

Integrating Automatic Data Acquisition with Business Processes

Experiences with SAP’s Auto-ID Infrastructure

Christof Bornhövd, Tao Lin, Stephan Haller*, Joachim Schaper

SAP Research Center Palo Alto, LLC, 3475 Deer Creek Road, Palo Alto, CA 94304, USA
*
SAP Research, CEC Karlsruhe, Vincenz-Priessnitz-Strasse 1, D-76131 Karlsruhe, Germany

Contact email: {christof.bornhoevd, tao.lin, stephan.haller, joachim.schaper}@sap.com

Abstract

Smart item technologies, like RFID and sensor

networks, are considered to be the next big step in

business process automation [1]. Through

automatic and real-time data acquisition, these

technologies can benefit a great variety of

industries by improving the efficiency of their

operations. SAP’s Auto-ID infrastructure enables

the integration of RFID and sensor technologies

with existing business processes. In this paper we

give an overview of the existing infrastructure,

discuss lessons learned from successful customer

pilots, and point out some of the open research

issues.

1. Introduction

With RFID mandates from retailers like Wal-Mart, Metro,

Tesco, and Target, manufacturers like Procter & Gamble

and Kimberly Clark, and even the U.S. Department of

Defense, smart item technology has received a lot of

attention.

By smart item we mean a device that can provide some

data about itself or the object it is associated with and that

has the ability to communicate this information [7].

For example, a Radio Frequency IDentification (RFID)

tag that contains information about the object it is attached

to provides a simple form of a smart item [5]. RFID tags

typically combine a modest storage capacity with a means

of wirelessly communicating stored information like an

electronic product code (EPC) [2] to an RFID reader. In a

supply chain management context, an object to be tagged

is usually a pallet, a case or even a single sales item.

Passive RFID tags require no on-board battery and can be

read from a distance ranging from a few centimeters to a

few meters. Active tags, on the other hand, come with an

on-board battery which provides larger read ranges and

memory sizes but also higher unit cost and size and a

limited lifespan of typically 3-5 years. Another example of

a smart item is an environmental sensor, such as a

temperature or humidity sensor, which can provide a more

complete picture of a tracked object and its physical

environment [10].

Through automatic, real-time object tracking, smart

item technology can provide companies with more

accurate data about their business operations in a more

timely fashion, as well as help streamlining and

automating the operations themselves. This leads to cost

reduction and additional business benefits like increased

asset visibility, improved responsiveness and even

extended business opportunities. However, bridging the

gap between the physical and the digital world requires a

flexible and scalable system architecture to integrate

automatic data acquisition with existing business

processes.

Therefore, we have developed the so-called Auto-ID

Infrastructure (AII), which integrates data from smart item

devices with enterprise applications. The AII converts

RFID or sensor data into business process information by

associating it with specified mapping rules and metadata.

These mapping rules can feed incoming observation data

directly to business processes running on either SAP or

non-SAP backend systems, execute predefined business

logic, or simply record the data in a persistent store for

later analysis.

The remainder of this paper is organized as follows. In

Section 2 we will outline the system requirements that

have shaped the design of our Auto-ID infrastructure.

Section 3 will give an overview of the existing system

architecture and discuss the key components: the Device

Controller and the Auto-ID Node. A discussion of our

experiences with the existing Auto-ID Infrastructure is

given in Section 4. We will conclude by pointing out some

of the main open issues in Sections 5, and summarize the

paper in Section 6.

2. Auto-ID System Requirements

Our initial Auto-ID Infrastructure has been architected

with the following system requirements in mind.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Very Large Data Base Endowment. To copy otherwise,

or to republish, requires a fee and/or special permission from the
Endowment

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

1182

Scalability. Companies like large retailers are assumed to

require throughput rates of about 60 billion items per

annum [9]. Assuming 100 distribution centers, each with

an average of 5 checking points per item, the system needs

to guarantee an average throughput of at least 100

messages per second per distribution center. The size of an

observation message can be assumed to be around 200

bytes, and the processing of an incoming observation

message usually requires multiple database updates and

the execution of business procedures at the backend

system.

