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Abstract 
Focused web crawlers have recently emerged as 
an alternative to the well-established web search 
engines. While the well-known focused crawlers 
retrieve relevant webpages, there are various 
applications which target whole websites instead 
of single webpages. For example, companies are 
represented by websites, not by individual 
webpages. To answer queries targeted at 
websites, web directories are an established 
solution. In this paper, we introduce a novel 
focused website crawler to employ the paradigm 
of focused crawling for the search of relevant 
websites. The proposed crawler is based on a 
two-level architecture and corresponding crawl 
strategies with an explicit concept of websites. 
The external crawler views the web as a graph of 
linked websites, selects the websites to be 
examined next and invokes internal crawlers. 
Each internal crawler views the webpages of a 
single given website and performs focused 
(page) crawling within that website. Our 
experimental evaluation demonstrates that the 
proposed focused website crawler clearly 
outperforms previous methods of focused 
crawling which were adapted to retrieve websites 
instead of single webpages. 

1. Introduction 
Focused web crawlers have recently emerged as an 
alternative to the established web search engines like 

Google [12]. A focused web crawler [3] takes a set of 
well-selected webpages exemplifying the user interest. 
Searching for further relevant webpages, the focused 
crawler starts from a set of given pages and recursively 
explores the linked webpages. While the crawlers used for 
refreshing the indices of web search engines perform a 
breadth-first search of the whole web, a focused crawler 
explores only a small portion of the web using a best-first 
search guided by the user interest. Compared to web 
search engines, focused crawlers obtain a much higher 
precision and return new pages which are not yet indexed. 
Recently, focused web crawlers have received a lot of 
attention in the research areas of database systems, 
information retrieval and data mining [2,3,5,6,8,17]. 
Web search engines index individual webpages. Web 
directories provide a more abstract view on the web, 
listing relevant websites for a variety of topics. A website 
is a linked set of HTML-documents published by the 
same person or institution serving a common purpose. For 
several applications, the information about the topics of 
websites allows more accurate retrieval than the 
information about topics of single webpages. For 
example, companies are represented by entire websites, 
not by individual webpages. As another example, when 
looking for the price of a new computer, it is very helpful 
to search only the websites of computer retailers instead 
of searching the whole World Wide Web (WWW).  
However, using a web directory for addressing these 
problems has several drawbacks. Web directories offer in 
most cases only a very small portion of the websites that 
are relevant to a given topic. The given categorization 
might totally lack the topic a user is interested in. Last but 
not least, web directory services might not be up-to-date 
due to manual maintenance. In this paper, we therefore 
extend focused crawling to the search for relevant 
websites offering a method to significantly increase the 
recall of existing web directories. Additionally, such a 
crawler can act as an alternative approach for searching 
the web for topics not yet listed in any web directory. 
To adopt focused crawling for website retrieval, the 
simplest way is to use one of the well-established methods 
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for focused webpage crawling and, in a step of post-
processing, analyse the resulting webpages in order to 
find relevant sites. This analysis can be done by looking 
for relevant homepages or by applying a website classifier 
[11] to all pages retrieved from a given website. However, 
this approach is severely limited by the fact that there is 
no guarantee that the crawled webpages are representative 
of their corresponding websites. 
In this paper, we argue that in order to achieve efficient 
and accurate website crawling the concept of websites has 
to be integrated into the focused crawler itself. Therefore, 
we introduce a novel focused crawler directly searching 
for relevant websites instead of single pages. The 
proposed focused website crawler is based on a two-level 
graph abstraction of the World Wide Web (WWW) 
representing both webpages and websites together with 
their links. The crawling task is divided into two major 
subtasks corresponding to the two different levels of 
abstraction: 

• An internal crawler views the webpages of a 
single given website and performs focused 
(page) crawling within that website. 

• The external crawler has a more abstract view of 
the web as a graph of linked websites. Its task is 
to select the websites to be examined next and to 
invoke internal crawlers on the selected sites. 

 
The proposed two-level architecture allows the crawler to 
control the number of pages to be downloaded from each 
website and enables it to find a good trade-off between 
accurate classification and efficient crawling. Our 
experimental evaluation demonstrates that website 
classification based on the homepages is considerably less 
accurate than classification methods employing more than 
one webpage. Furthermore, we compare our prototype of 
a focused website crawler to a focused webpage crawler 
with website post-processing and show that the introduced 
methods of focused website crawling clearly increase the 
efficiency as well as the accuracy of retrieving relevant 
websites from the WWW. The outline of the paper is as 
follows. After this introduction, we briefly survey related 
work. In section 3, we define the task of focused website 
crawling and a basic solution. Section 4 presents our 
novel approach to focused website crawling. Section 5 
reports the results of our experimental evaluation. The last 
section summarizes the paper and discusses several 
directions for future research. 

2. Related Work 
In this section, we discuss related work on focused 
crawling as well as on text and web classification. One of 
the first focused web crawlers was presented by [8] which 
introduced a best-first search strategy based on simple 
criteria such as keyword occurrences and anchor texts. 
Later, several papers such as [2] and [3] suggested to 
exploit measures for the importance of a webpage (such 

