-
ple v is indispensable for Q = Ty, (0ry(7 x R)) if and
only if it is indispensable for Q' = Ty, (Opy (7 x R)).

The motivation for this definition will become appar-
ent after the upcoming discussion of aggregation queries.
Queries with distinct can be viewed as a special case of ag-
gregation, the aggregation function being the first tuple in a
group.

We can state succinctly:

Observation 1 Duplicate elimination does not change the
set of indispensable tuples for an SPJ query.

2.3.2

The definition of indispensability of a tuple for an aggrega-
tion query requires extra care. Consider a query that com-
putes average salary per department. If Alice happens to
have exactly the average salary of her department and her
tuple is omitted, the query result will not be affected. How-
ever, it will be wrong to treat Alice’s tuple as dispensable
because the privacy systems such as P3P allow individuals
to opt out of the use of their values in the computation of an
aggregation.

Indispensability - Aggregation without having
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The form of the query of Eq. (1) for an aggregation query
without a having clause is specialized to:

Q =gby Yagg(Oro(7 x R))). 4)

where gby are the grouping columns and agg represent ag-
gregations like avg(duration), count(disease).

Consider the query Q' that is a version of Q, but without
aggregations. That is, Q' has exactly the same from and
where clauses, and a select clause with the same columns
as Q, but without the aggregation functions. Note that the
columns used in agg (e.g. duration, disease) are included in
the select list of Q'.

Definition 3 (Indispensability - Aggregation) A (virtual)
tuple v is indispensable for Q if and only if it is indispens-
able for the aggregate-free version Q'.

Example 4 Consider the following query that outputs av-
erage duration of diabetes treatment by doctor:

select  name, avg(duration)
from Doctor d, Treatment t
where d.did = t.did and t.disease = ‘diabetes

group by name

Indispensability of a tuple t in the the above query is de-
termined by considering the indispensability of t inthe fol-
lowing SPJ query:

select name, duration
from Doctor d, Treatment t
where d.did = t.did and t.disease = ‘diabetes

We find that every Treatment tuple having diabetes in the
disease field is indispensable. Thus the fact that the duration
values of these tuples were used in computing the output is
not lost.

The following is immediate:

Observation 2 A tuple v is indispensable for Q =gp,
Yagg(Op, (T x R)) if and only if it is indispensable for

Q' =Ty (Or(T x R)).
233

We will use the query in following example to help with the
explanations.

Indispensability - Aggregation with having

Example 5 Our query is a modified version of the query
given in Example 4. It outputs average duration of diabetes
treatment, but only for those doctors for whom this average
is greater than 100 days:

select  name, avg(duration)
from Doctor d, Treatment t
where d.did = t.did and t.disease = ‘diabetes

group by name
having avg(duration) > 100

The general form of an aggregation query Q that includes
a having clause can be written as:

Q = 0py, (gbyYage(Or (7 x R))). ©)



Compared to Eq. (4), we now have an extra having pred-
icate Py (avg(duration) > 100 in Example 5). Any group
that does not satisfy this predicate is not included in the re-
sult of Q, which implies that any tuple belonging to a group
that gets filtered out by Py is dispensable.

Let Q' be the having-free version of Q, obtained by sim-
ply removing the having clause from Q.

Definition 4 (Indispensability - Aggregation with having)
A (virtual) tuple v is indispensable for Q if and only if it is
indispensable for Q' and it belongs to a group that satisfies
the having predicate Py.

We will again recast indispensability in terms of an SPJ
query. Define a group table G as:

G =gby Yagg(Oro(7 X R))). (6)

For our example query, G will have two columns: name and

avg(duration). It will have as many tuples as there are doc-

tors who treat diabetes. Every tuple will have the average

duration of diabetes treatment for the corresponding doctor.
Next form the following table:

QG = 0p.((0r, (T x R)) x G) U]

where Pg is the natural join condition on the group-by
columns, gby. We have augmented the result tuples of the
having-free version of Q with the corresponding group val-
ues. The query Q can now be computed from op, (QG).

