
AWESOME – A Data Warehouse-based System for Adaptive
Website Recommendations

Andreas Thor Erhard Rahm

University of Leipzig, Germany
{thor, rahm}@informatik.uni-leipzig.de

Abstract
Recommendations are crucial for the success of
large websites. While there are many ways to de-
termine recommendations, the relative quality of
these recommenders depends on many factors
and is largely unknown. We propose a new clas-
sification of recommenders and comparatively
evaluate their relative quality for a sample web-
site. The evaluation is performed with
AWESOME (Adaptive website recommenda-
tions), a new data warehouse-based recommen-
dation system capturing and evaluating user
feedback on presented recommendations. More-
over, we show how AWESOME performs an
automatic and adaptive closed-loop website op-
timization by dynamically selecting the most
promising recommenders based on continuously
measured recommendation feedback. We pro-
pose and evaluate several alternatives for dy-
namic recommender selection including a power-
ful machine learning approach.

1 Introduction
Recommendations are crucial for the success of large web
sites to effectively guide users to relevant information. E-
commerce sites offering thousands of products cannot
solely rely on standard navigation and search features but
need to apply recommendations to help users quickly find
“interesting” products or services. With many users and
products manual generation of recommendations is much
too laborious and ineffective. Hence a key question be-
comes how should recommendations be generated auto-
matically to optimally serve the users of a website.

There are many ways to automatically generate rec-
ommendations taking into account different types of in-
formation (e.g. product characteristics, user characteris-
tics, or buying history) and applying different statistical or
data mining approaches ([JKR02], [KDA02]). Sample
approaches include recommendations of top-selling prod-
ucts (overall or per product category), new products, simi-
lar products, products bought together by customers,
products viewed together in the same web session, or
products bought by similar customers. Obviously, the
relative utility of these recommendation approaches (rec-
ommenders for short) depends on the website, its users
and other factors so that there cannot be a single best ap-
proach. Website developers thus have to decide about
which approaches they should support and where and
when they should be applied. Surprisingly, little informa-
tion is available in the open literature on the relative qual-
ity of different recommenders. Hence, one focus of our
work is an approach for comparative quantitative evalua-
tions of different recommenders.

Advanced websites, such as Amazon [LSY03], sup-
port many recommenders but apparently are unable to
select the most effective approach per user or product.
They overwhelm the user with many different types of
recommendations leading to huge web pages and reduced
usability. While commercial websites often consider the
buying behaviour for generating recommendations, the
usage (navigation) behaviour on the website remains
largely unexploited. We believe this a major shortcoming
since the navigation behaviour contains detailed informa-
tion on the users’ interests not reflected in the purchase
data. Moreover, the web usage behaviour contains valu-
able user feedback not only on products or other content
but also on the presented recommendations. The utiliza-
tion of this feedback to automatically and adaptively im-
prove recommendation quality is a major goal of our
work. Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

AWESOME (Adaptive website recommendations) is a
new data warehouse-based website evaluation and rec-
ommendation system under development at the University
of Leipzig. It contains an extensible library of recommen-
der algorithms that can be comparatively evaluated for
real websites based on user feedback. Moreover,

384

AWESOME can perform an automatic closed-loop web-
site optimization by dynamically selecting the most prom-
ising recommenders for a website access. This selection is
based on the continuously measured recommendation
quality of the different recommenders so that AWESOME
automatically adapts to changing user interests and chang-
ing content. To support high performance and scalability,
quality characteristics of recommenders and recommenda-
tions are largely precomputed. AWESOME is fully op-
erational and in continuous use at a sample website; adop-
tion to further sites is in preparation.

The main contributions of this paper are as follows:
- Presentation of the AWESOME architecture for

warehouse-based recommender evaluation and for
scaleable adaptive website recommendations

- A new classification of recommenders for websites
supporting a comparison of different approaches.
We show how sample approaches fit the classifica-
tion and propose a new recommender for users
coming from search engines.

- A comparative quantitative evaluation of several
recommenders for a sample website. The consid-
ered recommenders cover a large part of our classi-
fication’s design space.

- Description and comparative evaluation of several
rule-based approaches for dynamic recommender
selection. In particular, a machine learning ap-
proach for feedback-based recommender selection
is presented.

In the next section we present the AWESOME archi-
tecture and the underlying data warehouse approach. We
then outline our recommender classification and sample
recommenders (Section 3). Section 4 contains the com-
parative evaluation of several recommenders for a non-
commercial website. In Section 5 we describe and evalu-
ate approaches for dynamic recommender selection. Re-

lated work is briefly reviewed in Section 6 before we con-
clude.

Application
Server

Application
Server

User historyUser history

User
Data
User
Data

Content
Data

Content
Data

Recommender
Selection

Recommender
Selection Recommender

Library
Recommender

Library
Precomputed

Recommendations
Precomputed

Recommendations

Web Data
Warehouse
Web Data

Warehouse

SelectionSelection Recom-

mender

Recom-

mender

Recommender
Evaluation

Recommender
Evaluation

Web Usage
Analysis

Recommendation

feedback

User history

Current context

Presented
Recommendations

Presented
Recommendations

ETL process

User history &

Recommendation feedback

RecommendationsRecord web access and recommendation feedback
Rec.
Filter
Rec.
Filter

Figure 1: AWESOME architecture

2 Architecture

2.1 Overview

Fig. 1 illustrates the overall architecture of AWESOME
which is closely integrated with the application server
running the website. AWESOME is invoked for every
website access, specified by a so-called context including
information from the current HTTP request such as URL,
timestamp and user-related data. For such a context,
AWESOME dynamically generates a list of recommenda-
tions which are displayed by the application server to-
gether with the requested website content. Recommenda-
tions are automatically determined by a variety of algo-
rithms from an extensible recommender library. The rec-
ommenders use information on the usage history of the
website and additional information maintained in a web
data warehouse. The recommendations are subject to a
final filter step to avoid the presentation of unsuitable or
irrelevant recommendations (e.g., recommendation of the
current page or the homepage).

Dynamic selection of recommendations is a two-step
process. For a given context, AWESOME first selects the
most appropriate recommender(s). This recommender
selection is controlled by a moderate number of selection
rules. For evaluation purposes, we support several selec-
tion strategies for determining and adapting these rules, in
particular automatic approaches based on user feedback
on previously presented recommendations. This recom-
mendation feedback is also recorded in the web data
warehouse. For the chosen recommender(s), the best rec-
ommendations for the current context are selected in the
second step. For performance reasons, these recommenda-

385

tions are precomputed (and periodically refreshed) and
can thus quickly be looked up at runtime.

