
Indexing XML Data Stored in a Relational Database

Shankar Pal, Istvan Cseri, Oliver Seeliger, Gideon Schaller, Leo Giakoumakis, Vasili Zolotov

Microsoft Corporation
One Microsoft Way

Redmond WA 98052
USA

{shankarp, istvanc, oliverse, gideons, leogia, vasilizo}@microsoft.com

Abstract

As XML usage grows for both data-centric and
document-centric applications, introducing
native support for XML data in relational
databases brings significant benefits. It provides
a more mature platform for the XML data model
and serves as the basis for interoperability
between relational and XML data. Whereas
query processing on XML data shredded into one
or more relational tables is well understood, it
provides limited support for the XML data
model. XML data can be persisted as a byte
sequence (BLOB) in columns of tables to
support the XML model more faithfully. This
introduces new challenges for query processing
such as the ability to index the XML blob for
good query performance. This paper reports
novel techniques for indexing XML data in the
upcoming version of Microsoft® SQL Server™,
and how it ties into the relational framework for
query processing.

1. Introduction
Introducing XML [3] support in relational databases has
been of keen interest in the industry in the past few years.
One solution is to generate XML from a set of tables
based on an XML schema definition and to decompose
XML instances into such tables [2][5][11] [16][20]. Once
shredded into tables, the full power of the relational
engine, such as indexing using B+trees and query
capabilities, can be used to manage and query the data.

The shredding approach is suitable for XML data with
a well-defined structure. It depends on the existence of a
schema describing the XML data and a mapping of XML
data between the relational and XML forms.

The XML data model, however, has characteristics
that make it very hard if not practically impossible to map
to the relational data model in the general case. XML data
is hierarchical and may have a recursive structure;
relational databases provide weak support for hierarchical
data (modeled as foreign key relationships). Document
order is an inherent property of XML instances and must
be preserved in query results. This is in contrast with
relational data, which is unordered, and order must be
enforced with additional ordering columns. On the query
front, a large number of joins are required to re-assemble
the result for realistic schemas. Even with co-located
indexes, the reassembly cost of an XML subtree can be
prohibitively expensive.

XML is being increasingly used in enterprise
applications for modeling semi-structured and
unstructured data, and for data whose structure is highly
variable or not known a priori. This has motivated the
need for native XML support within relational databases.

Microsoft SQL Server 2005 introduces a native data
type called XML [12]. A user can create a table T with
one or more columns of type XML besides relational
columns. XML values are stored in the XML column as
large binary objects (BLOB). This preserves the XML
data model faithfully, and the query processor enforces
XML semantics during query execution. The underlying
relational infrastructure is used extensively for this
purpose. This approach supports interoperability between
relational and XML data within the same database making
way for more widespread adoption of the XML features.

XQuery expressions [19] embedded within SQL
statements are used to query into XML data type values.
Query execution processes each XML instance at runtime;
this becomes expensive whenever the instance is large in
size or the query is evaluated on a large number of rows
in the table. Consequently, an indexing mechanism is
required to speed up queries on XML blobs.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1146

B+tree index has been used extensively in relational
databases and is a natural choice for indexing XML blobs
as well. The B+tree index must provide efficient
evaluation of queries on XML blobs. Query execution
may need to reassemble the XML result from the B+tree
index (XML serialization) while preserving document
order and document structure. Some operators in XPath
2.0 [18] — most notably the descendant-or-self axis // —
navigate down an XML tree recursively. Thus, B+tree
lookups can be recursive.

In this paper, we discuss the techniques used in
Microsoft SQL Server 2005 for indexing XML blobs. A
shredded representation conforming to Infoset items [4] of
nodes is stored in a B+tree. This is referred to as the
primary XML index. A novel node labeling scheme called
ORDPATH [13] allows us to capture document order and
document hierarchy within a single column of the primary
XML index. This index is clustered on the ORDPATH
value for each XML instance and provides very efficient
access to subtrees using a simple range scan. The
ORDPATH column is used extensively to determine
relative order of nodes within a document and the parent-
child and ancestor-descendant relationships between two
nodes. The ancestor-descendant relationship check
eliminates the need for recursive traversal down the XML
tree and is a significant optimization.

Materialization of the Infoset speeds up query
processing on XML columns by eliminating runtime
shredding costs. Further performance gains can be
obtained by creating secondary indexes on the primary
XML index for different classes of queries. We identify
three important classes of queries (path-based queries,
property bag scenarios and value-based queries) that
commonly occur in practice and investigate three
secondary indexes — PATH, PROPERTY and VALUE
— to optimize those classes of queries. Content indexing
of XML instances based on the structural information
stored in primary XML index is also discussed.

The performance gains using the XML indexes for the
well-known XMark benchmark [15] are presented in the
paper.

The reminder of the paper is organized as follows.
Section 2 gives a background of native XML support in
Microsoft SQL Server 2005 and describes the concept of
ORDPATH. Section 3 introduces the techniques for
indexing XML data, Section 4 provides experimental
results, and Section 5 discusses related work. The paper
concludes with a summary in Section 6.

2. XML Support in Microsoft SQL Server
2005

This section provides a brief overview of XML support in
Microsoft SQL Server 2005.

2.1 XML Data Type

Native support for the XML data model is introduced
using a new, first-class data type called “xml”. It can be
used as the type of a column in a table or view, a variable
and a parameter in a function or stored procedure. Thus, a
table can be created with an integer column and an XML
column as follows:

Create table DOCS (ID int primary key, XDOC xml)

XML values saved in the XDOC column can be trees

(“XML document”) or fragments (“XML content”). They
are stored in an internal, binary representation that is
streamable and optimized for query processing. Some
compaction occurs, which is incidental rather than the
goal of the binary representation.

The supplied XML values are checked for well-
formedness and conformity to the XML data model (e.g.
end tags match start tags) for storage in the XML column.

The XML column can optionally be typed by a
collection of XML schemas that may be related (e.g. by
<xs:import>) or unrelated to one another. Each XML
instance specifies the XML namespace from the schema
collection it conforms to. The database engine validates
the instance according to the XML schema before storing
it in the XML column.

XML type information is stored in the database’s
meta-data. It contains the XML schema collections (and
their contained XML schemas) and mapping between the
primitive XSD and relational type systems. Typed XML
instances contain XSD type information in the internal,
binary representation. This enables efficient processing
for typed XML and allows building domain based value
indexes for efficient lookups.

2.2 Node Labeling Using OrdPath

ORDPATH [13] is a mechanism for labelling nodes in an
XML tree, which preserves structural fidelity. It allows
insertion of nodes anywhere in the XML tree without the
need for re-labelling existing nodes. It is independent of
XML schemas typing XML instances.