Open System Architecture. In addition to being hardware-

agnostic, the architecture should be based on existing

communication protocols like TCP/IP and HTTP, as well

as syntax and semantics standards like XML, PML [6] and

EPC [2]. This will allow the use of sensors from a wide

array of hardware providers, and will support the

deployment of Auto-ID solutions across institutional or

even country boundaries.

Efficient Event Filtering. The infrastructure needs to

provide efficient means to filter out false or redundant

readings from RFID or sensor devices. Also, it needs to

provide flexible and configurable filtering of events to

only pass on relevant information to the appropriate

backend processes.

Event Aggregation. The infrastructure needs to support

the composition of multiple related events to more

complex events for further processing. For example, the

system must allow the composition of individual object

identification events for multiple individual cases and the

corresponding pallet to only one complete-pallet-detected

event.

Flexibility. The infrastructure needs to be adaptable to

different business scenarios. Furthermore, the

infrastructure needs to provide flexible means at the

business logic layer to respond to abnormal situations, like

the missing of expected goods or company-internal re-

routing of goods. To avoid redundant implementations of

the same business rules in different enterprise applications,

the infrastructure needs to offer means to deploy and

execute them within the Auto-ID Infrastructure.

Distribution of System Functionality. A real deployment

of an Auto-ID solution can be distributed across sites,

across companies, or even across countries. This naturally

requires a distributed system architecture. As a first step,

we require that the Auto-ID Infrastructure supports the

distribution of message pre-processing functionality (for

example, filtering and aggregation) and, to some degree,

business logic across multiple nodes to better map to

existing company and cross-company structures.

System Administration and Test Support. The

infrastructure must provide support for the testing of

individual custom components used in the filtering and

aggregation of events, as well as the end-to-end processing

of RFID and sensor data. Good administration and testing

support is a prerequisite for the deployment of a

distributed Auto-ID solution in large-scale applications.

3. System Overview

The architecture of our Auto-ID Infrastructure (AII) is

shown in Figure 1. Conceptually, it can be divided into the

following four system layers.

Figure 1: AII System Architecture

At the Device Layer different types of sensor devices can

be supported via a hardware-independent low-level

interface. It consists of the basic operations for reading

and writing data and a publish/subscribe interface to report

observation events. By implementing this API, different

kinds of smart item devices can be deployed within the

Auto-ID infrastructure. Besides RFID readers, these

devices can include environmental sensors, or PLC

devices. The Device Operation Layer coordinates multiple

devices. It also provides functionality to filter, condense,

aggregate, and adjust received sensor data before passing

it on to the next layer. This layer is formed by one or more

Device Controllers (DC). The Business Process Bridging

Layer associates incoming observation messages with

existing business processes. At this layer status and history

information of tracked objects is maintained. This

information includes object location, aggregation

information, and information about the environment of a

tagged object. A so-called Auto-ID Node realizes this

functionality. Finally, the Enterprise Application Layer

supports business processes of enterprise applications such

as Supply Chain Management (SCM), Customer

Relationship Management (CRM), or Asset Management

running on SAP or non-SAP backend systems.

Our Auto-ID Infrastructure provides an infrastructure

for realizing a complete Auto-ID solution. Most existing

solutions only focus on a portion of such a complete

solution, for example a Savant as defined in [3]

corresponds to a Device Controller in our infrastructure.

Since Auto-ID solutions can span organizations or even

countries, standards for the interfaces between the

components are essential. Therefore, the AII is compliant

with the standards proposed by the EPCglobal consortium.