Separating the selection of recommenders and recom-
mendations makes it easy to add new recommenders.
Moreover, using recommendation feedback at the level of
recommenders is simpler and more stable than trying to
use this feedback for individual recommendations, e.g.
specific web pages or products. One problem with the
latter approach is that individual pages/products are fre-
quently added and that there is no feedback available for
such new content. Conversely, removing content would
result in a loss of the associated recommendation feed-
back.

AWESOME is based on a comprehensive web data
warehouse integrating information on the website struc-
ture and content (e.g., product catalog), website users and
customers, the website usage history and recommendation
feedback. The application server continuously records the
users’ web accesses and which presented recommenda-
tions have been and which ones have NOT been followed.
During an extensive ETL (extract, transform, load) proc-
ess (including data cleaning, session and user identifica-
tion) the usage data and recommendation feedback is
added to the warehouse.

The warehouse serves several purposes. Most impor-
tantly it is the common data platform for all recommen-
ders and keeps feedback for the dynamic recommender
selection thus enabling an automatic closed-loop website
optimization. However, it can also be used for extensive
offline evaluations, e.g., using OLAP tools, not only for
web usage analysis but also for a comparative evaluation
of different recommenders and of different strategies for
recommender selection. This functionality of AWESOME
allows us to systematically evaluate the various ap-
proaches under a large range of conditions. It is also an
important feature for website designers to fine-tune the
recommendation system, e.g. to deactivate or improve
less effective recommenders.

The current AWESOME implementation runs on dif-
ferent servers. The warehouse is on a dedicated machine
running MS SQL server. The recommendation engine
runs on a Unix-based application server where the pre-
computed recommendations and selection rules are main-
tained in a MySQL database. In the following, we provide
some more details on the ETL process and the warehouse.
More information on the recommenders and selection
strategies are presented in the subsequent sections.

Page requested page
Date, Time date and time of the request
Client IP address of the user’s computer
Referrer referring URL
Session ID session identifier
User ID user identifier

a) Web usage log

Pageview ID page view where recommen-dation
has been presented

Recommendation recommended content
Position position of this recommendation

inside a recommendation list
Recommender recommender that generated the

recommendation
Strategy strategy that selected the applied rec-

ommender

b) Recommendation log

Table 1: Log file formats

2.2 ETL process, data warehouse

The ETL workflow to refresh the data warehouse is exe-
cuted periodically, e.g. once a day. It processes the web
log files of the application server and other data sources
(e.g., on the website and users). The standard log files of
web servers are not sufficient for our purposes because to
obtain sufficient recommendation feedback we need to
record all presented recommendations and whether or not

they have been followed. We thus decided to use tailored
application server logging to record this information. Ap-
plication server logging also enables us to apply effective
approaches for session and user identification and early
elimination of crawler accesses, thus supporting high data
quality.

The AWESOME extensions of the application server
are implemented by PHP programs and run together with
standard web servers such as Apache. We use two log
files: a web usage and a recommendation log file with the
formats shown in Table 1. The recommendation log file
records all presented recommendations and is required for
our recommender evaluation. It allows us to determine
positive and negative user feedback, i.e. whether or not a
presented recommendation was clicked. For each pre-
sented recommendation, we also record the relative posi-
tion of the recommendation on the page, the generating
recommender and the used selection strategy.

The web usage log file adds two elements to the stan-
dard Common Log Format (CLF) of common web serv-
ers: session ID and user ID. The session ID is generated
by the application server and stored inside a temporary
cookie on the user’s computer (if enabled). These cookies
allow a highly reliable session reconstruction [SMB+03].
If the user does not accept temporary cookies, we use
heuristic algorithms using client and referrer information
for session identification [CMS99]. User IDs are stored
inside permanent cookies and are used for user identifica-
tion. If the user does not accept permanent cookies, user
recognition is not done. About 85% of the users of our
prototype website accept at least temporary cookies.
Hence, cookies support a good balance between data qual-
ity and user acceptance, in contrast to client side tracking
approaches requiring application of java applets or the
like [SBF01].

We use several approaches to detect and eliminate
web crawler requests. First, we utilize an IP address list of
known crawlers (e.g., from Google) to avoid logging their

386

accesses. In addition, AWESOME eliminates all sessions
containing special page views that can only be reached by
following links invisible to humans. Finally, we analyze
the navigation behavior and attributes like session length,
average time between two requests and number of re-
quests with blank referrer to distinguish between human
user sessions and web crawler sessions [TK00].

The web data warehouse is a relational database with a
“galaxy” schema consisting of several fact tables sharing
several dimensions. Like in previous approaches on web
usage analysis [KM00] we use separate fact tables for
page views, sessions, and – for commercial sites –
purchases. In addition we use a recommendation fact table
as shown in Fig. 2. The details of the dimension and fact
tables depend on the website, e.g. on how the content
(e.g., products), users or customers are categorized. In the
example of Fig. 2 there are two content dimensions for
different hierarchical categorizations. Other dimensions
such as user, customer, region and date are also hierarchi-
cally organized to allow evaluations at different levels of
detail. The recommendation fact table represents the posi-
tive and negative user feedback on recommendations.
Each record in this table refers to one presented recom-
mendation. The ID attributes are foreign keys on the vari-
ous dimension tables and identify the recommender algo-
rithm, the recommended content, customer and details of
the context (content, user, time, etc.) for which the rec-
ommendation was presented. Three Boolean measures
are used to derive recommendation quality metrics (see
Section 4). Accepted indicates whether or not the recom-
mendation was directly accepted (clicked) by the user,
while Viewed specifies whether the recommended content
was viewed later during the respective session (i.e. the
recommendation was a useful hint). Purchased is only
used for e-commerce websites to indicate whether or not
the recommended product was purchased during the cur-
rent session.

The ETL process updates all affected warehouse di-
mension and fact tables. Moreover, the quality metrics for
all recommenders as well as the rules for dynamic recom-
mender selection are updated(see Sections 4 and 5).