as authority and hub ranks) based on the link structure of 
the world-wide-web to order the crawl frontier. These 
measures, which are very successfully used to rank result 
lists of web search engines, also proved to be very 
effective in focusing a crawler on the topic of interest of a 
user. 
Recently, more sophisticated focused crawlers such as [5], 
[9] and [17] incorporate more knowledge gained during 
the process of focused crawling. [9] introduced the 
concept of context graphs to represent typical paths 
leading to relevant webpages. These context graphs are 
used to predict the link distance to a relevant page and, 
consequently, are applied to order the crawl frontier. [17] 
explored a reinforcement learning approach, considering 
the successful paths observed, to weight the links at the 
crawl frontier based on the expected number of relevant 
pages reachable. [5] extends the architecture of a focused 
crawler by a so-called apprentice which learns from the 
crawler’s successes and failures and is later consulted by 
the crawler to improve the ratio of relevant pages visited. 
Like a human user, the apprentice analyses the HTML 
structure of a webpage to judge the relevance of the 
outlinks of this page. To the best of our knowledge, all 
focused crawlers presented in the literature search for 
individual webpages and not for whole websites. The only 
site-oriented features of established page crawlers are the 
measures to prevent so-called spider traps and the 
prevention of host-to-host reinforcement proposed by 
Bharat and Henzinger [1]. A spider trap is an infinite loop 
within the WWW that dynamically produces new pages 
trapping a web crawler within this loop. A common 
approach to avoid most spider traps limits the maximum 
number of pages to be downloaded from a given website 
in order to escape the trapping situation [6]. However, 
these crawlers do not have any means to control the 
search within a website. 
Most text classification algorithms rely on the so-called 
vector-space model. In this model, each text document is 
represented by a vector of frequencies of the most 
relevant terms. Due to the typically high dimensionality of 
the vector space, most frequencies are zero for any single 
document and many of the standard classification 
methods perform poorly. However, methods that do not 
suffer so much from high dimensionalities have been very 
successful in text classification, such as naive Bayes [19], 
support vector machines [14,19] or centroid based text 
classification [13]. An increasing number of publications 
especially deal with the classification of webpages. In 
particular, several methods have been proposed to exploit 
the hyperlinks for improving the classification accuracy. 
[7] introduces several methods of relational learning 
considering the existence of links to webpages of specific 
classes. [4] presents techniques for using the class labels 
and the text of neighboring webpages.  
Most existing methods aim at classifying single 
webpages, not complete websites. [11] introduced the 
problem of website classification and presented several 
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methods based on the representation of a website as a 
labeled website tree where the labels are drawn from a set 
of page classes. However, all methods require that the 
user defines an appropriate (for the task of website 
classification) set of page classes and provides sufficient 
numbers of training webpages for each of these classes. 
We argue that this large overhead is a major obstacle for 
practical applications. Furthermore, [11] only deals with 
the classification of given websites, but does not present a 
focused website crawler. While it suggests a simple 
search strategy for exploring a given website, this strategy 
is not suitable as an “internal crawl strategy”. 
Furthermore, there is no “external crawl strategy” and no 
discussion of the interaction between these components. 
Though the approach described in [15] overcomes the 
first problem of defining page classes it does not treat any 
aspects of focused web crawling. 

3. The Task of Focused Website Crawling 

3.1.  A Graph-Oriented View of the WWW 

We identify a webpage p by its URL. Then, 
content(p) → σ∈Σ* denotes the string we receive when 
trying to download p. Furthermore, we assume a function 
f: Σ* →T ≅ Nd which transforms a string (for example, the 
contents of a webpage) into a d-dimensional feature 
vector. Let Λ(p) be the set of all links (p,q1), (p,q2,), 
…,(p,qn,), from p to qi ≠ p. The link (p,q) points from the 
source page p to the destination page q. Links within the 
same webpage are ignored. We define the webpage graph 
as a directed graph G= (V,E) with V being the set of all 
existing webpages (extended by a special element which 
is needed to represent broken links) and E being the union 
of Λ(p) for all p ∈ V. 
The goal of focused website crawling is to retrieve new 
relevant websites from the WWW. A website is a linked 
set of webpages that is published by the same person, 
group or institution and usually serves a common purpose, 
e.g. to present a whole organization or company. 
Unfortunately, this intuitive definition is not well suited 
for automatic retrieval. Since there is no reliable way to 
find out who really published a webpage and for what 
purpose, there is no exact method to determine the 
webpages belonging to a certain site. Nonetheless, no-one 
would deny the existence of websites and thus, in order to 
retrieve relevant sites it is necessary to find a pragmatic 
definition that is suitable for the majority of cases. In this 
paper, we take advantage of the characteristic that a very 
large percentage of all websites is published under one 
dedicated domain or subdomain. For the cases that a 
website is spread over several domains/subdomains, we 
do not loose any results, but may have some duplicates in 
the result set. However, if large websites are classified 
more than once, their chance of being part of the result 
increases as well. The other problem of our definition is 

the case that one domain hosts several websites. Thus, 
websites without a domain of there own are not 
discovered. However, websites without a domain of there 
own are important in rare cases only and there is no 
search system on the WWW that can claim to achieve 
100% recall. 
Formally, for each page p, host(p) returns the domain or 
subdomain of p, i.e. the substring of the URL of p 
between the protocol and the file section. We define a 
website W as a subgraph W=(V’,E’) of the webpage graph 
with the following properties: 

)()(:', vhostuhostVvu =∈∀  
)()(:',' vhostuhostVvVu ≠∉∈∀  

')(')(:' VendestinatioVesourceEe ∈∧∈∈∀ . 
We define the homepage as the webpage that is 
referenced by the URL consisting of the domain name 
only (e.g. http://www.cs.sfu.ca). Thus, each website has a 
unique homepage that can be accessed knowing the 
website name only. Compared to the webpage graph, the 
website graph (which is the conceptual view of our 
website crawler onto the WWW), has several important 
differences: We distinguish two different types of nodes 
at different levels of abstraction, page nodes and site 
nodes. We distinguish two different types of edges, 
representing inter-site links and intra-site links. Edges for 
intra-site links point to page nodes, but edges representing 
inter-site links point to site nodes. These differences are 
due to the fact that a focused website crawler searches for 
whole websites and visits one website after another 
starting the exploration of a new website from its home 
page. For a more formal definition, let G= (V,E)  be the 
webpage graph. We distinguish between intrinsic links 
(p,q) with host(p) = host(q) and transversal links with 
host(p) ≠ host(q). Let U denote the union of V and let  W 
be the set of all existing websites. We define the website 
graph as a directed graph WG=(U,D) with the set of 
edges D given as follows: 

DqpqhostphostEqp ∈⇒=∈∀ ),()()(:),(
DqhostpqhostphostEqp ∈⇒≠∈∀ ))(,()()(:),(  

Figure 1 depicts a small sample portion of the website 
graph consisting of three websites. Intrinsic links are 
represented by dashed arrows, transversal links by solid 
arrows.  

http://www.astronomy.net

.../astroguide/ .../articels/

.../NASA's_Observatorium/

http://www.nasa.gov

.../about/ .../news/

.../career/

.../events/

.../launches/.../contact/

.../flights/

http://adswww.harvard.edu/

.../abs_doc/faq.html .../whatsnew.html

.../help_pages/overview.html

 
Figure 1: Sample portion of the website graph. 
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3.2. Retrieving Websites with Focused Crawling 