As part of the infrastructure, a test and workload

generator tool is provided that can simulate messages

coming from one or more Device Controllers or backend

DC

RFID

DC

Business Process
Bridging Layer

Auto-ID
Node

Portal

Enterprise
Applications

Enterprise
Application Layer

Device
Layer

DW

Device
Operation Layer

Auto-ID

Repository

Auto-ID
Administrator

RFID

Temp

1183

systems to an Auto-ID Node. Also, a scriptable simulator

is available that can simulate multiple RFID readers.

These tools allow the testing of an Auto-ID deployment

without the installation of physical devices.

The following two subsections will explain the two

main building blocks of the AII: the Device Controller and

the Auto-ID Node.

3.1 Device Controller

A Device Controller (DC) is responsible for coordinating

multiple smart item devices and reporting incoming

observation messages to one or more Auto-ID Nodes. A

DC supports two operation modes. In the synchronous

mode, the Device Controller receives messages from an

Auto-ID Node for direct device operations, such as to read

or write a specific data field from/to a tag currently in the

range of an RFID reader, or to read the value from a

temperature sensor at a given point in time.

In the asynchronous listening mode, the DC waits for

incoming event messages from the sensor devices. Upon

receiving such a message, additional data can be read and

event messages can be filtered or aggregated according to

the configuration of the DC. Note that when a DC is

configured for asynchronous operations, it is still capable

of synchronously receiving and executing commands.

Message processing in the DC is based on so-called

Data Processors. We distinguish six different types of

data processors. (1) Filters filter out certain messages

according to specified criteria. For example, they can be

used to filter out all event messages coming from case

tags, or clean out false reads (“data smoothing”). (2)

Enrichers read additional data from a tag’s memory or

other device and add this data to the event message

received. (3) Aggregators can be used to compose multiple

incoming events into one higher-level event (for example,

mapping data from a temperature sensor to a temperature-

increased event), or for batching purposes. (4) Writers are

used to write to or change data on a tag or control an

actuator. (5) Buffers buffer event messages for later

processing and/or keep an inventory of tags currently in

the reading scope of an RFID reader. (6) Senders

transform the internal data structure of the messages to

some output format and send them to registered recipients.

We currently use PML Core [6] as the output format. As

new standards are developed, they can be incorporated by

simply implementing appropriate new Senders.

The core functions of the Device Controller, in

particular the message processing described above, are

independent of the hardware used. For reading and writing

the data on the tags, we use logical field names to abstract

from concrete tag implementations. A field map provides

the mapping between memory addresses on the tag and

logical data fields.

Since all Data Processors implement the same

publish/subscribe interface, they can be arranged into

processing chains. Powerful message processing and

filtering operations can be achieved by chaining together

the right, possibly customized, set of simple data

processors. This results in a very flexible framework

which allows for the distribution of message processing

functionality close to the actual sensor devices to reduce

message traffic and improve system scalability.

Figure 2: Typical Data Processor Chain

Figure 2 shows an example of a typical processor chain

used for dock doors in a supply chain scenario. For full

coverage dock doors commonly use more than one reader.

This holds especially true for Europe with much stricter

radio frequency regulations than in the U.S. RFID readers

sometimes generate false event messages. For example,

because of physical reasons a tag is not seen during a

particular read cycle. To filter out these false tag-

disappeared messages, a LowPassFilter is applied. Also,

every tag that passes the radio field will issue two event

messages: a tag-appeared and a tag-disappeared message.

Since in the dock door scenario we are only interested in

the fact that an item has passed the door, we can safely

filter out tag-disappeared messages by using an

EventTypeFilter. The EPCEnricher in the example is only

needed if non-EPC tags (which are still common today)

are used. These tags have a unique ID set by the

manufacturer, and the EPC is actually stored in the user

memory of the tag. In this case, the EPCEnricher reads the

EPC and adds it to the event message. At a dock door, we

want to collect all tags that are seen during a certain time

window and report them in a single message to the

backend system. The TimeFixedSizeAggregator and the

Send processor in our example do this. In addition, a

StateBuffer keeps track of all tags currently in the reader’s

scope for auditing and reporting purposes.