ORDPATH encodes the parent-child relationship by
extending the parent’s ORDPATH with a labelling
component for the child. In the following, we use a string
representation for the ORDPATH to illustrate the idea
while the internal representation is based a compressed
binary form. For example, children of a parent node
labelled with the ORDPATH "1.5.3.9" may have the
labels "1.5.3.9.1" and "1.5.3.9.7", where the ending
"1"and "7" are labelling components for the children. A
byte comparison of two ORDPATH labels yields the
relative order of the nodes in the XML tree. Thus, the
child "1.5.3.9.1" precedes "1.5.3.9.7" in document order.

For the XML instance shown in Figure 1, sample
ORDPATH labels are shown for the corresponding XML
tree in Figure 2.

1147

<BOOK ISBN=“1-55860-438-3”>
 <SECTION>
 <TITLE>Bad Bugs</TITLE>
 Nobody loves bad bugs.
 <FIGURE CAPTION=“Sample bug”/>
 </SECTION>
 <SECTION>
 <TITLE>Tree Frogs</TITLE>
 All right-thinking people
 <BOLD> love </BOLD> tree frogs.
 </SECTION>
</BOOK>

Figure 1. Sample XML data

Figure 2. ORDPATH Node Label

In the ORDPATH values shown in Figure 2 (such as

"1.3.5.1"), each dot separated component value ("1", "3",
"5", "1") reflects a numbered tree edge at successive
levels on the path from the root to the labelled node. Only
positive odd integers are assigned during an initial load;
even-numbered and negative integer component values
are reserved for later insertions into an existing tree.

A new node N (possibly the root node of a subtree)
can be inserted under any node in an existing tree. It is
assigned a label component in between those of its left
and right siblings using an even numbered auxiliary
position that introduces a new level for N. This preserves
the relative order between the siblings and avoids re-
labelling the left or right siblings of N. Leftmost and
rightmost insertion is supported equally efficiently by
extending the range of label components on both ends.
Leftmost insertions may generate label components that
are negative numbers.

2.3 XML Query Processing

XQuery [19] embedded in SQL is the language supported
for querying XML data type. XQuery is a W3C standards-
based language in development. It is a very powerful
functional language for querying XML data. In particular,
it includes XPath 2.0 [18].

Methods are provided on XML data type for querying
into XML values. These methods accept XQuery
expressions as arguments. The methods are:

• query(): returns XML data type

• value(): extracts scalar values
• exist(): checks conditions on XML nodes
• nodes(): returns a rowset of XML nodes that the

XQuery expression evaluates to

As an example, consider the following query that retrieves
section titles in the book with a specified ISBN:

SELECT ID, XDOC.query('
 for $s in
 /BOOK[@ISBN= “1-55860-438-3”]//SECTION
 return <topic>{data($s/TITLE)} </topic>')
FROM DOCS

Query execution is tuple-oriented as in the rest of the

relational framework. The SELECT list is evaluated on
each row of table DOCS and produces a two-column
result. Query compilation proceeds by producing a single
query plan for both the relational and the XML parts of
the query, and the overall query tree is optimized by the
cost-based query optimizer.

The XML data type methods process the XML
instances on which they are invoked. Each XML instance
can be up to 2GB in storage, so that the runtime shredding
cost can be significant for large XML instances.

In the next section, we consider techniques for
indexing XML instances to speed up queries.

3. Indexing XML Data
For an XPath expression such as /BOOK[@ISBN = “1-
55860-438-3”]//SECTION shown in Section 2.3 and
executed on the XDOC column of DOCS table, the XPath
expression is evaluated on all rows in the table. This is
costly for the following reasons:

• The XDOC column value in each row must be
shredded at runtime to evaluate the query.

• We cannot determine which of the XML
instances satisfies @ISBN = “1-55860-438-3”
without processing the XDOC values in all rows.

We can speed up query processing by saving the

parsing cost at runtime. This is achieved by materializing
the shredded form of the XML instances in a B+tree that
retains structural fidelity of the XML instances in the
XDOC column. The query processor decides whether to
process rows of the base table before those in the XML
index (top-down execution) or use targeted seeks or scans
on the XML index first followed by a back join with the
base table (bottom-up execution). (The table in which an
XML column is defined is referred to as the base table.)
Additional secondary XML indexes provide another
degree of freedom for the optimizer to choose the
execution plan.

This section introduces the notion of a primary XML
index on an XML column. It is a B+tree that materializes
the Infoset content of each XML instance in the XML

1.1

 FIGURE TITLE BOLD

1
 BOOK

 TITLE

 CAPTION

 All right… tree frogs

1.5

1.3.1 1.3.5

1.3.5.1

1.5.1 1.5.3 1.5.5 1.5.7

 Nobody …

1.3.3

 SECTION SECTION

1.3

ISBN

1148

column. Indexing the Infoset content in additional ways is
discussed as secondary XML indexes.

In the following discussions, we use table DOCS of
Section 2.1 for illustrative purposes.

3.1 Primary XML Indexes

This subsection describes the structure of the primary
XML index and discusses query execution using it.

3.1.1 Structure of Primary XML Index

The B+tree containing the shredded form of the XML
instances in a column is called the primary XML index or
the “Infoset” table.

We generate a subset of the fields in the Infoset items
of the XML nodes by shredding an XML instance. This is
stored in a B+tree in the system. The Infoset contains
information such as the tag, value and parent of each
node; we add the path from the root of the tree to the node
to allow path-based lookups. The B+tree has the following
columns amongst others:

ORDPATH TAG NODE_

TYPE
VALUE PATH_

ID
1 1 (BOOK) 1 (Element) Null #1
1.1 2 (ISBN) 2 (Attribute) '1-55860-438-3' #2#1
1.3 3

(SECTION)
1 (Element) Null #3#1

1.3.1 4 (TITLE) 1 (Element) 'Bad Bugs' #4#3#1
1.3.3 10 (TEXT) 4 (Value) 'Nobody loves

Bad bugs.'
#10#3#1

1.3.5 5
(FIGURE)

1 (Element) Null #5#3#1

1.3.5.1 6
(CAPTION)

2 (Attribute) 'Sample bug' #6#3#1

1.5 3
(SECTION)

1 (Element) Null #3#1

1.5.1 4 (TITLE) 1 (Element) 'Tree frogs' #4#3#1
1.5.3 10 (TEXT) 4 (Value) 'All right-thinking

people'
#10#3#1

1.5.5 7 (BOLD) 1 (Element) 'love ' #7#3#1
1.5.7 10 (TEXT) 4 (Value) 'tree frogs' #10#3#1

Figure 3. XML “Shredded” into relational Infoset table

Figure 3 shows the rows corresponding to the XML
tree in Figure 2. The ORDPATH column preserves
structural fidelity within a single XML instance; the
Infoset table also contains the primary key column ID of
the base table (not shown) for back join. The primary key
of the Infoset table is the combination of the primary key
ID of the base table and the ORDPATH column.