A focused webpage crawler [3] takes a set of well-
selected webpages exemplifying the user interest. 
Searching for further relevant webpages, the focused 
crawler starts from the given pages and recursively 
explores the linked webpages. The conceptual view of the 
WWW of a focused page crawler is the webpage graph. 
The crawl frontier consists of all hyperlinks (or the 
referenced webpages) from downloaded pages pointing to 
not yet visited pages. The performance of the crawler 
strongly depends on the crawling strategy, i.e. the way the 
frontier is ordered. 
There are several ways of post-processing the results of 
focused page crawlers to adapt them for the task of 
retrieving relevant websites. The simplest way is to select 
all homepages of websites found within the relevant pages 
of a crawl and to conclude that all corresponding websites 
are relevant. However, the classification of websites based 
on the homepage alone is not as accurate as more 
sophisticated methods of website classification. A 
homepage might consist of structural information only, 
e.g. frame tags or provide not much text. Thus, 
homepages often do not contain a meaningful description 
of the purpose of a website. As a consequence this 
approach to extract relevant websites from the results of a 
focused webpage crawl suffers from inaccurate results. 
Furthermore, since the webpage crawler does not prefer 
homepages over other webpages, the rate of newly 
discovered websites tends to be rather low. 
Another approach of post-processing is to group the 
resulting webpages by their website (i.e. domain) and 
apply a website classifier like [15] to each set of 
webpages. Though this approach promises better 
classification accuracy, it still has drawbacks. Since the 
set of webpages downloaded for each site is controlled by 
the page crawler which is not conscious of websites at all, 
this selection of pages might not be well suited for 
representing the website. Thus, the crawler does not 
guarantee that enough webpages per site are downloaded. 
In our experiments, it turned out that usually more than 
50% of the websites that were classified as relevant by 
this method, were represented by one webpage only. On 
the other hand, the efficiency suffers from the effect that 
very relevant websites might be scanned completely due 
to the high relevance scores of most of their pages. In 
addition to the number, also the selection of webpages of 
a conventional focused crawler causes a problem. Since a 
focused crawler prefers relevant pages, a website might be 
represented by the pages closest to the relevant topic. But 
this selection is not a good representation for websites that 
are irrelevant. Thus, websites containing some pages with 
relevant information, belonging, however, to the other 
class are misclassified. For example, a university might be 
classified as relevant for skiing because there are some 
student pages referring to this topic. We argue that in 
order to achieve high classification accuracy and to 

control the number of pages to be downloaded, a focused 
website crawler requires an explicit concept of websites 
and corresponding crawl strategies.  

3.3. Focused Website Crawling 

Website crawling can be considered as the process of 
successively transforming a subgraph G0 of the website 
graph WG with V0={W1,…,Wn}, n ≥ 1, where Wi is a 
website, 1≤ i ≤ n, into a sequence of subgraphs G1,…,Gm 
such that in each step exactly one website node from WG 
is added to Gi  to obtain Gi+1. V0  is called the set of start 
websites. In the context of focused website crawling, we 
assume two classes of websites, a class of relevant sites 
(the target class) and a class of irrelevant sites (the 
“other”-class) with respect to some user interest. The set 
of start sites V0  should (mainly) consist of relevant sites. 
To distinguish between relevant and irrelevant websites, 
some (automatic) classifier is required which predicts the 
class of a website (V’,E’) based on the feature vectors f(p) 
of the pages p∈ V’. The website classifier is a function 
that takes a website from W and a website class from the 
set of classes C and returns a numerical confidence value 
for this website w.r.t. the given class.  

]1..0[: →×CWconfidence  
A website is called relevant, if its confidence for the 
target class Ctarget exceeds its confidence for the “other” 
class.  

},{: falsetrueWrelevance →  
The website classifier is trained using the start websites 
that can be provided either explicitly by the user (if 
available) or implicitly by selecting some subtrees (and 
the corresponding websites listed in these subtrees) of a 
directory service like [10,12,18].  
Based on the website classifier and the notion of relevant 
websites, we introduce the following performance 
measure for focused website crawlers. The pages per 
relevant site rate (pprs-rate) of the website crawler after 
step s is defined by the ratio of the number of downloaded 
webpages to the number of relevant websites found, i.e 

|})(|)\({|

)(
)( )\(

trueWrelevanceGGW

Wpages
Gpprs

wss

GGW
s

wss

=∈
=

−

∈
∑

−  

where pages(W) = {p ∈ W ∩ (Gs\Gs-w)} denotes the set of 
pages in W that were visited so far and w is the beginning 
of the time interval that is observed. The pprs-rate thus 
measures the average effort to retrieve one additional 
relevant website. It depends on two factors: (1) the 
number of pages that have to be downloaded within a 
relevant website (to be controlled by an internal crawler) 
and (2) the number of pages downloaded from irrelevant 
websites that were examined before finding the relevant 
website (to be controlled by the external crawler). 
The task of a focused website crawler is to find as many 
relevant sites as possible, while downloading as few 
webpages as possible. A website crawl terminates if the 
wanted number of relevant sites is found or the pprs-rate 
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decreases significantly. In the next section, we will 
introduce our architecture of a focused website crawler. 