It follows then

Observation 3 A (virtual) tuple v € T is indispensable for
query Q with aggregation and having if and only if v is in-
dispensable for the SPJ query

g (07 (Op (0 (7 X & X G))). ®)

2.3.4 Suspicious Queries

We first define a maximal virtual tuple for queries Q1 and

Q2.

Definition 5 (Maximal Virtual Tuple) A tuple v is a max-
imal virtual tuple for queries Q1 and Q2, if it belongs to the
cross product of common tables in their from clauses.

We can now formalize the definitions of candidate and
suspicious queries.

Definition 6 (Candidate Query) A query Q is a candidate
query with respect to the audit expression A if and only if

CQ D Coa.

Definition 7 (Suspicious Query) A candidate query Q is
suspicious with respect to audit expression A if they share
an indispensable maximal virtual tuple v, that is:

susp(Q,A) < 3Ive T st ind(v,Q) A ind(v,A)

where 7 = Ty x T, x ... x Ty is the cross product of the
common tables in Q and A.
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3 System Structures

We now discuss the system structures needed to handle au-
dits in the presence of updates to the database.

3.1 Full Audit Expression

The audit expression is prepended with an additional dur-
ing clause that specifies the time period of interest:

during start-timeto end-time
audit audit-list

Only if a query has accessed the data of concern during the
specified time period is the query deemed suspicious.

Privacy policies specify who is allowed to receive what
information and for what purpose [2, 5]. An audit expres-
sion can use the otherthan clause to specify the purpose-
recipient pairs to whom the data disclosure does not consti-
tute non-compliance:

otherthan purpose-recipient pairs
during  start-timeto end-time
audit audit-list

3.2 Query Log

As shown in Figure 1, the audit system maintains a log of
past queries executed over the database. The query log is
used during the static analysis to limit the set of logged
queries that are transformed into an audit query.

Our prototype implementation has a thin middleware
that lies between the application and the database engine.
This middleware has been implemented as an extension to
the JDBC driver. The middleware intercepts queries and
writes the query string and associated annotations to the
log. We assume the isolation level of serializable [8] and
log only queries of committed transactions.

The annotations include the timestamp of when the
query finished, the ID of the user issuing the query, and the
purpose and the recipient information extracted from the
context of the application [10, 11] in which the query was
embedded. The query log is maintained as a table.

Note that some database systems (e.g., DB2) provide the
facility for logging incoming queries. In such cases, this
capability can be extended to log additional information re-
quired for auditing.

3.3 Temporal Extensions

We determine if a candidate query Q accessed the data spec-
ified in an audit expression by selectively playing back his-
tory. We thus need to recreate the state of the database as it
existed at the time Q was executed. A backlog database [9]
is eminently suited for this purpose.

We describe two organizations for the backlog database:
time stamped and interval stamped. In both the organiza-
tions, a backlog table TP is created for every table T in the
database. TP records all updates to T. We will assume that
every table T has a primary key column P; the system can
create an internally generated key column otherwise.



3.3.1 Time stamped Organization

This organization is based on the ideas presented in [9].
Aside from all columns in T, a tuple in TP has two ad-
ditional columns: TS that stores the time when a tuple is
inserted into TP, and OP that takes one of the values from
{‘insert’, ‘delete’, ‘update’}. For every table, three triggers
are created to capture updates. An insert trigger responds to
inserts in table T by inserting a tuple with identical values
into TP and setting its OP column to ‘insert’. An update
trigger responds to updates to T by inserting a tuple into
T having the after values of the tuple in T and setting its
OP columnto ‘update’. A delete trigger responds to deletes
in T by inserting into TP the value of the tuple before the
delete operation and setting its OP column to ‘delete’. In
all the three cases, the value of the TS column for the new
tuple is set to the time of the operation.

To recover the state of T at time T, we need to generate
the “snapshot” of T at time 1. This is achieved by defining
a view TT over the backlog table TP:

T = Tpe,. c,({t]

teTP A LTS T A t.OP# “delete’ A
AreTPsttP=rP A rTS<T A rL.TS>t.TS}).

The scheme for TT is identical to T. T contains at most
one tuple from TP for every distinct primary key value P.
Among a group of tuples in T® having an identical primary
key value, the selected tuplet is the one that was created at
or before time T, is not a deleted tuple, and there is no other
tuple r having the same primary key value that was created
at or before time T but whose creation time is later than that
of t.