3 Recommenders

User

Content Type 1

Content Type 2 Region

Time

Date

Content ID
Recommender ID
Recommendation ID
Date ID
Time ID
Region ID
User ID
Customer ID
Session ID

Accepted
Viewed
Purchased

Recommender

Customer

Fact table RecommendationDimension tables Dimension tables

Figure 2: Schema subset for recommendations (simplified)

A recommender generates for a given web page request,
specified by a context, an ordered list of recommenda-
tions. Such recommendations link to current website con-
tent, e.g. pages describing a product or providing other
information or services. Recommendations usually are
presented as titled links with a short description or pre-
view.

To calculate recommendations, recommenders can
make use of the information available in the context as
well as additional input, e.g. recorded purchase and web
usage data. We distinguish between three types of context
information relevant for determining recommendations:
- Current content, i.e. the currently viewed content

(page view, product, …) and its related information
such as content categories

- Current user, e.g. identified by a cookie, and associ-
ated information, e.g. her previous purchases, previous
web usage, interest preferences, or current session

- Additional information available from the HTTP re-
quest (current date and time, user’s referrer, …)

3.1 Recommender classification

Given the many possibilities to determine recommenda-
tions, there have been several attempts to classify recom-
menders ([Bu02], [KDA02], [SKR01], [TH01]). These
classifications typically started from a given set of recom-
menders and tried to come up with a set of criteria cover-
ing all considered recommenders. This led to rather com-
plex and specialized classifications with criteria that are
only relevant for a subset of recommenders. Moreover,
new recommenders can easily require additional criteria
to keep the classification complete. For example,
[SKR01] introduce a large number of specialized criteria
for e-commerce recommenders such as input from target
customers, community inputs, degree of personalization,
etc.

To avoid these problems we propose a general top-
level classification of website recommenders focusing on
the usable input data, in particular the context informa-
tion. This classification may be refined by taking addi-
tional aspects into account, but already leads to a distinc-
tion of major recommender types thus illustrating the de-
sign space. Moreover, the classification helps to compare
different recommenders and guides us in the evaluation of
different approaches.

Fig. 3 illustrates our recommender classification and
indicates where sample approaches fit in. We classify rec-
ommenders based on three binary criteria, namely
whether or not they use information on the current con-
tent, the current user, and recorded usage (or purchase)
history of users. This leads to a distinction of eight types
of recommenders (Fig. 3). We specify each recommender
type by a three-character-code describing whether (+) or
not (–) each of the three types of information is used. For
instance, type [+,+,–] holds for recommenders that use

387

No Yes

No

No Yes

Yes

No

No Yes

No

No Yes

Yes

Yes

Recommender

Current
content

Current
user

User
history

Sample
approaches

•Most recent
•Fixed, e.g.
special offers

•Random

•Most freq.
viewed
(purchased)

•Highest
increase rate

•„New for
you“

•Search
engine
recom-
mender

•Collaborative
Filtering

•Usage
profiles

•Similarity
•Random in
current
category

•Association
rules (e.g.,
most freq.
successor)

•„New for you“
in current
category

•Association
rules in a
user group

Type [–,–,–] [–,–,+] [–,+,–] [–,+,+] [+,–,–] [+,–,+] [+,+,–] [+,+,+]

Figure 3: Top-level classification of recommenders

information on the current content and current user, but
do not take into account user history.

The first classification criteria considers whether or
not a recommender uses the current content, i.e. the cur-
rently requested page or product. A sample content-based
approach (type [+,–,–]) is to recommend content that is
most similar to the current content, e.g. based on text-
based similarity metrics such as TF/IDF. Content-based
recommenders may also use generalized information on
the content category (e.g., to recommend products within
the current content category). Sample content-insensitive
recommenders (type [–,–,–]) are to recommend the most
recent content, e.g. added within the last week, or to give
a fixed recommendation at each page, e.g. for a special
offer.

At the second level we consider whether or not a rec-
ommender utilizes information on the current user. User-
based approaches could thus provide special recommen-
dations for specific user subsets, e.g. returning users or
customers, or based on personal interest profiles. Recom-
menders could also recommend content for individuals,
e.g. new additions since a user’s last visit (“New for
you”). We developed a new recommender of type [–,+,–]
for users coming from a search engine such as Google.
This search engine recommender (SER) utilizes that the
HTTP referrer information typically contains the search
terms (keywords) of the user [KMT00]. SER recommends
the website content (different from the current page that
was reached from the search engine) that best matches
these keywords. The SER implementation in AWESOME
utilizes a predetermined search index of the website to
quickly provide the recommendations at runtime.

With the third classification criteria we differentiate
recommenders by their use of user history information.
For commercial sites, recommenders can consider infor-
mation on previous product purchases of customers. An-
other example is the evaluation of the previous navigation

patterns of website users. Simple recommenders of type
[–,–,+] recommend the most frequently purchased/viewed
content (top-seller) or the content with the highest recent
increase of interest.

While not made explicit in the classification, recom-
menders can utilize additional information than on current
content, current user or history, e.g. the current date or
time. Furthermore, additional classification criteria could
be considered, such as metrics used for ranking recom-
mendations (e.g. similarity metrics, relative or absolute
access/purchase frequencies, recency, monetary metrics,
etc.) or the type of analysis algorithm (simple statistics,
association rules, clustering, etc.).

3.2 Additional approaches

Interesting recommenders often consider more than one of
the three main types of user input. We briefly describe
some examples to further illustrate the power and flexibil-
ity of our classification and to introduce approaches that
are considered in our evaluation.

[+,–,+]: Association rule based recommenders such as
“Users who bought this item also bought …”, made fa-
mous by Amazon [LSY03], consider the current content
(item) and purchase history but are independent of the
current user (i.e. every user sees the same recommenda-
tions for an item). Association rules can also be applied
on web usage history to recommend content which is fre-
quently viewed together within a session.

[–,+,+] Information on navigation/purchase history
can be used to determine usage profiles [MDL+02] or
groups of similar users, e.g. by collaborative filtering
approaches. Recommenders can assign the current user to
a user group (either based on previous sessions or the cur-
rent session) and recommend content most popular for
this group.

In our evaluation we test a personal interests recom-
mender, which is applicable to returning users. It deter-

388

mines the most frequently accessed content categories per
user as an indication of her personal interests. When the
user returns to the website, the most frequently accessed
content of the respective categories is recommended.

http://dbs.uni-leipzig.de
(3109 available pages/2000 page views daily)

Study
(89%/82%)

Research
(6%/8%)

Navigation
(0.8%/6%)

Course
Material

Exercises ... Projects Publi-
cations

... Index ...Menu

...