3.2 Auto-ID Node

An Auto-ID Infrastructure can contain multiple Auto-ID

Nodes. An Auto-ID Node (AIN) is responsible for

integrating incoming observation messages from the

Device Controllers with the business processes running at

the backend systems.

For an AIN, we distinguish between the interactions

with Device Controllers (reader events from and control

commands to Device Controllers), and interactions with

backend enterprise systems (such as receiving master data

from a logistics system and returning a confirmation).

These interactions with the AIN are treated as either

incoming or outgoing messages.

LowPassFilter

EventTypeFilter

EPCEnricher

TimeFixedSizeAggregator

StateBuffer

Send

RFID Reader2 RFID Reader1

1184

Incoming observation messages are routed to a rule

engine which, based on the message type, evaluates a

specified list of conditions. The result of the evaluation

step is a set of qualifying rules for which one or more

actions are executed in a specified order. Such an action

can, for example, update the system status of an object in

the local repository, communicate with the backend

system, or generate and write EPC data to a tag.

Actions of a rule can pass on parameters and can

trigger other rules at the Auto-ID Node. Based on the

message type, messages can be assigned different

processing priorities and can be specified as being

persistent in the Auto-ID Node.

An Auto-ID Node provides a local repository which

contains information about the current status and history

of the objects being processed. This information includes

data about the operations that have been applied to an

object (e.g, move, pack, or unpack), its movement and

current location, and its structure (e.g, packing

information). Also, the repository replicates master data

from the backend system about products and business

partners, or the physical location and type of the RFID

readers. The Auto-ID Repository provides the basis for the

execution of business logic in the Auto-ID Node.

The use of customizable rules provides a flexible

mechanism to specify and execute business logic at the

Auto-ID Node. This allows the pre-processing of

incoming observation data and the handling of abnormal

situations within the Auto-ID Infrastructure, such as

discrepancies between a received advanced shipping

notification (ASN) and a detected pallet. Which in turn

allows the system to offload processing from the backend

systems.

Our work to date has focused mainly on Supply Chain

Management scenarios, for which a standard set of rules is

in place. The deployment of our Auto-ID Infrastructure in

a different context simply requires the adoption or

extension of the existing rules.

The Auto-ID Administrator provides a graphical tool

which supports the reconfiguration of existing or the

definition of new rules in an AIN at run-time. In addition,

it allows the central configuration, monitoring, and control

of the Device Controllers and smart item devices in the

system.

4. Case Studies

The following sub-sections discuss two Auto-ID pilot

installations based on the research prototype described in

Section 3: a real-time retail application, and an adaptive

planning application. In section 4.3 we will summarize the

lessons learned from these and other real-world

experiences.

4.1 A Retail Application

The first pilot was conducted at a large retailer in Europe.

Here, the Auto-ID Node was used as a kind of “Auto-ID

data hub” to feed business event information from several

processes to two backend systems: a data warehouse (SAP

Business Information Warehouse) for analytical purposes,

and a tracking system (SAP Event Management) to track

the status of deliveries. On top of this, the SAP Enterprise

Portal was used as the user interface to provide both

employees and project partners with a unified view on the

entire system.

From the perspective of the retailer, the goal of this

project was mainly to evaluate if and how RFID

technology can be used in practice. While there is a lot of

hype about the technology, only by putting it in a real

environment one can learn what works and what does not,

and possibly how to get around technical difficulties. In

addition to technical issues, another question was how

customers would accept the technology.

The main process covered by RFID technology was the

tracking of deliveries from the distribution center to one

dedicated store, as well as the movement of goods from

the store’s back room to the shop floor. Tagging was done

on case and pallet level. There were four read points in

this business process:

1. Packing Station: At the distribution center, all cases

needed to be tagged and assembled into deliveries. An

association between the pallet and the cases loaded

onto it was recorded. Once the packing was finished,

a message was sent to the Auto-ID Node with

information about the pallet and its associated cases.