4. A Focused Website Crawler 

4.1.  The Architecture 

Focused website crawling is performed on two levels. The 
external or website level traverses the first level of the 
website graph. The external crawl orders the (hyperlinks 
to) yet unknown websites and invokes internal crawls on 
the top-ranked ones. Since there are much less domains 
than webpages, the external crawl frontier is rather small 
compared to the crawl frontier of an ordinary focused 
crawler. Thus, even for large crawls ranking can be done 
on-the-fly and sophisticated ranking algorithms can be 
applied. The second level is the internal or webpage level. 
It examines the current website to identify its purpose and 
extracts links to other websites while downloading as few 
webpages as possible. Since the webpages within the 
internal crawl frontier are needed for a limited time only 
and their number is usually small, it can be stored in main 
memory. Thus, expensive I/O operations are avoided and 
the crawl frontier can be accessed and updated very fast. 
Let us note that several internal crawlers examine 
different websites simultaneously. Thus, it is guaranteed 
that the data is drawn from several remote hosts at the 
same time which ensures a high overall download rate. 
Furthermore, controlling the number of pages visited from 
each website helps to keep the additional load at each 
website as low as possible, helping to increase the 
acceptance of the focused crawler within the webmaster 
community. 
Figure 2 shows our architecture for a focused website 
crawler. The external crawler stores the external frontier 
consisting of websites only. To decide which website has 
to be examined next, it ranks the external frontier. To 
expand the frontier and to decide, if a chosen site is 
relevant, the external crawler invokes an internal crawler. 
The internal crawler traverses the website building an 
internal crawl frontier that is restricted to the pages of this 
site. During this traversal it examines the webpages to 
determine the site class. Furthermore, it collects all 
transversal links to other unexplored websites together 

with the confidence w.r.t. the target class of their source 
pages. As a result, the internal crawler returns information 
about the website class and the set of transversal links 
from the domain to new unexplored domains. Note that 
these transversal links are not real hyperlinks, but an 
aggregation of all hyperlinks that are found within the 
website directing to pages located within an other website. 
Thus, the number of transversal links from one site to 
another website is limited to one.  

4.2. The External Crawler 

The task of the external crawler is to order the external 
crawl frontier (consisting of links to not yet visited 
websites) and to decide which site has to be examined 
next by an internal crawler. The external crawler starts its 
traversal of the website level from the user-specified start 
websites and expands the graph by incorporating the 
newly found websites. Since the task of the external 
crawler is similar to the task of a focused crawler for 
webpages, most of the methods mentioned in section 2 are 
applicable to order the external frontier. The major 
difference is that distillation takes place at another more 
abstract level. Thus, the relevance scores attached to 
nodes and edges may be determined in a different way in 
order to achieve good results. 
During a crawl, we distinguish two different sets of nodes 
of the website graph: Nodes corresponding to already 
examined websites are elements of Vex and so-called 
border nodes that have not yet been examined, are 
elements of Vbd. The task of the crawler is to rank the 
elements of Vbd with respect to the information gained 
while examining the elements of Vex. Each website W ∈  
Vbd is reachable by at least one link contained in some 
website Vi ∈  Vex.  
The (external) crawling strategy employed in this paper is 
simple but effective and is very similar to the basic 
crawler proposed in [5]. Note that most of the established 
crawling strategies [2,3,5,6,8,17] are applicable as well. 
For every node W ∈ Vbd, a ranking score is calculated as 
follows: 

)(

),(
)( )(

WL

WVweight
Wrank

ex

WLV
i

exi

∑
∈=  

where Lex(W) ={ V | V ∈ Vex ∧ ∃  edge(V,W) } and 
edge(Vi,W) denotes that there is at least one link from 
node Vi to node W. Furthermore, weight(V,W) is a 
function that determines the confidence for each edge that 
its destination is relevant to the topic. In other words, an 
unknown website is judged by the average weight of the 
known edges referencing it. Thus, the website W with the 
highest rank(W) should be crawled first. The edges do not 
directly correspond to the hyperlinks, but represent an 
aggregate of all hyperlinks leading from one website to 
another. Let us note that this method solves the same 
problem as the host-to-host cleaning improvement 
suggested in [1], i.e. it avoids that strongly connected 
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Figure 2: Architecture of the focused website crawler. 
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domains are overemphasized. The remaining task is how 
to determine the weights for the edges. To answer this 
question, we investigated the following three approaches :  

• Global edge weights: Each edge is weighted by the 
confidence w.r.t. the target class of the website the 
edge is contained in: 

),(),( arg ettglobal CWconfidenceVWweight =  

where confidence(W,C ett arg ) denotes the 
confidence value for website W w.r.t. the target 
class.  

• Local edge weights: Each edge is weighted by the 
average confidence w.r.t. the target class of the 
webpages containing links pointing to the given 
website: 

 

)]},([|{

]|Pr[

),( ))},((|{

qpVqWpp

ptarget

VWweight qpVqWppp
local

∧∈∃∧∈
=

∑
∧∈∃∧∈∈

 

 where Pr[target|p] is the confidence of page p 
being contained in a target class website. These 
confidences for single webpages are also collected 
within the website classifier, but do not correspond 
to the complete set of webpages downloaded for 
classification. 

• Combined edge weights: This is a  combination of 
both methods integrating both scores to combine 
local and global aspects by taking the average 
weight of both methods. 

2
),(),(

),(
VWweightVWweight

VWweight globallocal
combined

+
=  

The advantage of local edge weights is that they 
distinguish the transversal links according to the relevance 
of the source pages of a link. Thus, transversal links found 
on irrelevant pages are weighted less than those found on 
highly relevant webpages. On the other hand, local edge 
weights might consider the links from source pages 
containing sparse text only as irrelevant since the page 
itself can be classified only poorly. This shows the 
strength of global edge weights. Since global edge 
weights consider the relevance of the complete site, they 

transfer relevance from other relevant pages to the link 
pages which do not provide enough content for proper 
classification. Combined edge weights incorporate both 
aspects. The links found in pages containing not enough 
text for reliable classification are at least judged by the 
relevance of the website and relevant pages transfer more 
importance to the links than irrelevant ones. Figure 3 
displays an example for all three methods of edge 
weighting. 
The performance of the external crawler influences one 
important aspect of the pprs-rate: the number of relevant 
sites that are examined compared to all websites that are 
crawled by an internal crawler. We will refer to this ratio 
as the website harvest rate. However, this aspect is not the 
only influence on the pprs-rate. Even an optimal external 
crawler will achieve very bad pprs-rates, if the internal 
crawler explores large numbers of webpages per site. 