3.3.2

In this organization, the end time (TE) of a tuple is explicitly
stored in addition to the start time (TS). Thus, the combina-
tion of TS and TE for a tuple gives the time period during
which the tuple was alive. A null value of TE is treated as
current time. The operation field (OP) is no longer neces-
sary.

When a new tuple t is inserted into T, the insert trigger
also adds t to TP, setting its TE column to null. When a
tuplet € T is updated, the update trigger searches for the
tuple b € TP such thatb.P = t.P Ab.TE = null and sets b. TE
to the current time. Additionally, the trigger inserts a copy
of t into T? with updated values and its TE column set to
null. When a tuple t is deleted from T, the delete trigger
searches for b € TP such that b.P =t.P Ab.TE = null and
sets b.TE to the current time.

Interval stamped Organization

3.3.3

We propose two strategies for indexing a backlog table T °:

1. Eager: Index is kept fresh and updated every time TP
is updated.

2. Lazy: Index is created afresh at the time of audit. Oth-
erwise, TP is kept unindexed.

Indexing
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The advantage of the eager strategy is that there is no la-
tency at the time of audit due to the time needed to build the
index. However, an update during normal query processing
is burdened with the additional overhead of updating the
index. The trade-off is reversed in the lazy strategy.

We can also choose which columns are indexed. We can
index the primary key. We can also create a composite index
consisting of the primary key concatenated with the times-
tamp. We explore the performance trade-offs in managing
backlog tables in Section 5.

4 Algorithms

The audit query is generated in two steps:

1. Static Analysis: Select candidate queries (i.e., poten-
tially suspicious queries) from the query log. (Our use
of the term “candidate query” in this section refers to a
query that passes the static analysis. All such queries
are also candidate queries according to the formal def-
inition.)

2. Audit Query Generation: Augment every candidate
query with information from the audit expression and
combine them into an audit query that identifies the
suspicious queries.

4.1 Static Analysis

For a given audit expression A, some queries will be judged
as non-candidates, and excluded immediately. We use four
static tests, explained next. The query log is indexed to
make these tests fast.

The first is by comparing the attribute names: with audit
columns Coa, we simply check whether Co O Coa. The
second test checks whether the timestamp of query Q is out
of range with respect to the audit interval in the during
clause of A. The third test checks whether the purpose-
recipient pair of Q matches any of the purpose-recipient
pairs specified in the otherthan clause of A. Finally, we
can eliminate some queries by checking for contradictions
between the predicates Pg and Pa, such as Pq = (age > 40)
and Pa = (age < 20). This class of tests is an instance of
the constraint satisfaction problem, for which many solu-
tion techniques are available [6].

4.2 Audit Query Generation

At the end of static analysis, we have a set of candidate
queries Q = {Q1,...,Qn} that are potentially suspicious
with respect to the audit expression A. \We augment every
Q; with information in A, producing another query AQ; de-
fined against the view of the backlog database at time Tj,
where T; is the timestamp of Q; as recorded in the query
log. If we were to execute these AQ; queries, those with
non-empty results will comprise the exact set of suspicious
queries. However, to increase opportunities for optimiza-
tion, all AQ; are combined into one audit query AQ whose
output is a set of query identifiers corresponding to those
AQ;j that yield non-empty results. This audit query is the
one that is executed against the backlog database.



/I Qisasimpleselection query over asingletable T, executed at time T.
/I Alis an audit expression over the sametable T.

1) create an empty QGM for the audit query AQ

2) add Qto AQ

3) add Ato AQ

4) rewrite A to range over theresult of Q instead of T
5) replace A's audit list with id(Q)

6) replace T with theview T

Figure 2: Audit query generation for simple selections

To simplify exposition, we will assume henceforth that
Q has only one query Q and discuss how it is transformed
into an audit query AQ. Our implementation makes use of
the Query Graph Model (QGM) to manipulate Q and A to
generate AQ.! To avoid QGM diagrams from becoming un-
wieldy, we will abbreviate column names. For our example
schema reproduced below, the abbreviated column names
used in the figures are indicated in bold letters:

Customer (cid, name, address, phone, zip, contact)
Treatment (pcid, rcid, did, disease, duration, date)
Doctor (did, name)

4.3 Simple Selections

Consider first the simple case of a candidate query Q in-
volving a selection over a single base table T and the audit
expression A over the same table. This case is a special
case of the upcoming SPJ queries. However, we present it
for pedagogical reasons.