2. Goods Issue Gate: After the deliveries were loaded

onto a truck at the distribution center, they passed

through a reader that registered what had passed. The

reader was mounted in the dock door. The data from

the reader was filtered, aggregated and then sent to the

Auto-ID Node, which updated its inventory of goods.

3. Goods Receiving Gate: Similar to the previous read

point, incoming goods were read and recognized as

they arrived at the store.

4. Back room / Shop Floor Gate: This represents

another automatic gate where goods were scanned

when they passed through to determine if goods were

in the back room or already on the shop floor.

Previously, the retailer was not able to make this

distinction.

Bulk reading took place at all read points except at point 1.

Depending on the nature of the products (metal cans,

bottles with soda water, and so on) in the delivery, it was

impossible to always read all tags of inner cases. However,

since the pallets were not unpacked until they were on the

shop floor, it proved to be unnecessary to achieve a read

accuracy of 100%. Since the system provided the

information about what was packed together from read

point 1 (where the operational process guarantees a 100%

read accuracy) in principle it was sufficient to only detect

a single tag of the whole delivery at the other read points.

1185

The Auto-ID Node was able to deduce the other tags from

the packing information.

The Auto-ID Node received observation messages

from all read points to update its inventory information in

its repository. Information was also sent to a data

warehouse to allow for later analysis. The AIN stored

information about the deliveries (actual and expected), so

whenever it received a message from one of the first three

read points, it inferred the delivery number from the EPCs

detected. It could then tell the Event Manager System,

which was responsible for tracking deliveries overall,

about the status change of the delivery, for example, that it

had arrived at the shop.

RFID technology was also used on the item level for

some distinct goods. For example, processed cheese was

tagged in order to track expiration dates using a Smart

Shelf. Because of limited space we will not describe these

processes in more detail in this paper. This pilot

implementation showed that item level tagging is

technically feasible, but that the cost of tags themselves, of

applying the tags to products, and of the required

infrastructure (readers and so on) is currently still too high

to make sense economically. Another reason against

tagging at the item level is concerns in public regarding

privacy.

At the time of the project, EPC tag data standards as

now defined by EPCglobal [4] had not been developed.

However, user requirements required standard identifiers

encoded on the tag. Cases needed to have a GTIN (Global

Trade Identification Number) of the product, and pallets

either a SSCC (Serial Shipping Container Code) or a

GRAI (Global Returnable Asset Identifier). We therefore

had to define our own mapping of these standard

identifiers to EPCs, adding a serial number in the case of

the GTIN mapping. Our mapping was based on [2].

The main benefit provided by RFID technology in this

pilot was increased visibility of the goods, which could be

used to make better decisions on when to reorder goods,

leading to cost reductions because of lower inventory

levels and increased sales because of increased on-shelf

availability.

The software worked reliably. Because of the size of

the pilot, scalability was not an issue and a single Auto-ID

Node was sufficient. More daunting were the challenges

regarding the hardware, like positioning and tuning the

reader antennas to achieve good read accuracy while

conforming to regulatory requirements in Europe, tag

placement, cabling, and availability of tags, just to name a

few. Workplace safety regulations added additional

constraints.

4.2 A Real-time Adaptive Planning Application

The second pilot involved a large retailer and a

manufacturer in North America. In this pilot, SAP

provided the same components as in the pilot described in

Section 4.1, plus a supply chain planning component (SAP

Advanced Planning and Optimization). This pilot included

three sites: a distribution center of the manufacturer, a

distribution center of the retailer, and a retail shop. The

main operational process consisted of three steps.

First, in the distribution center of the manufacturer,

items were packed into cases and shipped to the

distribution center of the retailer based on shipment orders.