Figure 4: Example of content hierarchy

[+,+,+] A recommender of this type could use both
user groups (as discussed for [–,+,+]) and association
rules to recommend the current user those items that were
frequently accessed (purchased) by similar users in addi-
tion to the current content.

4 Recommender evaluation
The AWESOME prototype presented in Section 2 allows
us to systematically evaluate recommenders for a given
website. In Section 4.2, we demonstrate this for a sample
non-commercial website. Before that, we introduce sev-
eral metrics for measuring recommendation quality which
are needed for our evaluation of recommenders and se-
lection strategies.

4.1 Evaluation metrics

To evaluate the quality of presented recommendations we
utilize the Accepted, Viewed, and Purchased measures
recorded in the recommendation fact table (Section 2.2).
The first two are always applicable, while the last one
only applies for commercial websites. We further differ-
entiate between metrics at two levels of granularity,
namely with respect to page views and with respect to
user sessions.

Acceptance rate is a straight-forward, domain-
independent metric for recommendation quality. It indi-
cates the share of page views for which at least one pre-
sented recommendation was accepted, i.e. clicked. The
definition thus is

AcceptanceRate = |PA| / |P|
where P is the set of all page views containing a recom-
mendation and PA the subset of page views with an ac-
cepted recommendation.
Analogously we define a session-oriented quality metric

SessionAcceptanceRate = |SA| / |S|
where S is the set of all user sessions and SA the set of
sessions for which at least one of the presented recom-
mendations was accepted.

Recommendations can also be considered of good
quality if the user does not directly click them but reaches
the associated content later in the session (hence, the rec-
ommendation was a correct prediction of user interests).
Let PV be the set of all page views for which any of the
presented recommendations was reached later in the user
session. We define

ViewRate = |PV| / |P|
The corresponding metric at the session level is

SessionViewRate = |SV| / |S|
where SV is the set of all user sessions with at least one
pageview in PV. Obviously, every accepted recommenda-

tion is also a viewed recommendation, i.e. PA ⊆ PV ⊆ P
and SA ⊆ SV ⊆ S, so that view rates are always larger than
or equal to the acceptance rates.

In commercial sites, product purchases are of primary
interest. Note that purchase metrics should be session-
oriented because the number of page views needed to
finally purchase a product is of minor interest. A useful
metric for recommendation quality is the share of sessions
SAP containing a purchase that followed an accepted rec-
ommendation of the product. Hence, we define the fol-
lowing metric:

ReommendedPurchaseRate = |SAP| / |S|
Obviously, it holds SAP ⊆ SA ⊆ S.

4.2 Sample evaluation

We implemented and tested the AWESOME approach for
recommender evaluation for a sample website, namely the
website of our database group (http://dbs.uni-leipzig.de).
We use two content hierarchies and Fig. 4 shows a frag-
ment of one of them together with some numbers on the
relative size and access frequencies. The website contains
more than 3100 pages and receives about 2000 human
page views per day (excluding accesses from members of
our database group and from crawlers). As indicated in
Fig. 4, about 89% of the content is educational study ma-
terial, which receives about 82% of the page views.

We changed the existing website to show two recom-
mendations on each page so that approx. 4000 recom-
mendations are presented every day. For each page view
AWESOME dynamically selects one recommender and
presents its two top recommendations (see example in
Fig. 5) for the respective context as described in Sec-
tion 2. We implemented and included more than 100 rec-
ommenders in our recommender library. Many of them
are variations of other approaches, e.g. considering differ-
ent user categories or utilizing history data for different
periods of time. Due to space constraints we only present
results for the six representative recommenders of differ-
ent types listed in Table 2, which were already introduced
in Section 3. The presented results refer to the period from
December 1st, 2003 until January 31st, 2004.

389

R
Type

[–,–,–]
[–,–,+]
[–,+,–]
[–,+,+]
[+,–,–]
[+,–,+]

The
to aggr
for a h
mensio
ders. F
accepta
accepta
1.34%;
contain
accepta
25.24%
by the f
gation
and tha
tions u
reporte
than o
absolut
the rela

Tab

1 The re
come fro
quality m
acceptan
Purchas
ecommender User type
Name New

users
Returning

users
Σ

Most recent (0.42%) (0.00%) (0.38%)
 Most frequent 1.00% 0.62% 0.92%
 SER 2.84% 1.95% 2.79%
 Personal Interests – 1.54% 1.54%
 Similarity 1.65% 0.82% 1.56%
 Association Rules 1.16% 0.68% 1.08%
Σ 1.82% 1.09% 1.69%

Table 2: Acceptance rate vs. user type
 AWESOME warehouse infrastructure allows us
egate and evaluate recommendation quality metrics
uge variety of constellations (combination of di-
n attributes), in particular for different recommen-
or our evaluation we primarily use (page view)
nce rates as the most precise metric1. The average
nce rate for all considered recommenders was
 the average view rate was 14.54%. For sessions
ing more than one page view the average session
nce rate was 8.16%, and the session view rate was
. These rather low acceptance rates are influenced
act that every single web page contains a full navi-
menu with 78 links (partly nested in sub menus)
t we consciously do not highlight recommenda-
sing big fonts or the like. Note however, that
d “click-tru” metrics are in a comparable range
ur acceptance rates [CLP02]. Furthermore, the
e values are less relevant for our evaluation than
tive differences between recommenders.
le 2 shows the observed acceptance rates for the

six recommenders differentiating
between new and returning users.
Fig. 6 compares the recommenders
w.r.t. the current page type. As ex-
pected there are significant differ-
ences between recommenders. For
our website the search engine rec-
ommender (SER) achieved the best
average acceptance rates (2.79%),
followed by the similarity and per-
sonal interests recommenders. On
the other hand, simple approaches
such as recommending the most
frequently accessed or most recent
content achieved only poor average
results.

To more closely analyze the dif-
ferences for different user and con-
tent types, one has to take into ac-

count
For in
applic
site).
from
users
recom
were
specti
cent r
minim
conte

 commendations presented during a session typically

m different recommenders making the session-oriented
etrics unsuitable for evaluating recommenders. Session

ce rates will be used in Section 5. The Recommended-
eRate does not apply for non-commercial sites.