Lemmal Let T be a base table of our database D. Let
A = T, (0p,(T)) be an audit expression and let Q =
Tie, (0ro(T)) be a candidate query. Q is suspicious with
respect to A if and only if g, (0r,(T)) # 0.

Proof From the upcoming Theorem 2, by substituting T
for 7, and ignoring the non-existing ®_and S. |

Thus, given that query Q has passed the static anal-
ysis, we need to check whether the combined selection
0p, (0py(T)) is empty or not, which is what Figure 2 im-
plements using the QGM representation. We illustrate the
audit query generation algorithm using the following exam-

ple.

Example 6 Candidate query Q: Retrieve all customers in
ZIP code 95120.

select  *
from Customer
where  zip='95120'

Audit expression A: Find queries that have accessed Al-
ice’s name and address.

1QGM [12] isagraphical representation that captures the semantics of
queries and provides convenient data structures for transforming a query
into equivalent forms. QGM is composed of entities portrayed as boxes
and rel ationshipsamong entities portrayed aslines between boxes. Entities
can be operators such as table, select, group, union, etc. Lines between
operators represent quantifi ers that feed an operator by ranging over the
output of the other operator.
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c,nah,z o

Select :=
z ='95120’

Audit expression :=
n = ‘Alice’

Customer

(a) After Line 3 in Figure 2

o]

Audit expression:=
n = ‘Alice’

Select :=
z ='95120’

C1l

/

c,nah, zo

Select :=

ts <z and

op <> ‘delete’ and
not(C5)

Exists :=
Céd.ts<zand
C3.c=C4.cand
C4.ts > C3.ts

C3

View of Customer table at time ¢

c,n ah, zo,ts, op

Customer_backlog

N

(b) After Line6in Figure 2

Figure 3: QGM for Example 6 (simple selection)

audit name, address
from Customer
where  name=‘Alice

Figure 3(a) shows the state of the QGM graph after
Line 3 (Figure 2). A new QGM structure for the audit query
AQ has been created and both the candidate query Q and
the audit expression A have been added to AQ. Figure 3(b)
shows the state of QGM after Line 6. Line 4 has changed
the audit expression’s quantifier (range variable) C, from
ranging over the Customer table to ranging over the result
of the query Q. As part of this transformation, each col-
umn referenced by C, is changed to reference a column of
Q’s output. If a column referenced by C, is not in the out-
put of Q, it is propagated up from the Customer table to
be included in the Q’s select list. Line 5 replaces the audit
list with Q’s id: Q1. Finally, Line 6 replaces the Customer
table with a view of the Customer table at time T when Q



1) create an empty QGM for the audit query AQ
2) add Qto AQ
3) add Ato AQ

4) rewrite A to additionally range over the result of Q with quantifi er x
5) for each quantifi er r in AwhichisoveratableT asoin Q

6) substitute xin placeof r in A

7) replace A's audit list with id(Q)

8) replace every table T; referencedin AQ with T;T.

Figure 4: Audit query generation when both the candidate
query and the audit expression contain joins

completed.

4.4 SPJ Queries

Consider now the case when the candidate query as well as
the audit expression contain joins in the WHERE clauses.
The audit list may contain columns from multiple tables and
the join condition in the candidate query may be different
from the one in the audit expression.

Theorem 2 A candidate SPJ query Q = Tie, (0p, (7 x R)))

is suspicious with respect to an audit expression A =
T, (0r, (7 x 5)) if and only if
O'pA(O'pQ(T X R x 5)) ;é 0.
Proof According to our Definition 7, we have
susp(Q,A) & dme T st.ind(m Q) A ind(m,A)
& dmeT,re R,se Sst.
Po({mr}) A Pa({ms})
& dmeT,re R,se Sst.
{mr s} € op,(Op (T X R x 5))
= OPA(OPQ(‘TXRX.S)) #0. [ |
Figure 4 gives the algorithm. Note that an audit expres-
sion A may have multiple quantifiers, only some subset of
which may range over a table that also appears in query Q.
These are the only ones for which A is made to range over
the result of the query (Lines 5-6). For others, A continues

to range over the original tables. We illustrate the algorithm
using the following example.