In the second step, the distribution center of the retailer

verified the shipment on the case level and then sent a case

to the retail shop. Finally, in the retail shop, the case was

first placed in the backroom and then moved to the shop

floor. The items contained in the case were put on a smart

shelf in the shop. The following read points were defined:

1. Pack Station at the Manufacturer: After packing a

case, a message with all the EPCs of the case and the

contained items was sent to the Auto-ID Node. The

Auto-ID Node forwarded the EPC of the case and

associated shipment order to the tracking system (SAP

Event Management), where an Event Handler was

created with the expected shipment time, a tolerance

for the shipping time and rules for exception handling

— that is, what to do when a shipment has not arrived

in time.

2. Goods Receiving Gates at the Retailer: There were

similar gates both at the distribution center and at the

shop. When these gates detected a case tag, messages

with the detected case tags were sent to the Auto-ID

Node. After updating the status of the associated

locations and the physical objects, the Auto-ID Node

sent a message to the tracking system to update the

status of the corresponding Event Handler.

3. Back Room / Shop Floor Gate: These read points

were similar to the read points at the receiving gates of

the retailer.

4. Smart Shelves in the Shop: When items were added or

removed from the smart shelf, messages containing the

EPC of the moved objects were sent to the Auto-ID

Node with the logical reader ID and the timestamp of

when the objects were scanned. The AIN then

forwarded the observation message for the first item

from a case that appeared on the smart shelf to the

tracking system to indicate that the contents of a case

had been put onto the shelf and that the tracking

process for that case was completed.

In this pilot, a shipment was associated with a single case

as only one case was sent from the manufacturer to the

retailer at a time. The Auto-ID Node maintained the status

and also the history of the objects including cases, items

and shipments. The tracking system was used to track all

shipments. Therefore, only messages on the case level

were sent to the tracking system, which monitored the

delivery of shipments and handled possible exceptions in

almost real-time.

Through the Auto-ID Node, the manufacturer could get

inventory information about its products in the retail shop.

Based on the history of sale records, the Auto-ID Node

1186

maintained a local prediction model. This model could be

used to trigger a request to the SAP Advanced Planning

and Optimization to adjust the shipment planning.

SAP Business Information Warehouse was used for

analytical operations and reporting, in a similar way as in

the pilot discussed in Section 4.1.

4.3 Lessons Learned

Our experiences with the pilots described in the previous

sections can be summarized by the following lessons

learned.

Cross-Organizational Collaboration. The pilots contained

multiple sites, and in the case of the second pilot even

multiple companies. The full potential of smart items

technology can only be unlocked through collaboration

and data sharing across sites and organizations. The hope

is that the potential business improvements offered by

Auto-ID technology can bring companies to overcome

their current reluctance to collaborate in the near future.

This reluctance, as well as technical integration

challenges, are the main reasons why EDI has not been

implemented to the extent initially expected.

Standards. We found that one of the key issues is the use

of common standards. To avoid integration nightmares,

standards on the hardware layer (readers, tags), the

communication layer (HTTP, XML), and also on the

syntax and semantics layer (PML, EPC) should be used or

must be developed. Deployment of components from

different providers becomes feasible at a reasonable cost

of ownership only with the right standards in place. We

are actively involved in ongoing standardization efforts at

EPCglobal and the W3C.

Automatic Identification is Not Just RFID. The main use

case of smart items today is the universal unique

identification of items. RFID is not the only technology

that allows this, for example barcodes can be used as well.

Different technologies have different advantages and use

cases. Thus, all of these must be easily integratable into

one system. Furthermore, in a real working environment

RFID readers sometimes need to work with other devices

such as traffic lights and light beam sensors. These

heterogeneities are the rule not the exception.

100% RFID Reading Accuracy Cannot be Expected.
Because of physical reasons, one cannot expect to have a

100% tag reading accuracy. As described in Section 4.1,

one way to work around this problem is to keep

information about how objects are assembled and have the

Auto-ID Infrastructure infer the missing information. For

example, detecting the movement of a pallet known in the

system will allow the system to infer the movement of all

associated cases.