The TAG column shows the markups found in the
XML instance; it is used here for illustrative purposes
only. Instead of storing string values, each markup is
mapped to an integer value and the mapped values are
used in storage. This mapping is referred to as
tokenization and yields significant compression.

The NODE_TYPE column stores the type of the node
in the Infoset content. For typed XML column, it stores a

tokenized type value corresponding to the XSD type of
the node.

The VALUE column stores the node’s value, if one
exists, otherwise it is NULL. It stores typed XML values
as SQL Server’s native type within a generic variant type.

The PATH_ID column contains a tokenized path
value from the root to the node. This column represents
all the paths in the tree similar to the dataguide
computation [7]. Whereas each node within an XML
instance has a distinct ORDPATH value, the PATH_ID
value is the same for multiple nodes with the same path.
Thus, nodes 1.3.1 and 1.5.1 refer to two different TITLE
nodes but the paths leading to these nodes are both
expressed as /BOOK/SECTION/TITLE. As such, they
have the same PATH_ID value #4#3#1, where #1, #3 and
#4 are for BOOK, SECTION and TITLE, respectively.

Nodes of the XML tree are traversed in XML
document order and ORDPATH labels are generated
during the population of the primary XML index.

The primary XML index contains some redundancy
and is larger in size than the textual form of the XML
instance; the primary key column of the base table, ID, for
example is repeated in all rows for an XML instance. The
increased I/O cost, added to the serialization cost of
converting shredded rows in the Infoset table to XML
form, makes retrieval of the XML blob cheaper from the
base table when the whole XML instance is required.

Primary XML index stores values using the SQL type
system. Most of the SQL types are compatible with
XQuery type system (e.g. integer), and value comparisons
on XML index columns suffice. A handful of types (e.g.
xs:datetime) are stored in an internal format and
processed specially to preserve compatibility with the
XQuery type system.

The primary XML index can be optimized in various
ways, such as by generating a single row for simple-
valued elements (instead of two rows). This in practice
significantly reduces on-disk size. Prefix compression [1]
reduces the size of the primary XML index significantly.
Another optimization is to point back from the VALUE
column for large-sized values to the XML blob to avoid
redundancy. A more detailed discussion of these and other
optimizations are beyond the scope of this paper.

3.1.2 Query Compilation and Execution

An XQuery expression is translated into relational
operations on the Infoset table. The result is a set of rows
from the Infoset table that must be re-assembled into an
XML result.

Consider the evaluation of the path expression
/BOOK[@ISBN = “1-55860-438-3”]/SECTION on an
XML instance. The following SQL statement expresses
the execution logic. PATH_ID (path) yields the tokenized
path value for the specified path. SerializeXML (ID,
ORDPATH) assembles the XML subtree rooted at the
node (ID, ORDPATH) from the Infoset table. Parent (C-

1149

ORDPATH) returns the parent’s ORDPATH as the prefix
of C-ORDPATH without the last component for the child.

SELECT SerializeXML (N2.ID, N2.ORDPATH)
FROM infosettab N1

 JOIN infosettab N2 ON (N1.ID = N2.ID)
WHERE N1.PATH_ID = PATH_ID(/BOOK/@ISBN)
AND N1.VALUE = '1-55860-438-3'
AND N2.PATH_ID = PATH_ID(

BOOK/SECTION)
AND Parent (N1.ORDPATH) =
 Parent (N2.ORDPATH)

When the path expression /BOOK[@ISBN = “1-

55860-438-3”]/SECTION is evaluated on the XDOC
column of a row in DOCS table, the primary key value ID
is used to seek into the Infoset table (N1). Rows for the
XML instance in N1 are scanned to locate the ones having
the values /BOOK@ISBN and “1-55860-438-3” in the
PATH_ID and the VALUE columns, respectively. Using
the same primary key value, the execution seeks into the
Infoset table a second time (N2), finds rows containing
the PATH_ID value for /BOOK/SECTION and
determines whether the BOOK elements found in N1 is
the parent of the SECTION elements found in N2. The
XML fragments corresponding to the qualifying
SECTION element are serialized from the Infoset table.

The cost of reassembly may be non-trivial. For queries
that retrieve the whole XML instance, it is cheaper to
retrieve the XML blob. Similarly, a query containing a
simple path expression that must be evaluated on all rows
of the base table may be more efficient on the XML blob
than on the primary XML index if the re-assembly cost
outweighs the cost of parsing the XML blobs. A cost-
based decision must be made whether to execute the
query by shredding XML blobs at runtime or to operate
on XML indexes.

Insertion, deletion and modification of XML values
require primary XML index maintenance as is to be
expected.

3.2 Secondary XML Indexes

The primary XML index is clustered in document order
and each path expression is evaluated by scanning all
rows in the primary XML index for a given XML
instance. Performance slows down for large XML values.

Secondary indexes can be created on the primary
XML index to speed up different classes of queries. While
a secondary index can be created on any of the columns in
the primary XML index, it is interesting to study the
specific indexes that benefit common classes of queries.
We introduce four such index types: PATH (and its
variation PATH_VALUE), PROPERTY, VALUE and
content indexing in the following subsections.

Secondary XML indexes help with bottom-up
evaluation. After the qualifying XML nodes have been
found in the secondary XML indexes, a back join with the

primary XML index enables continuation of query
execution with those nodes. This yields significant
performance gains.

3.2.1 PATH and PATH_VALUE Indexes

Going back to the SQL rewrite in Section 3.1.2,
evaluation of path expressions over an entire XML
column benefits from a secondary index built on the
PATH_ID column. The path expression is compiled into
the tokenized form (e.g. /BOOK/@ISBN ⇒ #2#1 in the
example of Figure 3). An index with PATH_ID as the
leading key column helps such queries.

The PATH index is built on the columns PATH_ID,
ID and ORDPATH, where ID is the primary key of the
base table. During query evaluation, the tokenized path
value PATH_ID and ID are used to seek into the PATH
index and find the corresponding ORDPATH values,
thereby saving the cost of primary XML index scans. The
index seek is what brings the performance gain, and the
cost is relatively independent of the path length. A back
join with the primary XML index on ID and ORDPATH
pair continues with query execution to check conditions
such as the specified value of ISBN, and re-assemble the
resulting XML fragments (e.g. the subtrees rooted at the
SECTION nodes in our example).

The PATH_ID column stores a “reversed”
representation of the path. When a full path such as
/BOOK/SECTION/TITLE is specified, it is mapped into
the value #4#3#1 for PATH index lookup; the full
PATH_ID value is known in this case. However, a
wildcard or the descendant-or-self (//) or the descendant
axis requires careful handling.