Example 7 Candidate query Q: Find all diseases treated by
doctor Phil.

select T.disease
from Treatment T, Doctor D
where T.did = D.did and D.name = *Phil’

Audit expression A: Find queries that have disclosed the
diseases of Alice.

audit T.disease
from Customer C, Treatment T
where C.cid = T.pcid and C.name = ‘Alice’

Figure 5(a) shows the initial QGM (after Line 3) and
Figure 5(b) shows the final QGM (after Line 7). In the
final QGM, the audit expression ranges over the result of
the query and then joins the results with the Customer table
since Customer only appears in the audit expression.
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Ts Ts

select := audit expression :=
T.i=D.d and C.c=T.pand

D.m = ‘Phil’ C.n ="‘Alice’

p.r,i,s,ut

Treatment Doctor Customer

(a) After Line3inFigure 4

Q1
audit expression :=

C.c=X.p and
C.n = ‘Alice’

select :=

T.i=D.d and

D.m = ‘Phil’

T D
p,r,i,s,u,t‘ d,m‘

Treatment ‘ Doctor ‘ Customer

(b) After Line 7in Figure 4

Figure 5: QGM for Example 7 (join)

45 Aggregation

To determine if an aggregate query without a having clause
is suspicious, aggregate functions are simply removed along
with the group by clause. Columns previously referenced
by aggregate functions are added to the select list of the
query. The resulting SPJ query is then handled using the
algorithm given in Figure 4.

If the aggregate query, however, additionally contains a
having clause, the predicate therein might have eliminated
the data specified by the audit expression from the query
result. Simply removing the having clause can thus lead to
false positives. This limitationis overcome by the algorithm
given in Figure 6, which is based on the upcoming theorem.

Recall that the general form of such a query is given by
EQ. (5): Q = On, ( gbyYasa(0ry(7T x R)). By Eq. (6), the
group table G = gy Yagg(Oro (7 x R.)). As always, the audit
expression is A = Tic, (0p, (7 x S)).

Theorem 3 A candidate query Q with aggregation and
having is suspicious with respect to an audit expression A



/I The QGM of an aggregate query Q that
includeshaving is atriplet (Qs, Qg, Qn):

Il Qs isthe SPJ part of Q,
/I Qg contains aggregationsranging over Qs, and
I Qn isaselection over Qq representing having.

1) create an empty QGM for the audit query AQ

2) add Qto AQ

3) add Ato AQ

4) rewrite A to additionally range over the result of Qs with quantifi er x

5) for each quantifi er r in Awhichisover atableT alsoin Q
6) substitute xin placeof r in A

7) replace the audit list of Awith the grouping columnsof Qg
8) create anew empty select box B and add it to AQ

9) add Qp, Aasinputsto B

10)join inputs of B on grouping columnsfrom Q;, and A
11)replaceN(B) with id(Q)

12)replace every table T; referenced in AQ
with its backlog counterpart T.' at time T.

Figure 6: Audit query generation for an aggregate query
containing having

if and only if
O-PA(O-PH (O-PG(O-PQ(T X R X G x 5)))) #0. )

Proof From Observation 3, the query Q has the same in-
dispensable tuples as the SPJ query Q' below:

Q' =Ty (0, (Or, (Opg(T x & X G)))).

Then, from Theorem 2 we have that Q' is suspicious if and
only if Eq. (9) holds. |

An aggregate query with a having clause can be viewed
as consisting of three parts: Qs, Qqg, and Qp. The first part,
Qs, ignores grouping and aggregation and finds the tuples
qualifying the WHERE clause. Grouping and aggregations
are then applied to this result in Qq. Finally, any predicates
on groups are applied using a selection operator over the re-
sult of grouping and aggregation in Qn. A new select box is
created on Line 8 in Figure 6. This operator joins the tuples
emanating from Qy, with those from A to ensure that these
A tuples were not all filtered out by the having predicates
in Qp. We illustrate the algorithm with Example 8.