4.3. The Internal Crawler 

The internal crawler is responsible for the main advantage 
of a dedicated website crawler namely that the results are 
more reliable due to better classification accuracy. On the 
other hand, the efficiency strongly depends on the ability 
of the internal crawler to restrict the number of 
downloaded webpages per site to as few pages as 
possible. Furthermore, additional goals have to be 
fulfilled like the avoidance of spider traps and the 
retrieval of new promising transversal links. 
The main task of the internal crawler is to select a 
representative sample set of webpages from a website W 
and determine for each page pi the likelihood (called 
confidence in this context) of pi appearing in website class 
Ck. To determine this probability  
Pr[wi| wi ∈ W ∧ W ∈ Ck], we employ a text classifier. To 
choose the sample set, we employ focused crawling using 
a so-called internal crawl strategy. To determine the class 
of an entire website W, for each class Ck we calculate the 
probability that W was generated by the process 
corresponding to class Ck.  
Additionally, there are several other side goals of the 
internal crawler like collecting new transversal links and 
avoiding spider traps. 
4.3.1 The Webpage Classifier 
The task of the webpage classifier is to decide how likely 
it is that a certain webpage pi appears in a website W of 
Class Ck. The task of this classifier is slightly different 
from the task of the classifier in an ordinary focused 
crawler. A webpage that is likely to appear in a typical 
website does not necessarily have to be relevant for the 
user interest. The page classifier should be capable to 
handle multi-modal classes, i.e. classes that are strongly 
fractioned into an unknown number of subclasses. This 
feature is important because the webpages found in 
websites of a common class provide several pageclasses, 
e.g. contact-pages, directory pages etc.. For our crawler, 
we employed a centroid based k-nearest neighbor (kNN) 
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Figure 3: The three variants of edge weights for two 
sample websites W and U. The confidence of W w.r.t. the 
target class is 0.6. There are two pages in W referencing 
pages in U, one page with confidence (w.r.t. the target 
class) 0.9 and the other with confidence 0.5.  
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classifier as described in [13]. This variant of kNN 
classification constructs the centroid of the training word 
vectors for each class. The class is now determined by 
choosing that class belonging to the closest centroid. In 
order to achieve multi-modality, we adopted an idea 
mentioned in the summary of [13]. We clustered each 
training set using the k-means algorithm and represented a 
class as the set of centroids of the resulting clusters. Let 
us note that we started our prototype by using naive Bayes 
classification, but changed to this classifier due to its 
better accuracy. 
Formally, each class Ck of our classifier is represented by 
a set of centroids CSk. Let dmin(p, CSk) denote the distance 
of the word vector p of a given webpage to the closest 
element of CSk. Then we estimate the confidence value 
for p belonging to Ck as follows: 
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In other words, we use the logarithm of the distance to the 
closest centroid in CSk and normalize over all classes. Let 
us note that we use the logarithm to weight close 
distances higher than far  distances. If a page has a large 
distance to the centroids of all classes, the confidence 
values are very similar for all classes. The closer the 
distance to a centroid is, the more sensitively the distance 
is measured. The resulting confidences are used by the 
local and combined edge weights for determining the 
weights of the transversal links.  
To train the classifier, we first select a set of relevant 
websites. The websites in our experiments, for example, 
were taken from common directory services [10,12,18]. 
To represent the “other”-class, we choose several 
websites belonging to a variety of other non-relevant 
topics. Since we need to learn which kinds of webpages 
might occur in a relevant site and which not, we have to 
draw a representative sample of webpages from each 
training website. The pages downloaded during the 
process of classification of a website are limited to a small 
set around the homepage, since these pages are most 
likely connected to the purpose of the site. Thus, we 
should use these pages for training as well. We restrict the 
training pages to the first k pages when traversing the 
website using breadth first search. This simple method 
worked out well in our experiments. 
4.3.2 The Internal Crawl Strategy 
The internal crawl strategy determines the sample of 
pages downloaded from the website to be classified. Each 
internal crawl is started at the homepage. As mentioned 
before, the information about the purpose of a website is 
usually located around the homepage since most 
publishers want to tell the user what a website is about, 
before providing more specific information.  
Analogously to a focused page crawler, the internal 
crawler traverses the web using a best-first search 
strategy. However, the internal crawl is restricted to the 

webpages of the examined site. The goal is to find a set of 
webpages reflecting the site’s purpose in a best possible 
way. This is a major difference to focused page crawlers 
which try to find as many relevant pages as possible. 
However, looking for relevant pages is only appropriate 
for site classification, if the examined website belongs to 
the target class. If the given website belongs to the other 
class, the crawler should prefer pages that typically occur 
in non-relevant websites in order to find a good 
representation. Thus, the internal crawler should rank the 
pages by their confidences for any class compared to the 
average confidences over all classes.  
To solve this problem, our internal crawling strategy 
works as follows. Like in the external crawler, we again 
build the crawling strategy similar to the basic crawler in 
[5]. The ranking score of a webpage p is defined as the 
average weight of the links referencing p: 
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where Lin is the set of pages read so far that link to p. To 
represent the contribution of a page for the decision in 
favor of either class, we determine the weight of link 
(qi,p) as: 
 [ ]( )targetqpqweight ii |Prvar),( =  
where Pr[qi|target] is the confidence of qi w.r.t. the target 
class obtained by the page classifier. The internal frontier 
is sorted in decreasing order of these confidence values. 
4.3.3. The Website Classifier 
The combination of the page classifier and the internal 
crawl strategy produces a sequence of webpages 
downloaded from the site. Furthermore, each webpage is 
classified and is associated with a confidence w.r.t. the 
target class. 
The following statistical model incrementally (i.e. after 
each download of a new page) aggregates these page 
confidences to calculate an overall confidence (w.r.t. the 
target class) for the entire website. In our model, each 
website class defines a statistical process that can generate 
any webpage with a certain probability. A website W 
belonging to that class Ck is a set of webpages generated 
by drawing pages from the corresponding probability 
distribution. In the following, we present a maximum-
likelihood classifier that assigns a website to the class 
with the highest probability of having generated the 
observed website W.  
Let Wt denote the sample of site W that the internal 
crawler has retrieved by time t. The probability that the 
class Ck has generated Wt is given by 
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Unfortunately, this formalization suffers from two 
practical limitations: 

• The apriori probabilities Pr[Ck] are unknown for 
the WWW. However, the application of focused 
crawling enables us to make a suitable estimate. 
Since the focused website crawler focuses to 
relevant sites, the probability distribution within 
the whole web is expected to be very different 
from the probability distribution within relevant 
sites close to the frontier. Thus, we can use the 
rate of relevant sites found so far as an estimate 
for Pr[Ck]. 