For a path expression containing the //-axis, such as
//SECTION/TITLE, only the last two steps in the path
expression are known. Storing the forward path in the
PATH_ID column is not very useful in this case; the
entire PATH index would have to be scanned. With the
reverse path, however, prefix match of the PATH_ID
column for the value #4#3 yields faster execution. The
situation is similar for path expressions containing a
wildcard or //-axis in the middle of the path expression,
such as /BOOK/*/TITLE or /BOOK/SECTION//TITLE.
In the latter case, the exact match for the PATH_ID value
for /BOOK/SECTION (i.e. #3#1) and prefix match for
TITLE (i.e. #4) yield two sets of nodes. The ancestor-
descendant relationship between node pairs from these
sets is verified using their ORDPATH values.

For path expressions such as
/BOOK/SECTION[TITLE =“Tree Frogs”] that fit the
pattern “path=value”, a variation of the PATH index is
more useful. If the PATH index is built only on the
PATH_ID column, this type of query requires a back join
with the primary XML index to check the node’s value.
This back join can be avoided by including the VALUE
column in the index to yield a PATH_VALUE index,
which is built on the columns (PATH_ID, VALUE, ID

1150

and ORDPATH). The path /BOOK/SECTION/TITLE is
compiled to the tokenized value #4#3#1 and an index seek
is performed on the PATH_VALUE index with the key
values (#4#3#1, “Tree Frogs”). For the qualifying TITLE
nodes, the parent’s key value (ID, Parent (ORDPATH)) is
then used to seek into the primary XML index to obtain
and re-assemble the SECTION subtrees in the result.

3.2.2 PROPERTY Index

A useful application of XML is to represent an object’s
properties with the help of XML markup, especially when
the number and type of the properties are not known a
priori, or properties are multi-valued or complex. This
allows properties of different types of objects to be stored
in the same XML column. The XML schema (if one
exists) for this scenario is typically non-recursive.

Common queries have the form “find properties X, Y,
Z of object P”, where X, Y and Z are path expressions. In
our model, this means the ID value is known for the
object and the PATH_ID values are know for X, Y and Z.
Evaluating this query on the primary XML index requires
scanning all rows corresponding to the given ID value.

On the other hand, the rows for each of the paths X, Y
and Z from all objects are clustered together in the
PATH_VALUE index. Thus, the execution becomes a
seek into the PATH_VALUE index for each of the paths,
scan of all rows with the same PATH_ID value and a
match for the specified ID value.

Clustering all properties of each object together into a
PROPERTY index significantly speeds up property
lookup for objects. The columns in the PROPERTY index
are (ID, PATH_ID, VALUE and ORDPATH). This
organization helps retrieve multi-valued properties for an
object (same ID and PATH_ID values). Retrieving all
properties of an object requires scanning the same number
of rows in the primary XML index and the PROPERTY
index. However, the higher record density of the
PROPERTY index yields faster result, especially when no
back join with the primary XML index is required.

To illustrate the point with an example, consider the
extractions of the ISBN (i.e. /BOOK/@ISBN) and the
title of the first section (i.e.
(/BOOK/SECTION/TITLE)[1]) from the XDOC column
of table DOCS. The execution logic can be expressed in
the following SQL statement:

SELECT (SELECT TOP 1 N1.VALUE,
FROM infosettab N1
WHERE DOCS.ID = N1.ID
AND N1.PATH_ID =

 PATH_ID (/BOOK/@ISBN)),
 (SELECT TOP 1 N2.VALUE,
 FROM infosettab N2
 WHERE DOCS.ID = N2.ID
 AND N2.PATH_ID =

 PATH_ID(/BOOK/ SECTION/TITLE))
FROM DOCS

The primary key ID and the PATH_ID values are

known, so that seeking into the PROPERTY index
permits efficient retrieval of the ISBN and TITLE values.

To retrieve a single property of an object, the
PROPERTY index is more suitable than the
PATH_VALUE index, since the latter clusters the same
path from all objects together. When N properties are to
be retrieved, the cost-based optimizer must decide
between N seeks into the PROPERTY index (same ID, N
different PATH_ID values) or a scan in the PROPERTY
index for the N property values of the object.

3.2.3 VALUE Index

Value-based queries of the type
/BOOK/SECTION[FIGURE/@* = “Sample Bug”]
specify a value and have a wildcard for the path. It
requires scanning the primary XML or PROPERTY index
for each XML instance while trying to match the specified
portion of the path. Using the PATH_VALUE index is
worse and a larger part of the index is usually scanned.

For efficiency, an index that locates the specified
value first can induce a bottom-up query plan and perform
much better. Such an index is the VALUE index built on
the columns (VALUE, PATH_ID, ID and ORDPATH).
An index lookup occurs using the value “Sample Bug”
and, for the qualifying rows, the specified part of the
PATH_ID is matched. A back join with the primary XML
index is generally needed to re-assemble the result (the
ancestor node SECTION in this example). As noted
above, the ORDPATH of a parent or ancestor can be
computed as a prefix of a descendant’s ORDPATH.

If the XML column is typed, then values stored in the
index receive appropriate typing. If the XML column is
untyped, then values are indexed as strings. Untyped
XML is more beneficial for document scenarios than data
scenarios.

As an example, consider the evaluation of the path
expression /BOOK/SECTION[FIGURE/@* = “Sample
Bug”] on an XML instance. The following SQL statement
expresses the execution logic:

SELECT SerializeXML (N1.ID,
 Parent (N1.ORDPATH))

FROM infosettab N1 JOIN infosettab N2 ON
 (N1.ID = N2.ID AND
 N1.ORDPATH = Parent(N2.ORDPATH))

WHERE N1.PATH_ID =
 PATH_ID(/BOOK/SECTION/FIGURE)

AND N2.NODE_TYPE = Attribute
AND N2.VALUE = ‘Sample Bug’

An index seek into the VALUE index with the search

value ‘Sample Bug’ yields (ID, ORDPATH) pairs that are
joined with the primary XML index. Each such (ID,
ORDPATH) node is checked for attribute type and child
relationship to the nodes found for the path

1151

/BOOK/SECTION/FIGURE. The resulting SECTION
elements are serialized in the result.

3.2.4 Content Indexing

The origin of the XML standard is in the document
community where the most important part of an XML
instance is the text (the “content”) in the document
marked up by the tag structure. Accordingly there has
been increasing amount of focus on information retrieval
(IR) techniques in the XML space. These range from
simply discarding the markup and using traditional
inverted word list techniques augmented with tag/path
information to include the markup in the full text index
and so leverage the IR search even for element and
attribute names.

We support two solutions in this space. We can
leverage the IR capabilities of the engine by creating a
full text index over an XML data type column. The filter
in the text indexer discards the markup and creates an
inverted word index with full support of our SQL text
search sublanguage over the XML data type instances.
The text search expressions now can be combined with
XQuery expressions in the same SQL statement and the
optimizer leverages all existing indexes (relational, XML
and full text) in order to evaluate the query efficiently.

This solution works well for traditional IR queries but
it is not optimal if we want to combine searching for a
certain word within a specific context, for example, in a
particular XML element. Here we want to take advantage
of the XML indexes we build over the XML infoset but
we want to have finer granularity than text nodes since the
VALUE index does not help us locate individual words
efficiently. In order to achieve this we can extend the full
text inverted word index with information from the
infoset or we can extend our infoset table with word
information. Here we choose the later solution by building
what we call the word break index.