Need to Support Out of Sequence Messages. To an Auto-

ID Node, the connected Device Controllers form a

distributed environment. In a real-world installation,

network latency, different system clocks at the readers,

and message batching all can cause the order in which

observation messages arrive to be different from the order

in which the corresponding events took place in the

physical world. Therefore, the Auto-ID Infrastructure

needs to be able to reorder incoming event messages based

on knowledge about the physical structure and the

business processes of a given site.

Device Administration and Management. The

deployment of an Auto-ID solution usually includes a

large number of RFID and sensor devices. Centralized

administration tools to visualize, plan (capacity planning),

configure, deploy, test, monitor, and upgrade remote

devices is a prerequisite for the deployment of large,

highly distributed Auto-ID solutions. Our existing tools

are a good a starting point but more powerful tools are

needed.

Deploying an Auto-ID Solution is a Long Term Task.
The deployment of an Auto-ID solution will change the IT

infrastructure, the business processes and the operational

processes of an organization. These fundamental changes

cannot be done in a few weeks and may result in

significant costs up front. It is essential for a company to

have a long term migration plan addressing the required

changes in the organization. Therefore, it is a good idea to

start with a small pilot installation to learn about the

required changes in an existing business environment

before rolling out an Auto-ID solution on a large scale.

5. Open Issues

Based on our experiences with our existing prototype, we

would like to point out the following open issues for future

research in the area of smart items technology.

Different Qualities of Service. Different smart items

applications require different qualities of service regarding

event processing. For example, for high data quality an

Auto-ID infrastructure may have to provide end-to-end

transaction support to guarantee exactly once semantics

for the processing of observation messages. That is, the

system needs to guarantee that a predefined reaction to an

event is executed exactly once — even in the case of a

system or power failure. There is obviously a trade-off

between higher degrees of reliability on the one hand and

performance on the other. Accordingly, different qualities

of service need to be defined and provided for different

application classes.

Distributed Smart Items Infrastructure. The nature of

smart items applications as well as scalability

requirements may force a distributed system architecture.

Although our existing Auto-ID Infrastructure allows the

distribution of functionality between Device Controllers,

Auto-ID Nodes, and backend systems, a full-fledged

solution to the distribution problem needs to support the

distribution and replication of functionality and data,

requiring the sharing and synchronization of data across

multiple nodes. The evaluation and adaptation of

1187

distribution and replication strategies developed in

distributed database systems, database caching, distributed

event-based systems, and peer-to-peer systems could be a

good starting point.

Seamless Integration of Environmental Sensors.
Currently, most work in the area of smart items has

focused on RFID and Supply Chain Management. To

support application scenarios like product life-cycle

management (PLM) or transportation, we need to

seamlessly integrate other sensors like environmental

sensors with RFID technology. From the application

perspective, RFID readers and environmental sensors like

temperature or light sensors simply provide event sources.

From the perspective of the infrastructure, however, they

are different. RFID readers are aperiodic event sources,

whereas environmental sensors provide a stream of

periodic events, that is, discrete readings of the

corresponding environmental conditions. Conceptually

such a sensor provides a current value for each point in

time. The seamless integration of RFID and environmental

sensors requires means to represent and resolve this

mismatch.

Networked Embedded Systems. Smart items provide small

embedded systems capable of independently collecting

information from their environment, processing data, and

communicating over wireless networks. With advances in

memory capacity and processing power, these devices

allow the execution of business logic at the periphery of a

smart items infrastructure rather than in the middle layers

or in a central backend system. Smart items can form

entire networks of collaborating devices thereby

increasing reliability (through replication), efficiency, and

flexibility. In addition to the question for new appropriate

system architectures, efficient ways are required to model,

generate, deploy, and manage business functions at the

devices. Here approaches developed in the area of grid and

peer-to-peer computing could be a good starting point for

further research.