• Since there is no classifier guaranteeing 100 % 
accurate class predictions, the confidence values 
are not always realistic as well. The class 
prediction values generated by the classifier 
always suffer from a certain classification error. 
Thus, the combination of these results should 
consider this inaccuracy. 

To incorporate the possibility of classification errors, we 
extend our model by integrating the classification error 
observed on the training data into the model. Thus, we 
obtain an error corrected probability for the occurrence of 
page p in a website of class Ck and the classification error 
perr: 

errothererrkerrk pCppCppCp ⋅+−⋅=∧ ]|Pr[)1(]|Pr[(]|Pr[
The idea is that the probability that the prediction is made 
correctly is the confidence value multiplied with the 
probability that the classifier is correct. Additionally, we 
have to consider the case that the classifier made a wrong 
prediction. Thus, we have to add the confidence value of 
the “other”-class multiplied with the error probability 
perr. To estimate perr, we calculate the accuracy of the 
page classifier on the set of webpages in the training 
websites using 10-fold cross validation. 
Using the error corrected probabilities avoids the effect 
that the influence of a single page is overestimated during 
classification. Even if the classifier outputs are 1.0 and 
0.0, our process does not automatically overestimate the 
impact of a single page. Thus, the calculated value for 
Pr[Wt |Ck] will usually produce meaningful values after 
some pages have been considered. 

To stop classification, we define a certain confidence 
threshold pthreshold and the internal crawl stops 
classification as soon as this confidence level is reached. 
By choosing pthreshold the internal classifier can be adjusted 
to find an appropriate trade-off between accuracy and 
efficiency. However, if its value is chosen too high, the 
crawler will require too many pages with respect to a 
website’s purpose. This is problematic, because the 
performance suffers significantly and the reservoir of 
characteristic pages within one website is limited. To 
conclude, after the confidence for Wt reaches pthreshold, we 
assume that the class of W is identical to the class of Wt 
and we denote:  

]|Pr[),( ttargettarget WCCWconfidence =    and 

( )]|Pr[]|Pr[)( totherttarget WCWCWrelevance >= . 
Figure 4 illustrates the complete process of website 
classification. The displayed example describes the 
common case that a website starts with a frame page and, 
thus, the prediction of the class based only on the 
homepage would be wrong. 
4.3.4. Retrieving Transversal Links and Terminating 
the Internal Crawler 
Besides the primary goal to achieve accurate classification 
of the examined website, the internal crawler has a 
secondary objective of retrieving enough transversal links 
for extending the external crawl frontier. Therefore, the 
internal crawler collects all transversal links, i.e. the links 
leading to new unexplored websites. Additionally, the 
crawler stores the confidence values Pr[p|Ctarget] of the 
source pages of the link. These values are used to 
calculate local and combined edge weights. 
Since, according to the above stop condition, 
classification might be finished after a few pages only, it 
is possible that the internal crawler has not yet found 
enough interesting transversal links. In such cases we 
want to continue the crawl until a reasonable number of 
transversal links has been extracted. To decide if enough 
links have been found within a website, we define the 
linkWeight as a measure for the contribution of page p to 
the set of relevant transversal links found within the site: 

( ) [ ]( )cLTCpplinkWeight ptarget +⋅= |Pr  

where LTp is the set of transversal links found in p and c ≥ 
1 is an constant. Furthermore, we define the LinkRank for 
the set of webpages Wt as : 
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To employ the LinkRank for ensuring that enough 
relevant links are found, we continue the internal crawl 
even after classification has finished until it reaches a 
certain level lthreshold. The idea of this heuristic is that each 
webpage contributes its linkWeight to the LinkRank of the 
website. The more links are contained in p and the more 
relevant p is, the more will p contribute to the LinkRank. 
The constant c is added to ensure that the linkWeight has 
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internal crawl 
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Table 1: Overview of the training database. 
topic number of 

websites in db 
websites 
provided by 

horses 32 YAHOO 
astronomy 39 YAHOO 
sailing 39 Google 
mountain 
biking 

34 DMOZ 

skate boarding 35 DMOZ 
boxing 33 DMOZ 
other 132 All 

at least some value and thus the LinkRank grows 
constantly until lthreshold is reached. The LinkRank 
increases slower for relevant websites and faster for 
irrelevant ones. Thus, an internal crawl of a relevant 
website will encompass more webpages than an internal 
crawl of an irrelevant site, which usually terminates after 
classification. This way relevant websites add more new 
links to the external frontier than irrelevant ones. 
Let us note that we continue the crawl to reach lthreshold by 
employing the mentioned internal crawling strategy. We 
argue that if a website is relevant, the crawling strategy is 
targeted to find new relevant pages which are most likely 
to contain relevant links. For websites classified to the 
other class, lthreshold is reached rather fast anyway and 
switching the crawl strategy is not necessary. 
An additional benefit of the internal crawler is that it 
makes the website crawler robust against spider traps. 
Since the number of webpages retrieved from one website 
is explicitly controlled, the crawler might run into a spider 
trap only in those rare cases where a site consists mostly 
of pages without any meaning to the classifier. To ensure 
termination in such cases, it is sufficient to restrict the 
number of pages downloaded from one domain. Unlike in 
page crawlers, no additional database table is needed to 
store websites containing a spider trap. This is not 
necessary within the focused website crawler since the 
crawler will not visit a website more than once.  