The word break index has the same structure as the
infoset table except that we break up the text nodes into
words according to XML whitespace. Now we can take
advantage of all the information present in this table and
we can do efficient fine granularity searches on XML
whitespace boundaries and tag boundaries. This does not
replace a fully annotated full text index since it does not
have weighting, ranking and relevance-oriented
information [9] but it provides a very efficient index
structure for most of the full text like searches.

3.3 Evaluating Complex Path Expressions

A complex path expression may require multiple lookups
of one or more XML indexes. Rows found in different
lookups are joined (on the primary key ID and
ORDPATH in the most common cases) as required for
evaluating the path expression. (Section 4 discusses
several examples.) This is executed using the proper JOIN
type (nested loop join, merge join or hash join [17]).

Thus, the overall execution consists of relational
operations with special optimizations for ORDPATH
properties (order and hierarchy).

A complex path expression is rewritten to use the
primary XML index as shown in the previous sections.
The choice of PATH, PROPERTY and VALUE indexes
are done by the cost-based optimizer using such
information as the distributions of PATH_ID, VALUE,
primary key and ORDPATH. The query rewrites in the
above sections also indicate that the query optimizer may
choose to use multiple XML indexes, and evaluate parts
of the XPath expression using a post-filter on the output
of the index lookups.

The next section presents experimental data on the
gain in query performance using various XML indexes.

4. Experimental Results using XMark
Benchmark

XMark [15] is an XML query benchmark that models an
auction scenario. It specifies 20 queries for exact match,
ordered access, regular path expressions, following
references, construction of complex results, join on
values, search for missing elements, and so on.

This section reports the performance improvements
we found with different XML indexes. We explain the
reasons for the performance gain for several queries.

4.1 Workload
Sample XML data conforming to the XMark schema was
produced using the document generator XMLGEN
provided by the authors of XMark. Instead of storing the
entire data as a single, large XML instance, it is more
natural in a relational database to store the data in tables
representing the different entities in the data model. This
yields five tables for people, open auctions, closed
auctions, items and categories.

Information about bidders is stored in the table
PEOPLE, while those about ongoing and closed auctions
are stored in the tables OPEN_AUCTIONS and
CLOSED_AUCTIONS, respectively. The table ITEMS
contains data about the auction items. Lastly, the
CATEGORIES table contains information on the
classification scheme of items.

Each of these tables contains two columns: an integer
id column and an untyped XML column containing the
data. The table schema is shown in the appendix. XML
indexes of the same type are created on all the XML
columns to measure the usefulness of that index type.

Cross references among XML instances is maintained
as ordinary attributes instead of IDREF since the
reference is across XML instances with our five tables.
For example, the bidder of an open auction is stored as a
“person” attribute with the person’s id as the value in the
open auction XML instance.

1152

We manually rewrote the original XMark queries to
use joins among our five tables. Some of the query
rewrites are shown in the appendix.

We generated data only for the North America region
and changed Q9 accordingly to avoid returning an empty
result for Europe. Q13 (reconstruction query) does not
have an auction item that satisfies the path
/site/regions/australia/item used in the query. An
optimization in the relational engine knows upfront that
no rows will be returned and the path expression is not
executed in the indexed case. We changed the query
slightly to use “africa” instead of “australia” to return a
non-null result.

4.2 Experimental Setup and Results
The XMark database is created for scale factors 0.5 and
30, the latter having sixty times as many rows in each
table as the former. The size of the XML data type
instances are the same in both cases.

XMLGEN generates a single XML instance whose
size is 60 MB for scale 0.5 and 3.35 GB for scale 30. The
number of rows in the PEOPLE, OPEN_AUCTIONS,
CLOSED_AUCTIONS, ITEMS and CATEGORIES
tables are 12750, 6000, 4875, 10875 and 500,
respectively, for scale 0.5, and 765000, 360000, 292500,
652500 and 30000, respectively, for scale 30.

The disk space consumption for scale factor 0.5 is 142
MB for the five tables and 345 MB for the primary XML
indexes. The secondary XML indexes of each type
(PATH, PROPERTY and VALUE) took up another 101
MB. The corresponding sizes for scale factor 30 are
8.3GB, 20GB and 5.9GB, respectively.

The workload is run in single user mode on a 4-way
700 MHz Pentium III machine running Windows Server
2003. It has 2GB RAM and a 3-disk array of 36GB each.
The database is a pre-release build of Microsoft SQL
Server 2005. The query execution time is measured at the
client.

QUERY PRIMARY PATH_

VALUE
PROPERTY VALUE

Q1 5.8 28.8 6.7 28.8
Q2 2.8 2.6 3.5 2.0
Q3 2.2 1.8 2.3 2.4
Q4 8.3 8.0 7.8 7.7
Q5 2.9 2.9 2.7 2.9
Q6 1.0 1.1 1.2 1.1
Q7 7.9 43.6 14.7 12.8
Q8 1.7 1.8 1.7 1.7
Q9 0.6 0.6 0.6 0.6
Q10 6.3 6.3 19.7 5.9
Q11 3.7 3.8 3.8 3.7
Q12 2.9 3.0 3.0 1.5
Q13 2.8 3.4 5.4 2.6
Q14 7.0 8.3 7.6 7.3
Q15 7.7 7.5 7.5 6.4
Q16 7.4 19.1 9.6 10.2

Q17 3.0 2.0 1.9 2.0
Q18 6.0 1.0 2.5 0.8
Q19 2.3 5.7 5.5 2.4
Q20 0.8 1.0 0.8 0.8
Table 1 Gain in using XML index for XMark queries (i.e.
execution time using XML blob/execution time using
XML index) for scale factor 0.5.

We compare the benefits of using the various XML

indexes with the blob case. Table 1 shows the “gain” in
using XML indexes as measured by the ratio of the
execution times using XML blobs (i.e. without any XML
indexes) and the execution times with different XML
index configurations for scale factor 0.5. For example, the
PROPERTY configuration creates the primary and
PROPERTY XML indexes on each XML column since a
secondary XML index is created on the Infoset table.
These measurements are taken with no parallelism in
query execution. Parallel plans make the gain higher in
some cases. Owing to space limitations, we discuss the
measurements for scale factor 30 briefly in Section 4.7.

Execution on XML blobs evaluates simple path
expressions without predicates and produces an Infoset
work table with rows for the qualifying nodes and their
subtrees. The PATH_ID column is not present in this
work table. Predicates are applied as a post-filter step. The
rest of query execution proceeds as in the indexed case
described in Section 3.

Looking at the gains in Table 1 — which gives the
factor by which the choice of an XML index speeds up
queries relative to the blob case — it is evident that XML
indexes benefit the workload significantly. We consider a
few of the queries below.