Example 8 Candidate query Q: Compute the average treat-
ment duration grouped by disease and the doctor per-
forming the treatment for treatments which were between
01/01/2001 and 31/12/2003 having a minimum duration <
100.

select D.name, T.disease, avg(T.duration)

from Doctor D, Treatment T

where T.date between ‘01/01/2001" and ‘31/12/2003’
and D.did = T.did

group by D.name, T.disease

having min (T.duration) < 100

Audit expression A: Find queries that have accessed the
disease and treatment duration of patients who have dia-
betes and live in ZIP code 95120.
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Qh

select :=
mu < 100

—

{ n,d,avg(u) as au, min(u) as mu ‘
Qg

group :=n,d ﬁ

Ts, T.u

audit expression :=
C.c=T.pand

C.z ='95120’ and
T.s = ‘diabetes’

D.n, T.d, T.u

select :=
T.t between '01/01/01" and '31/12/03’ and
D.d=T.i

Qs

p,r,i,s.u,t‘ c,n,a,h,z,o‘

Doctor

Treatment ‘ Customer ‘

(a) After Line3in Figure 6

[or]

select :=
B V1.m=V2.m and V1.s=V2.s

m, s, au

select :=
mu < 100

v

m,s,avg(u) as au, min(u) as mu ‘

group := audit expression :=
m, s C.c=X.pand

C.z ='95120" and
X.s = 'diabetes’

D.m, T.p, T.s, T.u

select :=
T.d between '01/01/01" and '31/12/03’
and D.d=T.i

d,m‘ p,r,i,s,u,t‘ c,n,a,h,z,o‘

Doctor ‘ Treatment ‘ Customer ‘

(b) After Line11in Figure 6

Figure 7: QGM for Example 8 (aggregation)

audit T.disease, T.duration
from Customer C, Treatment T
where C.cid = T.pcid and C.zip = ‘95120’

and T.disease = ‘diabetes’

The QGM for the candidate query Q in Example 8 in-
tegrated with the audit expression is shown in Figure 7(a).
Figure 7(b) shows the audit query. The select box B en-
sures that the groups formed by the grouping operator that
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Figure 8: Cost of maintaining backlog tables.

survived the having predicate match the audit expression’s
data.

5 Performance

This section presents the results of performance experi-
ments from a DB2 implementation of our auditing solu-
tion. Specifically, we study the overhead imposed on nor-
mal query processing, and the cost of conducting audits.

Experiments were performed on an IBM Intellistation
M Pro 6868 having an 800 MHz Pentium Il processor,
512 MB of memory, and a 16.9 GB disk drive, and run-
ning Windows 2000 Version 5.00.2195 service pack 4. The
same machine was used to host data as well as backlog ta-
bles and to run audits. The DBMS used was DB2 UDB
Version 7 with default settings. We would have liked to use
real-life query logs and data tables, but no such dataset was
available. We therefore performed our experiments on the
Supplier table of the TPC-H database [15], using synthetic
workload. The results below give the average warm perfor-
mance numbers.

We report results for time stamped as well as interval
stamped organizations of the backlog tables. We consider
three cases: no index, simple index on the supplier key
SKEY, and composite index on SKEY and start time TS. We
explore both eager and lazy strategies for updating indices.

We will write Supplier® to refer to the Supplier backlog
table.

5.1 Burden on Normal Query Processing

We performed the following experiment to study the over-
head of maintaining backlog tables. The Supplier table con-
tained 100,000 tuples and Supplier® started with a copy of
every Supplier tuple. An SQL update statement updated
every Supplier tuple, resulting in the creation of a new ver-
sion of every supplier in Supplier®. Forty nine such up-
date statements were executed, each adding 100,000 tuples
to Supplier® that finally ended up having fifty versions of
every supplier and a total of 5 million tuples. Indices of
Supplier® were updated eagerly.