Privacy. The use of RFID technology, especially in retail,

has raised a lot of discussion regarding privacy. The main

concerns here are the possible profiling of customer

behavior and the potential to track people. Although this

discussion is not a purely technical one, on the technical

side mechanisms are required that enable the efficient

encoding of tag and sensor information, ensure data

security, and allow the disabling of tags at predefined

stages in a retail chain. The resulting technology needs to

be an integral part of a sophisticated smart items

infrastructure.

6. Summary

We have described our Auto-ID Infrastructure which was

architected with scalability, flexibility, and usability in

mind. Device Controllers allow the processing of event

messages close to the periphery of the system; Auto-ID

Nodes enable the execution of business logic in the

infrastructure and integrate incoming observation

messages with backend business processes. We have

discussed our practical experiences with different pilot

projects and summarized the main lessons learned. Smart

item technology is very likely to change current business

and operational processes, which will require changes in

the IT infrastructure of many companies. Challenging

issues remain that make this area an interesting topic for

both hardware and software research.

Acknowledgements

We would like to thank Brian Mo, Uwe Kubach, Rama

Gurram, Peter Ebert, and Hartmut Vogler for their

valuable contributions to the Auto-ID Infrastructure

project. We also benefited from fruitful discussions with

other colleagues in SAP including Bernd Sieren, Bernd

Lauterbach, Christoph Lessmoellmann, Ami Heitner,

Alexander Renz, and Kai Morisse.

REFERENCES

[1] Alexander, K.; Gillian, T.; Gramling, K.; Kindy, M.;

Moogimane, D.; Schultz, M.; Woods, M.: “IBM Business

Consulting Services – Focus on the Supply Chain: Applying

Auto-ID within the Distribution Center”, Auto-ID Center,

White paper IBM-AUTOID-BC-002, Sep. 2003

[2] Brock, D.L: “Integrating the Electronic Product Code

(EPC) and the Global Trade Number (GTIN)”, Auto-ID

Center, White Paper MIT-AUTOID-WH-004, Nov. 2001

[3] Clark, S.; Traub, K.; Anarkat, D.; Osinski, T.: “Auto-ID

Savant Specification 1.0”, Auto-ID Center, White Paper

MIT-AUTOID-TM-003, Sep. 2003

[4] EPCGlobal: “EPC Tag Data Standards Version 1.1 Rev.

1.24”, EPCGlobal, Standards Specification, Apr. 2004,

http://www.epcglobalinc.org

[5] Finkenzeller, K.: “RFID Handbook: Fundamentals and

Applications in Contactless Smart Cards and

Identification”, John Wiley & Sons, 2nd Edition, May 2003

[6] Floerkemeier, C.; Anarkat, D.; Osinski, T.; Harrison, M.:

“PML Core Specification 1.0”, Auto-ID Center

Recommendation, Sep. 2003

[7] Haller, S.; Hodges, S.: “The Need for a Universal Smart

Sensor Network”, Auto-ID Center, White Paper CAM-

AUTOID-WH-007, Nov. 2002

[8] Kubach, U.: “Integration von Smart Items in Enterprise

Software Systeme”, In: Praxis der Wirtschaftsinformatik,

Special Issue on Ubiquitous Computing, 2003

[9] Miles, S.; Brock, D.L.; Engels, D.: “Web Services WAN

SIG: Proposals for Engineering the ‘Silk Road of the

Internet’”, Auto-ID Center, White Paper MIT-AUTOID-

WH-04, Apr. 2003

[10] Thede, A.; Schmidt, A.; Merz, C: “Integration of Goods

Delivery Supervision into E-Commerce Supply Chains”,

Second International Workshop on Electronic Commerce

(WELCOM'01), Heidelberg, Germany, Nov. 2001

1188