Ta
recom
perso
mend
(e.g.,
releva
that t
accep
sion (
sessio
vious

Fi
ders d
mend
Other
the b
pages
plicab
mend

W
trate
tribut
carefu
which
tion.

2 Layo
rates.
page t
compa

390

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

Navigation Study Others

Most frequent
SER
Personal Interests
Similarity
Association Rules

Figure 6 : Acceptance rate vs. page type
 that some recommenders are not always applicable.
stance, the personal interests recommender is only
able for returning users (about 15% for our web-
Similarly, SER can only be applied for users coming
a search engine, 95% of which turned out to be new
of the website. In Fig. 6 we only show results for
menders with a minimum support of 5% i.e. they
applied for at least 5% of all page views of the re-
ve page type. In Table 2 the results for the most re-
ecommender are shown in parentheses because the
al support could not be achieved due to only few

nt additions during the considered time period.
ble 2 shows that new users are more likely to accept
mendations than returning users. Except for the

nal interests recommender, this holds for all recom-
ers. An obvious explanation is that returning users
students for our website) often know where to find
nt information on the website. We also observed
he first page view of a session has a much higher
tance rate (4.82 %) than later page views in a ses-
1.28 %). In the latter value, the last page view of a
n is not considered, because its acceptance rate ob-
ly equals 02.
g. 6 illustrates that the relative quality of recommen-
iffers for different contexts. While the SER recom-

er achieved the best average results for Study and
s pages, the most frequent recommender received
est user feedback on navigation pages. For study
 and non search engine users (when SER is not ap-
le), either the personal interests or similarity recom-

er promise the best recommendation quality.
hile these observations are site-specific they illus-
that the best recommender depends on context at-
es such as the current content or current user. A
l OLAP analysis may help to determine manually
 recommender should be selected in which situa-
However, for larger and highly dynamic websites

Figure 5:

Recommendation
screenshot

ut aspects and other factors also influence acceptance

For instance, from the two recommendations shown per
he acceptance rate of the first one was about 50% higher
red to the second recommendation.

{ Usertype=’new user’ AND ContentCategory1=’Navigation’ } ➠ ‘Most frequent’ [0.6]
{ Referrer=’search engine’ } ➠ ‘SER’ [0.8]
{ Clienttype=’university’ AND Usertype=’returning user’ } ➠ ‘Personal interest’ [0.4]

Figure 7: Examples of selection rules

this is difficult and labor-intensive so that recommender
selection should be automatically optimized.

5 Adaptive recommender selection
AWESOME supports a dynamic selection of recommen-
ders for every website access. This selection is based on
selection rules. Rules may either be manually defined or
automatically generated. We first present the structure and
use of selection rules. We then propose two approaches to
automatically generate recommendation rules which util-
ize recommendation feedback to adapt to changing condi-
tions. Finally we present a short evaluation to compare the
different approaches for recommender selection.

5.1 Rule-based recommender selection

Recommender selection entails the dynamic selection of
the most promising recommenders for a given context.
Therefore selection rules have the following structure:

ContextPattern ➠ recommender [weight]

Here context pattern is a sequence of values from dif-

ferent context attributes (which are represented as dimen-
sion attributes in our warehouse). Typically, only a subset
of attributes is specified implying that there is no value
restriction for the unspecified attributes. On the right hand
side of selection rules, recommender uniquely identifies
an algorithm of the recommender library and weight is a
real number specifying the importance of the rule. Fig. 7
shows some examples of such selection rules. In
AWESOME, we maintain all rules in a single Selection-
Rules table.

Selection rules allow a straight-forward and efficient
implementation of recommender selection. It entails a
match step to find all rules with a context pattern match-
ing the current context. The rules with the highest weights
then indicate the recommenders to be applied. The num-
ber of recommenders to choose is typically fixed. In this
paper, we focus on the selection of only one recommen-
der, i.e. we choose the rule with the highest weight. The
SQL query of Fig. 8 can be used to perform the sketched
selection process. Since there may be several matching
rules per recommender, the ranking could also be based
on the average instead of the maximal weight per recom-
mender.

Example: Consider a new user who reaches the web-
site from a search engine. If her current page belongs to
the navigation category, only the first two rules in Fig. 7
match. We select the recommender with the highest
weight – SER.

The rule-based recommender selection is highly flexi-
ble. Selection rules allow the dynamic consideration of
different parts of the current context, and the weights can
be used to indicate different degrees of certainty. Rules
can easily be added, deleted or modified independently
from other rules. Moreover, rules can be specified manu-
ally, e.g. by website editors, or be generated automati-
cally. Another option is a hybrid strategy with automati-
cally generated rules that are subsequently modified or
extended manually, e.g. to enforce specific considera-
tions.

5.2 Generating selection rules

We present two approaches to automatically generate se-
lection rules, which have been implemented in
AWESOME. Both approaches use the positive and nega-
tive feedback on previously presented recommendations.
The first approach uses the aggregation and query func-
tionality of the data warehouse to determine selection
rules. The second approach is more complex and uses a
machine learning algorithm to learn the most promising
recommender for different context constellations.

5.2.1 Query-based top recommender

This approach takes advantage of the data warehouse
query functionality. It generates selection rules as follows:

1. Find all relevant context patterns in the recom-
mendation fact table, i.e. context patterns ex-
ceeding a minimal support

2. For every such context pattern P do
a) Find recommender R with highest acceptance

rate A
b) Add selection rule P -> R [A]

3. Delete inapplicable rules

The first step ensures that only context constellations
with a minimal number of occurrences are considered.
This is important to avoid generalization of very rare and
special situations (overfitting problem). Note that step 1
checks all possible context patterns, i.e. any of the content
attributes may be unspecified, which is efficiently sup-
ported by the CUBE operator (SQL extension: GROUP
BY CUBE) [GBL+95]. AWESOME is based on a com-
mercial RDBMS providing this operator. For every such
context pattern, we run a query to determine the recom-
mender with the highest acceptance rate and produce a
corresponding selection rule.