4.3 Primary XML Index
The performance gains are mainly related to parsing XML
blob multiple times to evaluate the path expressions in the
blob case. For primary XML index, not only is the parsing
cost saved but also path expressions of the form
“path=value” can be evaluated faster using the PATH_ID
and VALUE columns. A case in point is Q4 (ordered
access query), where the path expressions
/site/open_auctions/open_auction/bidder/personref
[@person="person18829"] and (/site/open_auctions/
open_auction/bidder/personref [@person =
"person10487"] are evaluated using the primary XML
index and yields nodes whose relative positions can be
determined by comparing their ORDPATH labels.

Q6 (regular path expression query) performance is the
same with and without XML indexes since the query
counts the number of rows in the ITEMS table and no
XML processing occurs.

One of the queries — Q9 (reference chasing query) —
is slower than the execution on XML blob. It scans all
rows of the primary XML index and evaluates two joins
on values within XML instances. Owing to the larger size
of the primary XML index compared to the XML blobs,

1153

the index scan cost outweighs the cost of parsing and
slows down the query. Query Q20 (aggregation query)
has about the same performance as blobs.

4.4 PATH_VALUE Index
The PATH_VALUE index is very effective in speeding
up some of the XMark queries, as shown in the
PATH_VALUE column in Table 1.

Consider query Q1 (exact match query), which
evaluates the two path expressions PE1 =
(/site/people/person/name/text())[1] and PE2 =
/site/people/person/@id[.= "person0"], as shown in the
appendix. The path expression /site/people/person/@id is
compiled into a PATH_ID value, and “person0” is the
required VALUE, which is unique in the XML column in
the PEOPLE table. The combination (PATH_ID,
VALUE) yields a very selective seek into the
PATH_VALUE index. The other path expression PE1
yields a PATH_ID value. Lookup of the PATH_VALUE
index with only this value would cause a large number of
rows in the index to be scanned. Instead, a primary XML
index seek occurs with the ORDPATH of the “person”
node (and the same ID value). Scanning down the primary
XML index, the rest of the path expression is evaluated
using the PATH_ID column. Evaluation of the query on
the XML blob is much slower since PE2 is evaluated on
all rows in the PEOPLE table. For the qualifying rows,
the XML blob is parsed a second time to evaluate PE1.

The performance gain with Q7 (regular path
expression query) is large. The XML blob query has to
scan all rows in four of the five tables and evaluate the
three path expressions //description, //annotation and
//email. On the other hand, these path expressions locate
the “description”, “annotation” and “email” node clusters
within the PATH_VALUE index on each XML column,
and eliminate duplicate ID values for each cluster. This
yields very efficient evaluation of the query.

Other queries also benefit from the PATH_VALUE
index to varying degrees, such as Q16, which evaluates
long path expressions.

4.5 PROPERTY Index
Q2 (ordered access query) evaluates the path expression
/site/open_auctions/open_auction/bidder[1]/increase/text()
on all rows of the OPEN_AUCTIONS table. The primary
key value ID is known from this table. Using ID and the
PATH_ID value for the path
/site/open_auctions/open_auction/bidder (ignoring the
ordinal [1]), an index seek into the PROPERTY index
finds the first bidder node within the XML instance. A
back join with the primary XML index on the (ID,
ORDPATH) value for the bidder node and a subtree scan
for the remaining part of the path expression
(increase/text()) yields the result. As a matter of fact,
performing the tree scan on the primary XML index for a
given ID value also performs quite well for the given data.

Q10 (construction of complex result query) finds
persons with interest (the path expression PE is
/site/people/person[profile/interest/@category]) and for
each such person retrieves personal attributes. The
primary key ID of the PEOPLE table and the compiled
PATH_ID value is known. Consequently, PE can be
evaluated very efficiently using an index seek on the
PROPERTY index. For these persons (ID and ORDPATH
values are known), various properties (e.g. gender and
age) are retrieved efficiently from the PROPERTY index
using ID and PATH_ID values for the different properties
(identified by appropriate path expressions). The gain is
pronounced compared to the other XML index types. An
index seek into the PROPERTY index occurs for each
property. In the other indexed cases, an index scan of the
rows for each person occurs on the primary XML index to
retrieve the properties.

4.6 VALUE Index
Q1 (exact match query) performs very well with the
VALUE index. Two path expressions PE1 =
(/site/people/person/name/text())[1] and PE2 =
/site/people/person/@id[.= "person0"] occur in the query,
as shown in the appendix. The value “person0” is unique
in the XML column of the PEOPLE table, and the
PATH_ID value is known at compilation time.
Consequently, PE2 is very selective on the VALUE index.
Other queries benefit to different extents. Q9 does not use
the VALUE index and uses the primary XML index.

4.7 Results for Scale Factor 30
The gains for scale factor 30 generally are more subdued
than scale factor 0.5 since the processing becomes I/O
bound. We present only a few of the measurements in
Table 2 owing to space limitations.

QUERY PRIMARY PATH_

VALUE
PROPERTY VALUE

Q1 2.8 595.3 5.2 602.2
Q5 1.2 1.1 0.8 1.1
Q15 1.8 18.3 6.2 5.9
Q16 1.4 48.2 4.5 5.0
Table 2 Gain in using XML index for XMark queries (i.e.
execution time using XML blob/execution time using
XML index) for scale factor 30.

Q1 performs extremely well with PATH_VALUE and
VALUE indexes since the search predicate is highly
selective. Bottom-up evaluation leads to improved gain in
Q15 and Q16 as well using the PATH_VALUE index.

In the case of primary XML index, many more rows in
the Infoset table are scanned for Q1 to evaluate the
predicate, for which the gain is smaller than in the case of
scale factor 0.5. Similar effects are seen in the other
queries as well, such as Q5.

1154

The PROPERTY index is a little slower in Q1 because
a larger number of rows in the PEOPLE table are scanned
to find their primary key values that are then used in
PROPERTY index lookup.

5. Related Work
Several ideas have been proposed in the literature for
decomposing XML data into a fixed database schema.
Document order and structure is efficiently captured using
a single ORDPATH in our approach as opposed to the
EDGE table [6], Monet system [14], XRel [21], XParent
[10] and accelerator table [8].

The EDGE table and XParent both use an Ordinal
column to store the relative order of siblings in XML
instances. They also store parent-child relationships, so
that determining ancestor-descendant relationship and
serializing XML require transitive closure computation.
The XParent approach suggests materializing the
ancestor-descendant relationship in an ANCESTOR table
with a Level column that can be used for parent-child
checks as well, but requires more space than ours.

In both EDGE table and XParent, insertion of subtrees
requires incrementing the Ordinal value of the “following-
siblings” [18]. The ANCESTOR table requires more
maintenance. ORDPATH avoids such relabelling.