5. EXPERIMENTAL EVALUATION 

5.1. The Test Environment 

We performed our experiments for the topics listed in 
table 1. For each topic, we first acquired a sample set of 
relevant websites taken from a category in [10,12,18]. 
Additionally, we selected a random mixture of websites to 
represent all other topics on the web. For each category, 
table 1 provides the number of training websites, and the 
directory service the websites were taken from. We stored 
the websites in a training database, to have a stable test 
environment consisting of 20,793 HTML-documents from 
335 websites.  
We implemented 2 focused crawlers. The first is our 
prototype of a focused website crawler. The second is a 

focused webpage crawler that crawls the internet by using 
only one frontier of webpages. To provide a fair 
comparison, both crawlers are based on the same 
algorithm for page classification and ranking. The design 
of our focused webpage crawler is illustrated in Figure 5. 
The system starts its crawl on a defined set of webpages 
(in our case the homepages of the websites found in a 
directory service). Each new unexplored webpage is 
stored in the crawling frontier. The page classifier 
generates confidence values for each webpage that is 
explored. Within the frontier, each unexplored webpage is 
measured by the average confidence value for the target 
class of the webpages linking it. The webpage providing 
the highest average confidence value within the frontier is 
examined next. In order to prevent spider traps and to 
keep the load for each website at an acceptable level, we 
implemented a guard module as described in [6]. This 
guard module prevents the page crawler from accessing 
webpages in websites that already contributed an 
extraordinarily high number of webpages to the already 
explored part of the web graph. To test the crawlers, we 
performed various crawls on the WWW. This test bed 
seemed to be suited best, although it is not guaranteed that 
the web stays the same between two crawls. However, 
due to the more stable character of the website graph, we 
argue that the influence to the results is negligible. Let us 
note that we performed some of the experiments again 
after several weeks and achieved almost identical results. 
On the other hand, downloading a representative section 
of the website graph to provide a static test environment is 
difficult. Since the part of the WWW visited by a website 
crawler tends to be spread over several thousands hosts, it 
is difficult to find a closed section that allows a realistic 
behaviour of the tested crawlers. 
Our experiments were run on a workstation that is 
equipped with two 2.8 Ghz Xeon processors and 4 Gb 
main memory. As a database system we used an 
ORACLE 9i database server hosted on the same machine. 
Both crawlers were implemented in Java 1.4, with the 
exception of the ranking algorithms and the guard module 
which were partly implemented in PL/SQL to improve the 
runtime performance. 
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Figure 5: Architecture of our focused webpage crawler. 

404



Table 2: Classification results using 10-fold cross validation within the training database for the internal crawler 
and the homepage classifier. 

topic perr Pthre

shold 
pages 
per site 

prec. 
int crw. 

rec. 
int crw 

f-meas. 
int. crw. 

prec 
homep. 

rec. 
homep. 

f-measure 
homepage 

f-measure 
improve. 

horses 0.85 0.9 6.9 0.84 0.97 0.90 0.49 0.88 0.63 0.27 
astronomy 0.90 0.9 6.3 1.00 0.90 0.95 0.86 0.79 0.83 0.12 
sailing 0.88 0.9 6.3 0.90 0.97 0.94 0.77 0.92 0.84 0.10 
mountain 
biking 

0.86 0.8 6.3 0.81 0.97 0.88 0.76 0.83 0.79 0.11 

skate 
boarding 

0.88 0.8 3.2 0.76 1.00 0.86 0.74 0.89 0.81 0.05 

boxing 0.88 0.9 7.4 0.79 0.79 0.79 0.74 0.72 0.73 0.05 
 

5.2. Evaluation of Website Classification 

Our first experiment demonstrates the higher accuracy 
that can be achieved for website classification by using 
the internal crawler compared to a homepage classifier. 
The homepage classifier uses the same centroid based 
kNN-classifier as the internal crawler, but is trained and 
tested on homepages only. The internal crawler used in 
these experiments terminates its crawl after a confidence 
threshold of pthreshold is reached and does not continue the 
crawl to find interesting links. Since this test needs 
labelled test data, we performed 10-fold cross-validation 
on the topics stored in the training database (table 1). 
Table 2 displays the precision, recall and f-measure (as 
trade off  between precision and recall) for the tested 
topics when employing the website classifier and the 
homepage classifier. Additionally, the table reports the 
classification error perr and the average number of 
webpages that the website classifier downloaded per 
website. For the training of the page classifier of the 
internal crawler, we used the first 25 webpages of each 
training website when applying a breadth-first traversal. 
For all of the tested topics, the internal crawler obtained 
significantly higher f-measures than the homepage 
classifier. For the topic horses, it even increased the f-
measure from 0.63 to 0.9, i.e. by 0.27. Thus, by 
classifying the websites by more than one page, the 
classification accuracy was substantially increased. Let us 
note that a manual analysis of the crawled websites 
confirmed the hypothesis that especially commercial 
websites often do not provide a meaningful homepage. 
The average number of pages used for classification was 
between 3.2 and 7.4 indicating that website classification 
does not require large numbers of webpages per site for 
making more accurate predictions. 

5.3 Evaluation of the Crawling Performance 

To demonstrate the performance of the complete focused 
website crawler, we performed numerous crawls. Since 
we retrieved a total number of approximately 50,000 
potentially relevant websites, we could manually verify 
only samples from each crawl. Table 3 displays a sample 
of relevant websites retrieved for the topic horses. The 

first five domains were retrieved after approximately 250 
websites were visited, the last five at the end of the crawl 
after about 2500 relevant websites had been retrieved. 
This example illustrates that the crawler started to 
discover relevant websites early and kept his good 
accuracy until the end of the crawl. 
Our first crawling experiment compares the three different 
weightings introduced in section 4.2 for ranking the 
external frontier. Therefore, we started each crawler using 
the parameters achieving maximum accuracy for the 
internal crawler and stopped the crawler after 
approximately 2500 relevant websites were found. To 
compare the effect of each of the weightings, we 
compared the website harvest rate, i.e. the ratio of 
relevant websites to all websites that were screened. 
Figure 6 displays the average website harvest rate 
aggregated over the last 1000 pages. For the topics horses 
and astronomy all three weightings performed very 
similar, although the global edge weights achieved a small 
advantage, especially at the beginning of the crawl. 
However, for the topic sailing the combined edge weights 
were able to compensate some of the weaknesses of both 
underlying methods. The experiments for the topic 
mountain biking displayed a strong advantage for the 
local edge weights. However, the combined edge weights 
were still able to compensate some of the weaknesses of 
global edge weights. Though our experiments did not 
reveal that one of the mentioned weightings showed 
superior results, we advise to employ the combined edge 

Table 3: Example websites returned for the topic horses. 