Finally, we perform a rule pruning taking into account
that we only want to determine the top recommender per
context. We observe that for a rule A with a more general

391

SELECT Recommender, MAX (Weight)
FROM SelectionRules
WHERE ((RuleContextAttribute1 = CurrentContextAttribute1)
 OR (RuleContextAttribute1 IS NULL))
AND ((RuleContextAttribute2 = CurrentContextAttribute2)
 OR (RuleContextAttribute2 IS NULL))
AND …
GROUP BY Recommender
ORDER BY MAX(Weight) DESC

Figure 8: SQL query for selection strategy execution

context pattern and a higher weight than rule B, the latter
will never be applied (every context that matches rule B
also matches rule A, but A will be selected due to its
higher weight). Hence, we eliminate all such inapplicable
rules in step 3 to limit the total number of rules.

5.2.2 Machine-learning approach

Recommender selection can be interpreted as a classifier
selecting one recommender from a predefined set of rec-
ommenders. Hence, machine learning (classification) al-
gorithms can be applied to generate selection rules. Our
approach utilizes a well-known classification algorithm
constructing a decision tree based on training instances
(Weka J48 algorithm [WF00]). To apply this approach,
we thus have to transform recommendation feedback into
training instances. An important requirement is that the
generation of training data must be completely automatic
so that the periodic re-calculation of selection rules to
incorporate new recommendation feedback is not delayed
by the need of human intervention.

The stored recommendation feedback indicates for
each presented recommendation, its associated context
attributes, and the used recommender whether or not the
recommendation was accepted. A naïve approach to gen-
erate training instances would simply select a random
sample from the recommendation fact table (Fig. 2), e.g.
in the format (context, recommender, accepted). How-
ever, classifiers using such training instances would rarely
predict a successful recommendation since the vast major-
ity of the instances may represent negative feedback (>
98% for the sample website). Ignoring negative feedback
is also no solution since the number of accepted recom-
mendations is heavily influenced by the different applica-
bility of recommenders and not only by their recommen-
dation quality. Therefore, we propose a more sophisti-
cated approach that determines the number of training
instances according to the acceptance rates:

1. Find all relevant feedback combinations (con-

text, recommender)
2. For every combination c do

a) Determine acceptance rate for c. Scale and
round it to compute integer weight nc

b) Add instance (context, recommender) nc
times to training data

3. Apply decision tree algorithm
4. Rewrite decision tree into selection rules

In Step 1, we do not evaluate context patterns (as in

the previous approach), which may leave some context
attributes unspecified. We only consider fully specified
context attributes and select those combinations exceed-
ing a minimal number of recommendation presentations.
For each such relevant combination c (context, recom-
mender), we use its acceptance rate to determine the

number of training instances nc. To determine nc, we line-
arly scale the respective acceptance rate from the 0 to 1
range by multiplying it with a constant k and rounding to
an integer value. For example, assume 50 page views for
the combination of context (“returning user”, “search
engine”, “Navigation”, …) and recommender “Most fre-
quent”. If there are 7 accepted recommendations for this
combination (i.e. acceptance rate 0,14) and k=100, we
add nc =14 identical instances of the combination to the
training data. This procedure ensures that recommenders
with a high acceptance rate produce more training in-
stances than less effective recommenders and therefore
have a higher chance to be predicted.

The resulting set of training instances is the input for
the classification algorithm producing a decision tree.
With the help of cross-validation, all trainings instances
are simultaneously used as test instances. The final deci-
sion tree can easily be rewritten into selection rules. Every
path from the root to a leaf defines a context pattern
where all unspecified context attributes are set to NULL.
Each leaf specifies a recommender and the rule weight is
set to the relative fraction of correctly classified instances
provided by the classification algorithm.

5.3 Evaluation of selection rules

To evaluate the effectiveness of the two presented selec-
tion strategies we tested them with AWESOME on the
sample website introduced in Section 4.2. For comparison
purposes we also evaluated two sets of manually specified
rules and a random recommender selection giving a total
of five approaches (see Table 3). For every user session
AWESOME uniformly selected one of the strategies; the
chosen strategy is additionally recorded in the recommen-
dation log file for evaluation purposes. We applied the
selection strategies from January 1st until February 25th,
2004.

Table 4 shows the average number of rules per selec-
tion strategy as well as the average delay to dynamically
select a recommender. Even for the two automatic ap-
proaches the number of rules is moderate (250 – 2000)
and permitted very fast recommender selection of less
than 20 ms on average for a Unix server (execution time
for the query in Fig. 8).

392

Name Description
Top-Rec Automatic strategy of section 5.2.1 (query-based)
Decision Tree Automatic strategy of section 5.2.2 (machine learning)
Manual 1 The most frequently viewed pages per content category are recommended. For returning users, this category is

derived from previous sessions of the current user. For new users, the category of the current page is used.
Manual 2 For search engine users, the search engine recommender is applied. Otherwise the content similarity recommen-

der (for course material pages) or association rule recommender (for other pages) is selected.
Random Random selection of a recommender

Table 3: Tested selection strategies

Table 4 also shows the average (page view) accep-
tance rates and session acceptance rates for the five selec-
tion strategies. The two automatic feedback-based strate-
gies for recommender selection (Top-Rec, Decision Tree)
showed significantly better average quality than random
and the first manual policy. The machine learning ap-
proach (Decision Tree) and the Manual2 policy were the
best strategies. Note that the very effective strategy Man-
ual2 utilizes background knowledge about the website
structure and typical user groups (students, researchers) as
well as evaluation results obtained after an extensive
manual OLAP analysis (partially presented in Section
4.2), such as the effectiveness of the search engine recom-
mender. The fact that the completely automatic machine
learning algorithm achieves comparable effectiveness is
thus a very positive result. It indicates the feasibility of
the automatic closed-loop optimization for generating
recommendations and the high value of using feedback to
significantly improve recommendation quality without
manual effort.

The comparison of the two automatic strategies shows
that the machine learning approach performs much better
than the query-based top recommender approach. The
decision tree approach uses significantly fewer rules and
was able to order the context attributes according to their
relevance. The most significant attributes appear in the
upper part of the decision tree and therefore have a big
influence on the selection process. On the other hand,
Top-Rec handles all context attributes equally and uses
many more rules. So recommender selection was fre-
quently based on less relevant attributes resulting in
poorer acceptance rates.