The Monet system partitions the XML data into a set
of tables corresponding to the different paths. This
distributes the children of a node into different tables, and
determining the children of a node requires a number of
joins. The Monet and XRel systems store the byte range
of each XML subtree in the original XML. Serialization
of XML is straightforward: the byte range is used to
retrieve the corresponding XML fragments, and avoids
scanning rows from the primary XML index in our
approach. Document order is determined by comparing
the starting byte of each node. Ancestor-descendant
relationship requires checking for byte range inclusion,
and a check for the minimal containing range is needed
for parent-child relationship; for ORDPATH, both result
in matching prefixes. The byte ranges of the “following”
nodes [18] must be changed when a subtree is inserted or
deleted, which is an expensive operation. ORDPATH is
very flexible for subtree insertion and deletion.

The accelerator table labels XML nodes with their pre-
order and post-order ranks in the XML tree, and is
otherwise an edge table. Its properties are similar to the
byte range approaches. For example, ancestor-descendant
relationship requires checking for inclusion of pre- and
post-order rank pairs, and subtree insertion updates the
pre- and post-order ranks of a large number of nodes.

Path-value based queries require multiple joins to
match the path in EDGE and accelerator tables. The
Monet system looks up the value in the table
corresponding to the path. For wildcard and //-axis
queries, it potentially requires a large number of table
look ups. The XRel and XParent schemes look up the data

table using a mapped value for the path stored in a path
directory. Property look ups have similar characteristics.

Value-based lookups benefit from a separate VALUE
table in the EDGE table approach, which is similar in
spirit to our VALUE index. The Monet system has to
search a number of CDATA tables for imprecisely
specified path. The specified value is used as a filter on
the data table in XRel and XParent, and the accelerator
table.

Our notion of secondary XML indexes can be applied
to each of these approaches to speed up different query
classes. On the other hand, we could introduce a path
directory to save space in XML indexes, although it adds
a JOIN in case of wildcard and //-axis queries.

6. Conclusions
This paper introduces techniques for indexing XML
instances stored in a relational database in an
undecomposed form. It introduces a B+tree called primary
XML index that encodes the Infoset items of XML nodes.
We have avoided the approach of decomposition of XML
instances based on their schema since our goal is uniform
data representation and query processing with or without
XML schemas. Secondary XML indexes improve the
performance of common classes of queries: (a) PATH (or
PATH_VALUE) index for path-based queries, (b)
PROPERTY index for property bag scenarios (c) VALUE
index for value-based queries, and (d) work break index
for content indexing with structural information.
Performance measurements using the XMark benchmark
show that these indexing ideas are highly effective for a
wide class of queries.

The above indexing ideas can be extended in several
ways. Many applications know the expected query
workload and will benefit by indexing only the paths
occurring in the queries. An expression-based XML index
is the solution. Navigational queries, such as opening a
folder, go down a hierarchy one level at a time in breadth-
first order. If this type of query is prevalent in a workload,
it is beneficial to create an index for the parent-child
relationship. ID/IDREF sets up linking within an XML
instance which is different from document order. Primary
XML index is not geared toward efficient traversal of
IDREF links. Instead, an index can be created on the
IDREF links for efficient traversal of IDREF links.

XML index maintenance can be performed by
reconstructing the index rows corresponding to the
modified XML instance. Alternatively, it can be done
incrementally, and ORDPATH is especially suited to
handle such changes. This is an interesting topic for future
investigation, as also is an experimental comparison
between our indexing scheme and the comparable ones.

1155

Acknowledgment
The authors would like to thank their colleagues Adrian
Baras, Denis Churin, Wei Yu, Sameer Verkhedkar, Goetz
Graefe and Soner Terek for their invaluable discussions
on indexing of XML data; José Blakeley, Goetz Graefe
and the anonymous reviewers for their suggestions on
improving the content and the presentation of the paper.

References
[1] R. Bayer and K. Unterauer. Prefix B-trees. ACM

Transactions on Database Systems, 2(1):11 26, 1977.

[2] P. Bohannon, J. Freire, P. Roy, J. Simeon. From XML
Schema to Relations: A Cost-Based Approach to XML
Storage. ICDE 2002.

[3] Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/REC-xml.

[4] J. Cowan, R. Tobin, eds. XML Information Set.
http://www.w3.org/TR/2001/WD-xml-infoset-20010316.

[5] M. Fernandez, Y. Kadiyska, A. Morishima, D. Suciu, W-C
Tan. SilkRoute : a framework for publishing relational data
in XML. ACM TODS, vol. 27, no. 4, December, 2002.

[6] D. Florescu and D. Kossmann. Storing and Querying XML
Data Using an RDBMS. IEEE Data Engineering Bulletin,
22(3):27-34, 1999.

[7] R. Goldman, J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured
Databases. VLDB 1997.

[8] T. Grust. Accelerating XPath Location Steps. SIGMOD
2002.

[9] L. Guo, F. Shao, C. Botev, J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents.
SIGMOD 2003.

[10] H. Jiang, H. Lu, W. Wang, J. X., Yu. Path Materialization
Revisited: An Efficient Storage Model for XML Data. 2nd
Australian Institute of Computer Ethics Conference, 2000.

[11] Microsoft® SQL Server™. http://www.microsoft.com/sql.

[12] S. Pal, M. Fussell, I. Dolobowsky. XML support in
Microsoft SQL Server 2005.
http://msdn.microsoft.com/xml/default.aspx?pull=/library/e
n-us/dnsql90/html/sql2k5xml.asp.

[13] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller.
ORDPATHs: Insert-Friendly XML Node Labels. SIGMOD
2004.

[14] A. Schmidt, M. Kersten, M. Windhouwer, F. Waas.
Efficient Relational Storage and Retrieval of XML
Documents. In Proc. of WebDB 2000, pp. 47-52.

[15] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I.
Manolescu, R. Busse. XMark: A Benchmark for XML Data
Management. VLDB 2002.

[16] J. Shanmugasundaram, R. Krishnamurthy, I. Tatarinov. A
General Technique for Querying XML Documents using a
Relational Database System. SIGMOD 2001.

[17] A. Silberschatz, H. F. Korth, S. Sudarshan. Database
System Concepts, 4th edition, McGraw-Hill, 2001.

[18] XML Path Language (XPath) 2.0.
http://www.w3.org/TR/2003/WD-xpath20-20031112.

[19] XQuery 1.0: An XML Query Language.
http://www.w3c.org/TR/xquery.

[20] I. Tatarinov, E. Viglas, K. Beyer, J. Shanmugasundaram, E.
Shekita. Storing and Querying Ordered XML Using a
Relational Database System. SIGMOD 2002.

[21] M. Yoshikawa and T. Amagasa. XRel: a path-based
approach to storage and retrieval of XML documents using
relational databases. ACM Transactions on Internet
Technology, vol. 1, August 2001, pp. 110-141.