website 
# visited 
pages 

confi-
dence

www.tbart.net 4 0.65
www.socalequine.com 6 0.59
www.thehalterhorse.com 4 0.65
www.thejudgeschoice.com 4 0.75
www.thehorsesource.com 3 0.68
…  
www.laceysarabians.com 5 0.71
www.baroquehorses.com 5 0.60
www.knightmagicfarms.com 4 0.67
www.pccha.com 7 0.64
www.danddhorsetransport.com 4 0.70
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weights function, since it was always at least the second 
best and sometimes outperformed the other methods.  
The next series of experiments was conducted to back up 
our claim that common focused (webpage) crawlers are 
unsuitable for retrieving websites and that the proposed 
focused website crawler overcomes the problems of page 
crawlers providing a more efficient and accurate retrieval 
of relevant websites. 
In our first experiment, we have already demonstrated that 
the accuracy of the internal crawler is superior to the 
accuracy achieved by the homepage classifier. Thus, the 
post-processing counting relevant homepages is unlikely 
to produce the same quality of results either. To show that 
applying a website classifier like [15] is not sufficient for 
providing comparable accuracy, we determined the 
percentage of websites that were classified by one single 
webpage. For all four examples approximately 50 % of 
the resulting websites where classified by using one page 
only. Thus, in half of the cases applying a more 
sophisticated website classifier to the websites being 
aggregated from the results of a page crawl cannot 
perform any better than the homepage classifier.  
This behaviour of the page crawler can be explained as 
follows. Most transversal links referencing a new site are 
directed at one special entry page (usually the homepage) 
and most other webpages found within this website are 
linked via internal links only. A page crawler examining a 
website visits this entry page first and classifies it. The 
ranking score of the other webpages within the website 
now strongly depend on the confidence value of the entry 
page. If the confidence w.r.t. the target class is rather 
high, then additional pages are examined also. If the 
classification result is rather uncertain, however, the 
ranking scores tends to be rather low and it is likely that 
the additional pages won’t be visited during the crawl. For 
the task of website retrieval this behaviour is unsuitable. 
If the relevance of the entry page is hard to decide, it 
would make sense to examine additional pages from the 
site in order to achieve more reliable classification. On the 

other hand, if the relevance of the entry page is very 
certain, it is wasteful to proceed crawling to discover the 
obvious. Our proposed website crawler handles candidate 
sites that cannot reliably be classified based on the entry 
page more carefully than those where a certain 
classification can immediately be obtained. 
To demonstrate this difference, we ran the focused 
webpage crawler for each of the first 4 topics listed in 
table 1 and applied a website classifier to the results. 
Additionally, we performed two different website crawls 
to demonstrate the capability of the website crawler to 
find a suitable trade-off between accuracy and efficiency 
by adjusting the confidence threshold. The first one uses 
again the parameter setting providing maximum accuracy 
(pthreshold ≈ 90%). Thus, we can judge the overhead for the 
additional accuracy. The second crawl used a confidence 
value of 70%. Due to this rather soft breaking condition, 
the second crawl usually visited very few pages per 
website, but provided less reliable results.  
Figure 7 displays the average pprs-rate over the last 5000 
webpages for the first four topics displayed in table 1. 
Recall that the pprs-rate measures the average number of 
additional webpages that are downloaded until a new 
relevant website is discovered. Let us note that the crawls 
vary in length, since we terminated crawling after 
reaching at least 2500 relevant websites regardless of how 
many webpages where downloaded. 
For three out of four topics, even the website crawler 
aiming at more accurate results (pthreshold ≈ 90%) achieved 
a lower pprs-rate than the page crawler. For the topic 
mountain biking, e.g., it needed approximately 7 pages 
less than the page crawler to find an additional relevant 
domain at the end of the crawl. Thus, even when returning  
more reliable results, the website crawler in most cases 
gained an efficiency advantage compared to the page 
crawler. 
For all topics, the website crawler with a 70 % confidence 
threshold clearly outperformed the two comparison 
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Figure 7: pprs-rates (average of last 5000 pages) for each 
topic and each crawler. 
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Figure 6: Website harvest rates (average of last 1000 
pages) for each topic and each weighting. 
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partners with respect to efficiency. For the topic 
astronomy, e.g., it visited only about five additional 
webpages until it retrieved another relevant site. Due to 
the large number of results, we could not verify the entire 
result set, but a manual analysis of a sample supported our 
claim of more reliable results even for the 70% website 
crawler. To conclude, our experimental evaluation 
demonstrates that a focused website crawler is, for similar 
accuracy requirements, clearly more efficient for 
retrieving relevant websites than a focused webpage 
crawler with website post-processing. In an alternative 
scenario, when achieving a comparable pprs-rate, the 
focused website crawler returns more accurate results. 

6. CONCLUSIONS  
When searching the web, there are many applications 
targeting whole websites rather than single webpages. For 
that purpose, we introduced a focused crawler directly 
searching for relevant websites instead of webpages. The 
proposed two-level architecture allows us to control the 
number of pages to be downloaded from each website and 
to find a good trade-off between accurate classification 
and efficient crawling. The external crawler views the 
web as a graph of linked websites, selects the websites to 
be examined next and invokes internal crawlers. An 
internal crawler views the webpages of a single given 
website and performs focused page crawling within that 
website. In our experimental evaluation we demonstrated 
that reliable website classification requires to visit more 
than one but less than all pages of a given site. 
Furthermore, we compared our proposed crawler to a 
focused webpage crawler that handles the concept of 
websites in a corresponding step of post-processing. For 
the same efficiency (measured by the number of pages 
downloaded per relevant site), the website crawler 
achieved significantly higher classification accuracy than 
its comparison partner. For comparable accuracy, the 
website crawler needed a considerably smaller rate of 
pages visited per relevant site. These results support our 
claim that in order to achieve high classification accuracy 
and efficiency of crawling, a focused website crawler 
requires a two-level architecture and corresponding crawl 
strategies with an explicit concept of websites.  
For future work, we plan to develop more specific internal 
and external crawling strategies. Furthermore, we will 
investigate the crawling of commercial websites that are 
not strongly linked to each other due to their competitive 
nature. In these cases, spotting hub pages seems to be 
more important than for crawling broad topics on the web. 
Another highly interesting direction is the use of website 
crawling to provide a filter for crawling highly specific 
content from the web. The idea is to first spot websites 
that are likely to contain the specific information. 
Afterwards these websites can be scanned for a webpage 
containing the specific information. 
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