The warehouse infrastructure of AWESOME allows
us to analyze the recommendation quality of selection
strategies for many conditions, similar to the evaluation of
individual recommenders (Section 4.2). Figure 9 shows
the session acceptance rates of the best two selection
strategies w.r.t. user type, referrer, and entry page type,

i.e. the page type of the first session page view. We ob-
serve that the manual strategy is more effective for search
engine users by always applying the SER recommender to
them. This helped to also get slightly better results for
new users and sessions starting with an access to study
material. On the other hand, the machine learning ap-
proach was significantly more effective for users not com-
ing from search engines and returning users. These re-
sults indicate that the automatically generated selection
rules help generate good recommendations in many cases
without the need of extensive manual evaluations, e.g.
using OLAP tools. Still, overall quality can likely be im-
proved by adding a few manual rules (with high weight)
to incorporate background knowledge. We will investi-
gate such hybrid strategies in future work.

6 Related work
An overview of previous recommendation systems and
the applied techniques can be found in [JKR02], [KDA02]
and [SCD+00]. [LSY03] describes the Amazon recom-
mendation algorithms, which are primarily content (item)-
based and also heavily use precomputation to achieve
scalability to many users. [Bu02] surveys and classifies
so-called hybrid recommendation systems which combine
several recommenders. To improve hybrid recommenda-
tion systems, [SKR02] proposes to manually assign
weights to recommenders to influence recommendations.
[MN03] presents a hybrid recommendation system

S

Top
Dec
Ma
Ma
Ran
trategy Nr. of
rules

Selection
time

Acceptance
rate

Session
acceptance

rate
-Rec ~ 2000 ~ 14 ms 1.25 % 9.58 %
ision Tree ~ 250 ~ 12 ms 1.64 % 12.54 %

nual 1 24 ~ 13 ms 0.96 % 7.11 %
nual 2 5 ~ 13 ms 1.84 % 12.47 %
dom 137 ~ 19 ms 0.89 % 6.51 %

Table 4: Comparison of selection strategies
393
0%

5%

10%

15%

20%

25%

Retu
rn. New

Boo
km

ark

Sear
ch

eng
ine

Othe
rs

Navi
ga

tio
n

Stud
y

Othe
rs

Manual 2

Decision Tree

User Type Referrer
Session entry

page type
Figure 9: SessionAcceptanceRate w.r.t. user type, referrer, and

session entry page type.

switching between different recommenders based on the
current page’s position within a website. The Yoda sys-
tem [SC03] uses information on the current session of a
user to dynamically select recommendations from several
predefined recommendation lists. In contrast to
AWESOME, these previous hybrid recommendation sys-
tems do not evaluate or use recommendation feedback.

[LK01] sketches a simple hybrid recommendation sys-
tem using recommendation feedback to a limited extent.
They measure which recommendations produced by three
different recommenders are clicked to determine a weight
per recommender (with a metric corresponding to our
view rate). These weights are used to combine and rank
recommendations from the individual recommenders. In
contrast to AWESOME negative recommendation feed-
back and the current context are not considered for recom-
mender evaluation. Moreover, there is no automatic
closed-loop adaptation but the recommender weights are
determined by an offline evaluation.

The evaluation of recommendation systems and quan-
titative comparison of recommenders has received little
attention so far. [KCR02] monitored users that were told
to solve certain tasks on a website, e.g. to find specific
information. By splitting users in two groups (with rec-
ommendations vs. without) the influence of the recom-
mendation system is measured. Other studies [GH02],
[HC02] asked users to explicitly rate the quality of rec-
ommendations. This approach obviously is labor-
intensive and cannot be applied to compare many differ-
ent recommenders.

 [GH02] and [SKK+00] discuss several metrics for
recommendation quality, in particular the use of the in-
formation retrieval metrics precision and recall. The stud-
ies determine recommendations based on an offline
evaluation of web log or purchase data; the precision met-
ric, for instance, indicates how many of the recommenda-
tions were reached within the same session (thus corre-
sponding to our view rate). In contrast to our evaluation,
these studies are not based on really presented recom-
mendations and measured recommendation feedback so
that the predicted recommendation quality remains un-
verified.

In [HMA+02] a methodology is presented for evaluat-
ing two competing recommenders. It underlines the im-
portance of such an online evaluation and discusses dif-
ferent evaluation aspects. Cosley et. al. developed the
REFEREE framework to compare different recommen-
ders for the CiteSeer website [CLP02]. Click metrics
(e.g., how often a user followed a link or downloaded a
paper), which are similar to the acceptance rates used in
our study, are used to measure recommendation quality.

As an alternative to the two-level approach for select-
ing recommendations, we recently started to investigate
how to directly determine suitable recommendations
without prior selection of recommenders [GR04]. The
approach requires that different recommenders produce
comparable weights for individual recommendations.

Reinforcement learning approaches can be used to con-
sider user feedback for individual recommendations. A
comparative evaluation of this approach with the pre-
sented two-level scheme is subject to future work.

7 Summary
We presented AWESOME, a new data warehouse-based
website evaluation and recommendation system. It allows
the coordinated use of a large number of recommenders to
automatically generate website recommendations. Rec-
ommendations are dynamically determined by a flexible
rule-based approach selecting the most promising recom-
mender for the respective context. AWESOME supports a
completely automatic generation and optimization of se-
lection rules to minimize website administration overhead
and quickly adapt to changing situations. This optimiza-
tion is based on a continuous measurement of user feed-
back on presented recommendations. To our knowledge,
AWESOME is the first system enabling such a com-
pletely automatic closed-loop website optimization. The
use of data warehouse technology and precomputation of
recommendations support scalability and fast web access
times.

We presented a simple but general recommender
classification. It distinguishes eight types of recommen-
ders based on whether or not they consider input informa-
tion on the current content, current user and users history.
To evaluate the quality of recommendations and recom-
menders, we proposed the use of several acceptance rate
metrics based on measured recommendation feedback.
We used these metrics for a detailed comparative evalua-
tion of different recommenders and different recommen-
der selection strategies for a sample website. Our results
so far indicate that the use of machine learning is most
promising for an automatic feedback-based recommenda-
tion selection. The presented policy is able to automati-
cally determine suitable training data so that its periodic
re-execution to consider new feedback does not require
human intervention.

In future work, we will adopt AWESOME to addi-
tional websites, in particular e-shops, to further verify and
fine-tune the presented approach. We will investigate hy-
brid selection strategies where automatically generated
selection rules are complemented by a limited number of
manually specified rules utilizing site-specific optimiza-
tion criteria or specific background knowledge. Finally,
we will explore specific recommendation opportunities
such as selecting the best recommender for product bun-
dling (cross-selling).