APPENDIX — XMARK Benchmark
For completeness of the presentation, we present the
XMARK queries adapted for our system. The data is
contained in the following tables:
Create table PEOPLE (p_id int IDENTITY PRIMARY

KEY, p_xmlperson xml)
Create table ITEMS (i_id int IDENTITY PRIMARY

KEY, i_xmlitem xml)
Create table open_auctions(oa_id int IDENTITY

PRIMARY KEY, oa_xmlopen_auction xml)
Create table closed_auctions(ca_id int IDENTITY

PRIMARY KEY, ca_xmlclosed_auction xml)
Create table categories(c_id int identity primary key,
 ct_xmlcategory xml)

Some of the queries described in the XMark
benchmark and discussed in this paper are presented
below along with their implementation in our system.
Query Q1: Return the name of the person with ID
'person0'
select p_xmlperson.value('(/site/people/person/name

/text())[1]', 'nvarchar(4000)')
from people
where p_xmlperson.exist('/site/people/person/@id[.=
"person0"]') =1
Query Q2: Return the initial increases of all open
auctions.
select oa_xmlopen_auction.query('<increase> {

/site/open_auctions/open_auction/bidder[1]
/increase/text() } </increase>')

from open_auctions
Query Q4: List the reserves of those open auctions where
a certain person issued a bid before another person
select oa_xmlopen_auction.query('<history>

 {/site/open_auctions/open_auction/reserve/text()}
</history>')

from open_auctions
where oa_xmlopen_auction.exist('

(/site/open_auctions/open_auction/bidder/
 personref[@person = "person18829"])[1] <<
(/site/open_auctions/open_auction/bidder/
 personref[@person = "person10487"])[1]')=1

1156

Query Q6: How many items are listed on all continents?
select count(i_id) from items

Query Q7: How many pieces of prose are in our
database?
SELECT SUM(c) as pieces_of_prose
FROM (SELECT COUNT(i_id) AS c FROM items
WHERE i_xmlitem.exist('//description') = 1UNION all
SELECT COUNT(oa_id) AS c FROM open_auctions
WHERE oa_xmlopen_auction.exist('//description') = 1
UNION all
SELECT COUNT(ca_id) AS c FROM closed_auctions
WHERE ca_xmlclosed_auction.exist('//description') = 1
UNION all
SELECT COUNT(ct_id) AS c FROM categories
WHERE ct_xmlcategory.exist('//description') = 1
UNION all
SELECT COUNT(i_id) AS c FROM items
WHERE i_xmlitem.exist(‘//annotation') = 1 UNION all
SELECT COUNT(oa_id) AS c FROM open_auctions
WHERE oa_xmlopen_auction.exist('//annotation') = 1
UNION all
SELECT COUNT(ca_id) AS c FROM closed_auctions
WHERE ca_xmlclosed_auction.exist('//annotation') = 1
UNION all
SELECT COUNT(ct_id) AS c FROM categories
WHERE ct_xmlcategory.exist(‘//annotation') = 1
UNION all
SELECT COUNT(i_id) AS c FROM items
WHERE i_xmlitem.exist(‘//email') = 1
UNION all
SELECT COUNT(oa_id) AS c FROM open_auctions
WHERE oa_xmlopen_auction.exist(‘//email') = 1
UNION all
SELECT COUNT(ca_id) AS c FROM closed_auctions
WHERE ca_xmlclosed_auction.exist(‘//email') = 1
UNION all
SELECT COUNT(ct_id) AS c FROM categories
WHERE ct_xmlcategory.exist(‘//email') = 1) as i
Query Q9: List the names of persons and the names of
the items they bought in Europe.
SELECT t.p_xmlperson.query('

<person name="{(/site/people/person/name)[1]}">
{sql:column("i_name")}</person>')

FROM (
 SELECT p_xmlperson, p_id, i_id, i_xmlitem.value('

 (/site/regions/namerica/item/name)[1]',
 'nvarchar(400)') i_name

FROM people LEFT OUTER JOIN closed_auctions
 ON (p_xmlperson.value('

(/site/people/person/@id)[1]',
'nvarchar(400)') =

 ca_xmlclosed_auction.value('
(/site/closed_auctions/closed_auction/
buyer/@person)[1]', 'nvarchar(400)')

 LEFT OUTER JOIN items
 ON (ca_xmlclosed_auction.value('

(/site/closed_auctions/closed_auction/

itemref/@item)[1]', 'nvarchar(400)') =
i_xmlitem.value('
(/site/regions/namerica/item/@id)[1]',

'nvarchar(400)')) t ORDER BY p_id, i_id
Query Q10: List all persons according to their interest;
use French markup in the result.
select person.value('(.)[1]', 'varchar(50)') category,

 cp.p_xmlperson.query(
 '<personne><statistiques>

<sexe>{/site/people/person/gender/text()}</sexe>,
<age>{/site/people/person/age/text()}</age>,
 <education>{/site/people/person/education/text()}
</education>, <revenu>
{/site/people/person/income/text()}</revenu>
</statistiques><coordonnees>
<nom>{/site/people/person/name/text()}</nom>,
<rue>{/site/people/person/address/street/text()}</rue>,
<ville>{/site/people/person/address/city/text()}</ville>,
<pays>{/site/people/person/address/country/text()}
</pays>, <reseau>
<courrier>{/site/people/person/emailaddress/text()}
</courrier>
<pagePerso>{/site/people/person/homepage/text()}
</pagePerso></reseau></coordonnees>
<cartePaiement>{/site/people/person/creditcard/text()}
</cartePaiement></personne>')
from people cp cross apply
cp.p_xmlperson.nodes('/site/people/person/profile/interest
/@category') n(person) ORDER BY category
Query Q16: Return the IDs of those auctions that have
one or more keywords in emphasis.
select ca_xmlclosed_auction.query(‘
 <person id ="{(/site/closed_auctions/

closed_auction/seller/@person)[1]}"/> ')
from closed_auctions
where ca_xmlclosed_auction.exist(‘

/site/closed_auctions/closed_auction/annotation/
description/parlist/listitem/parlist/listitem/text/
emph/keyword/text()') =1

Query Q20: Group customers by their income and output
the cardinality of each group.
SELECT CAST(('<result>' + '<preferred>' +

 cast(sum(case when income>=100000 then 1
 else 0 end) as nvarchar(10))+ '</preferred>' +
 '<standard>' + cast(sum(case when
income<100000 and

 income>=30000 then 1 else 0 end) as
 nvarchar(10))+ '</standard>' +

 '<challenge>' +
 cast(sum(case when income<30000 then 1 else 0
 end) as nvarchar(10)) + '</challenge>' +

 '<na>' + cast(sum(case when income is null then 1
 else 0 end) as nvarchar(10))+

 '</na>' + '</result>') AS XML)
FROM (SELECT p_xmlperson.value('

(/site/people/person/profile/@income)[1]','float')
as income FROM people) i

1157