The update operation on the Supplier table took 5.2
minutes to complete when performed unburdened with the
maintenance of Supplier?. This time essentially consists of
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sequentially reading the Supplier tuples and writing them
back after updating one of the values. Figure 8 shows the
total time taken by the successive update operations when
the additional time spent by the database system on firing
the update triggers and the resultant operations on Supplier®
was also included. In the performance graphs, TS (IS) de-
notes the time stamped (interval stamped) organization.

With the time stamped organization, the update trigger
simply adds a new tuple to Supplier® corresponding to ev-
ery updated data tuple. Therefore, when there isno index on
Supplier®, the overhead experienced by successive updates
remains fairly constant. When there is an index on SKEY,
the overhead is a bit larger due to additional index updates,
and this overhead increases a little for the later updates be-
cause the size of the index grows. The composite index on
SKEY and TS obviously has a somewhat larger overhead
than the simple index.

For equivalent operation with the interval stamped or-
ganization, the update trigger first locates the most recent
version of the tuple, updates its end time, and then adds a
new current tuple. Unfortunately, the cost of locating the
most recent version becomes prohibitively large when there
is no index; hence it is not shown in the figure. Even when
there is an index on SKEY, all the versions of a tuple need to
be brought into memory to select the most recent of them.
If different versions of a supplier do not remain clustered on
the same page (which we found to be the case even when we
had a clustered index on SKEY), the number of page faults
increases with the number of versions, resulting in a rapid
degradation of performance. Having the additional index
on TS does not help in cutting down the number of versions
that are examined before the most recent one is found. On
the other hand, the overhead increases somewhat due to ad-
ditional index updates and a larger index.

It is substantially faster (per tuple) to sequentially update
all the tuples of a table in DB2 than to update an individual
tuple. Thus, updating all the tuples of the Supplier table
with backlog maintenance using the time stamped organi-
zation is about 10 times slower than without maintenance.
We next performed another experiment in which only one
Supplier tuple was updated. Supplier? had 25 versions of
every tuple in this experiment (the average number of ver-
sions in the first experiment). The cost of an update to a
single tuple with backlog maintenance was now on average
3 times the cost of the same update without maintenance
when using the simple index, and 3.7 times when using the
composite index.

We note that in most of the installations, there are far
more read queries than update operations. Updates are often
batched and performed while the system is under a light
load. The read queries in our audit system do not incur any
overhead beyond logging the query string (which is anyway
done in many installations).

5.2 Eager vs. Lazy Indexing

Itis clear from the discussion in the previous section that the
lazy indexing is not a viable option for the interval stamped
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Figure 10: Execution time of an audit query

organization. However, the overhead of eagerly updating
the indices can be avoided in the time stamped organization
by building them as needed at the time of audit. Figure 9
shows the time needed to build indices from scratch with an
initial set of 100,000 suppliers in Supplier®, while increas-
ing the number of versions of each supplier. The results are
shown both for a simple index on SKEY and for a composite
index on SKEY and TS.

We see that the index construction times are such that it
would be acceptable to adopt the lazy strategy and strictly
create indices at audit time.

5.3 Performance of Audit

We study the audit performance by measuring the execution
time of simple audit queries. The audit expression is of the
form:

during t; toty
audit namefrom Supplier where skey = k

We set both t; and t, to the time when the initial versions
of the Supplier tuples were created. The value of k is ran-
domly set to one of the values of SKEY present in the Sup-
plier table. We assume that static analysis has yielded one
candidate query: select * from Supplier.

We consider both time stamped and interval stamped or-
ganizations, with simple as well as composite indices. Fig-
ures 10 shows the results.
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Both the time stamped and interval stamped organiza-
tions benefit a great deal from the composite index on SKEY
and TS as the number of versions becomes large. When
there is an index only on SKEY, the query plan first selects
all versions of a tuple with the matching supplier key and
then selects the correct version amongst the matching tu-
ples. These versions might reside on different disk pages
and cause page faults as Supplier? becomes large. The com-
posite index avoids this problem.

We also see that with few versions of a tuple, the in-
terval stamped organization has a slight performance ad-
vantage, but loses this advantage as the number of versions
increases. The interval stamped organization requires an
extra timestamp attribute to record the end time of validity
of a tuple. The larger tuple size results in more page faults
as the number of versions increases, and thus the impact of
the larger size outweighs the benefit of the simpler interval
stamped computation over the time stamped organization
that requires a join.