Acknowledgements
We thank Nick Golovin and Robert Lokaiczyk for fruitful
discussions and help with the implementation. The first
author was funded by the German Research Foundation
within the Graduiertenkolleg “Knowledge Representa-
tion”.

394

References
[Bu02] Burke, R.: Hybrid Recommender Systems: Survey

and Experiments. User Modeling and User-Adapted
Interaction 12(4), 2002

[CMS99] Cooley, R., Mobasher, B., Srivastava, J.: Data
preparation for mining world wide web browsing pat-
terns. Knowledge and Information Systems. 1(1),
1999

[CLP02] Cosley, D., Lawrence, S., Pennock, D. M.:
REFEREE: An open framework for practical testing of
recommender systems using ResearchIndex. Proc.
28th VLDB conf., 2002

[GBL+95] J. Gray, A. Bosworth, A. Layman, H. Pirahesh.
Data cube: A relational aggregation operator gener-
alizing groupby, cross-tab, and sub-total. Proc. of the
12th EEE International Conference on Data Engineer-
ing (ICDE), 1995

[GH02] Geyer-Schulz, A., Hahsler, M.: Evaluation of
Recommender Algorithms for an Internet Information
Broker based on Simple Association rules and on the
Repeat-Buying Theory. Proc. of ACM WebKDD
Workshop, 2002

[GR04] Golovin, N., Rahm, E.: Reinforcement Learning
Architecture for Web Recommendations. Int. Conf. on
Information Technology (ITCC), 2004

[HC02] Heer, J., Chi, E. H.: Separating the Swarm: Cate-
gorization Methods for User Sessions on the Web.
Prof. Conf. on Human Factors in Computing Systems,
2002

[HMA+02] Hayes, C., Massa, P., Avesani, P., Cunning-
ham, P.: An on-line evaluation framework for recom-
mender systems. Proc. of Workshop on Personaliza-
tion and Recommendation in E-Commerce, 2002

[JKR02] Jameson, A., Konstan, J., Riedl, J.: AI Tech-
niques for Personalized Recommendation. Tutorial at
18th National Conf. on Artificial Intelligence (AAAI),
2002

[KCR02] Kim, K., Carroll, J. M., Rosson, M. B.: An Em-
pirical Study of Web Personalization Assistants: Sup-
porting End-Users in Web Information Systems. Proc.
IEEE 2002 Symp. on Human Centric Computing Lan-
guages and Environments, 2002

[KDA02] Koutri, M., Daskalaki, S., Avouris, N.: Adaptive
Interaction with Web Sites: an Overview of Methods
and Techniques. Proc. 4th Int. Workshop on Computer
Science and Information Technologies (CSIT), 2002

[KM00] Kimball, R., Merz, R.: The Data Webhouse Tool-
kit – Building Web-Enabled Data Warehouse. Wiley
Computer Publishing, New York, 2000

[KMT00] Kushmerick, N., McKee, J., Toolan, F.: Toward
zero-input personalization: Referrer-based page rec-
ommendation. Proc. Int. Conf. on Adaptive Hyperme-
dia and Adaptive Web-based Systems, 2000

[LK01] Lim, M., Kim, J.: An Adaptive Recommendation
System with a Coordinator Agent. In Proc. 1st Asia-
Pacific Conference on Web Intelligence: Research and
Development, 2001

[LSY03] Linden, G., Smith, B., York, J.: Amazon.com
Recommendations: Item-to-Item Collaborative Filter-
ing. IEEE Distributed Systems Online 4(1), 2003

[MDL+02] Mobasher, B., Dai, H., Luo, T., Nakagawa,
M.: Discovery and Evaluation of Aggregate Usage
Profiles for Web Personalization. Data Mining and
Knowledge Discovery, Kluwer, 6 (1), 2002

[MN03] Mobasher, B., Nakagawa, M.: A Hybrid Web
Personalization Model Based on Site Connectivity.
Proc. ACM WebKDD Workshop, 2003

[SBF01] Shahabi, C., Banaei-Kashani, F., Faruque, J.: A
Reliable, Efficient, and Scalable System for Web Us-
age Data Acquisition. Proc. ACM WebKDD Work-
shop, 2001

[SC03] Shahabi, C., Chen, Y.: An Adaptive Recommenda-
tion System without Explicit Acquisition of User Rele-
vance Feedback. Distributed and Parallel Databases
14(2), 2003

[SCD+00] Srivastava, J., Cooley, R., Deshpande, M.,
Tan, P-T.: Web Usage Mining: Discovery and Appli-
cations of Usage Patterns from Web Data. SIGKDD
Explorations, (1) 2, 2000

[SKK+00] Sarwar, B., Karypis, G., Konstan, J. , Riedl, J.:
Analysis of recommendation algorithms for e-
commerce. Proc. of ACM E-Commerce, 2000

[SKR01] Schafer, J.B., Konstan, J. A., Riedl, J.: Elec-
tronic Commerce recommender applications. Journal
of Data Mining and Knowledge Discovery, 5 (1/2),
2001

[SKR02] Schafer, J. B., Konstan, J. A., Riedl, J.: Meta-
recommendation systems: user-controlled integration
of diverse recommendations. Proc. 11th Int. Conf. on
Information and Knowledge Management (CIKM),
2002

[SMB+03] Spiliopoulou, M., Mobasher, B., Berendt, B.,
Nakagawa, M.: A Framework for the Evaluation of
Session Reconstruction Heuristics in Web Usage
Analysis. INFORMS Journal of Computing, Special
Issue on Mining Web-Based Data for E-Business Ap-
plications, 15 (2), 2003

[TH01] Terveen, L., Hill, W.: Human-Computer Collabo-
ration in Recommender Systems. In: Carroll, J. (ed.):
Human Computer Interaction in the New Millenium.
New York: Addison-Wesley, 2001

[TK00] Tan, P., Kumar, V.: Modeling of Web Robot
Navigational Patterns. Proc. ACM WebKDD Work-
shop, 2000

[WF00] Witten, I.H., Frank, E.: Data Mining. Practical
Machine Learning Tools and techniques with Java
implementations. Morgan Kaufmann. 2000

395