5.4 Takeaways

The composite index on the primary key and start time pays
large dividend over an index only on the primary key at the
time of audit, although it puts a slightly larger burden on
updates if the indices are updated eagerly.

The interval stamped organization has a slight advantage
over the time stamped organization at the time of audit if the
number of versions is small. However, the lazy strategy for
updating indices cannot be used with the interval stamped
organization and eager updating becomes quite expensive
as the number of versions increases. Overall, the use of time
stamped organization along with the lazy strategy for updat-
ing indices is recommended. However, the eager strategy is
also not too burdensome for the time stamped organization.

The system supports efficient auditing without substan-
tially burdening normal query processing tasks.

6 Related Work

Closely related to compliance is the privacy principle of
limited disclosure, which means that the database should
not communicate private information outside the database
for reasons other than those for which there is consent from
the data subject [2, 10]. Clearly, the two are complimen-
tary. The principle of limited disclosure comes into play at
the time a query is executed against the database, whereas
demonstrating compliance is post facto and is concerned
with showing that usage of the database indeed observed
limited disclosure in every query execution.

Oracle [11] offers a “fine-grained auditing” function
where the administrator can specify that read queries are to
be logged if they access specified tables. This function logs
various user context data along with the query issued, the
time it was issued, and other system parameters including
the “system change number”. Oracle also supports “flash-
back queries” whereby the state of the database can be re-
verted to the state implied by a given system change num-
ber. A logged query can then be rerun as if the database



was in that state to determine what data was revealed when
the query was originally run. There does not appear to be
any auditing facility whereby an audit predicate can be pro-
cessed to discover which queries disclosed data specified by
the audit expression. Instead, Oracle seems to offer the tem-
poral database (flashback queries) and query logging (fine-
grained auditing) components largely independent of each
other.

The problem of matching a query against an audit ex-
pression bears resemblance to the problem of predicate
locking [7] that tests if the predicates associated with two
lock requests are mutually satisfiable. Besides being expen-
sive, this test can lead to false positives when applied to the
auditing problem. Related work also includes the literature
on query processing over views that contains the notion of
augmenting a user query with predicates derived from the
view definition [13]. Also related is the work on optimizing
a group of queries (e.g. [4, 14]) that can be profitably used
by our system to accelerate the execution of audit queries.

7 Summary

We identified the problem of verifying whether a database
system is complying with its data disclosure policies
through auditing. Given the accelerated pace at which leg-
islations are being introduced to govern data management
practices, this problem represents a significant opportunity
for database research. We formalized the problem through
the fundamental concepts of indispensability and suspi-
ciousness. Additional contributions include a carefully de-
signed and implemented system that meets the design goals
enunciated in the introduction:

e Convenient: The audit expression language used by
our system reuses the familiar SQL syntax, providing
a familiar, declarative and expressive means for speci-
fying the data whose disclosure is subject to review.

e Fine-grained: The audit expression language allows
the auditor to specify even a single field of a record as
subject for review.

e Fastand precise audits: Our system combines the au-
dit expression with logged queries into an SQL audit
query that examines only the specific data necessary to
determine suspiciousness. Guided by our implemen-
tation and experimentation with various backlogging
and indexing strategies, we proposed system structures
to support efficient audit query execution.

e Non-disruptive: Our system imposes only a small
burden on the execution of most queries. Rather than
logging query results or the tuples accessed by a query,
it logs the query strings. While update operations re-
quire some additional backlog database maintenance,
the predominant read queries are processed without
any further encumbrance.

We have considered a data disclosure model in which
the querier does not possess any outside knowledge and the
information gained is limited to what could be learnt from
the current query. It would be interesting to see how our
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framework could be extended to support more adversarial
disclosure scenarios. Other remaining work includes how
schema evolution can be gracefully accommodated in the
audit system. Finally, we feel it would be beneficial to the
community to develop a set of comprehensive benchmarks
for measuring and testing the effectiveness and performance
of any database auditing proposal.
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