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Abstract

Data Cleaning is an important process that has been at
the center of research interest in recent years. Poor data
quality is the result of a variety of reasons, including
data entry errors and multiple conventions for recording
database fields, and has a significant impact on a vari-
ety of business issues. Hence, there is a pressing need
for technologies that enable flexible (fuzzy) matching
of string information in a database. Cosine similarity
with tf-idf is a well-established metric for comparing
text, and recent proposals have adapted this similarity
measure for flexibly matching a query string with val-
ues in a single attribute of a relation.

In deploying tf-idf based flexible string matching
against real AT&T databases, we observed that this
technique needed to be enhanced in many ways. First,
along thefunctionality dimension, where there was a
need to flexibly match along multiple string-valued at-
tributes, and also take advantage of known semantic
equivalences. Second, we identified variquesfor-
mance enhancemeritsspeed up the matching process,
potentially trading off a small degree of accuracy for
substantial performance gains. In this paper, we report
on our techniques and experience in dealing with flexi-
ble string matching against real AT&T databases.

Introduction

cleaning has been at the center of research interest in recent
years (see, e.g., [3]).

A key technology in data cleaning is flexible (fuzzy)
matching of string information in a database. Such infor-
mation is prevalent in corporate databases (e.g., customer
names, company names, product names, addresses), and
effectively matching such attribute values, taking into ac-
count the many sources of poor data quality, is a challenge.
Consider, for example, the address of AT&T’s headquar-
ters in the US: “900 Route 202/206, Bedminster, NJ”. Due
to multiple conventions in representing such addresses, this
address also occurs in various databases as “900 USHwy
202/206, Bedminster, NJ”, “900 Rt 202, Bedminster, NJ".
Similarly, when considering company names, itis common
to see “Microsoft”, “Microsoft Inc.” and “Microsoft Cor-
poration” being used in different records to represent the
same entity. A simple equality or (even) substring compar-
ison on names or addresses will not properly identify them
as being the same entity, leading to a variety of potential
business problems.

To effectively deal with flexible matching of string val-
ues in a database, while accounting for data quality issues,
recent techniques [2, 4] have proposed the use of the well-
established tf-idf (term frequency, inverse document fre-
guency) metric, commonly used in Information Retrieval
for comparing text. Intuitively, tokens (words, g-grams,
etc.) are extracted from database strings, and each token

The efficiency of every information processing infrastruc-is associated with a weight (idf) reflecting its common-
ture is greatly affected by the quality of the data residingality in the database (common tokens are assigned a low
in its databases. Poor data quality is the result of a vaweight, uncommon tokens are assigned a high weight).
riety of reasons, including data entry errors (e.g., typingEach database string is then associated with a (normalized)
mistakes), poor integrity constraints and multiple conven-weight vector (incorporating both tf and idf) corresponding
tions for recording database fields (e.g., company namesp the tokens extracted from it. Similarity between database
addresses). This has a significant impact on a variety atrings, or between a database string and a query string, is
business issues, such as customer relationship managemémen computed using the cosine similarity (inner product)
(e.g., inability to retrieve a customer record during a serviceof the corresponding weight vectors, essentially taking the
call), billing errors and distribution delays. As a result, dataweights of the common tokens into account.

In deploying such a technique against real AT&T
Permission to copy without fee all or part of this material is granted pro- databases, we observed that applications do not want to
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advantage, the VLDB copyright notice and the title of the publication and y 9 9 ’

its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

t Often, there is a need to flexibly match along mul-
tiple string-valued attributes, for example, both com-
pany name and (partial) address. As can be expected,
this helps to focus the search considerably. While
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there might be many high-similarity flexible matches
for both the company name (e.g., “Microsoft”) and
the partial address (“New York, NY”), individually,
the combined query has much fewer high-similarity
matches.

t Again, there are semantic relationships that are of-
ten known, which are unlikely to be matched using
basic flexible string matching techniques. For ex-
ample, AT&T’s headquarters also has the (personal-
ized) address “1 ATT Way, Bedminster, NJ”, which
is hard to match with (the standard address of) “900
Route 202/206, Bedminster, NJ”. Similarly, “World-
com Corp.” and “MCI Inc.” refer to the same com-
pany, but would not be matched using basic string
matching techniques.

t At pre-processing time the Base table is pre-

processed, and tokens (words, g-grams, etc.) are ex-
tracted from each database stringBase.sva . A
variety of auxiliary tables get created, to compute the
idf's of each token, and ultimately to associate each
database string with a (normalized) weight vector (in-
corporating both tf and idf) corresponding to the to-
kens extracted from it.

At query time a similar process is first done with re-
spect to theSearch table. Then, an SQL query that
operates on the auxiliary tables created frBiase

andSearch is executed, which identifies the match-
ing records, along with their similarity score. Es-
sentially, this query computes the cosine similarity
(inner product) of the weight vectors of the search

string with the weight vectors of the database strings
in Base.sva , taking the weights of the common to-
kens into account.

Such needs require that the basic string matching tech-
nigue be enhanced along thenctionality dimension. In
addition, when such flexible string matching is done against
large databases (with tens of millions of records), pgrfor-z_l Pre-processing Time: Steps
mance becomes a bottleneck, even when the technique is . o
implemented, using SQL, inside the database. This reYVe now describe the SQL of the pre-processing in a step-
quires the identification of noveperformance enhance- by-step fashion. Assume that we have extracted the tokens
mentsto speed up the matching process. In talking to user§om the string values iBase.sva and stored the re-
of the tools that we built, we identified that it was accept-Sult in the term frequency tabBaseTF(tid, token,
able to trade off a small degree of accuracy for substantiaf) . Wheretid refers to the record identifier in tizase
performance gains. table (and hence uniquely identifies the string in sk

In this paper, we address these functionality and perfor@ttribute of that table), anéf is the number of occur-
mance issues, and report on our experience in using flexiblgénces oftoken in that string. Also, for simplicity, as-
string matching techniques against real AT&T databasesSume that the tablBaseSize(size) ~ contains a single
The rest of this paper is structured as follows. In Section 20ne-attribute record containing a count of the number of
we present a detailed description of tf-idf and cosine simJ€cords inBase. The next sequence of steps is as follows.
ilarity, along with the SQL that serves as our baseline in  First, each token needs to be associated with a weight
this paper. We describe our various functionality enhancelidf) that reflects its commonality in the database; com-
ments in Section 3, and the performance enhancements [RON tokens are assigned a low weight, uncommon tokens
Section 4. In each section, we provide both the conceptudd'® assigned a high weight. This is computed into the
contributions and an experimental evaluation of the impacBaselDF(token, idf) table below.
of these contributions. We identify additional challenges
that we faced in practice, both along the functionality and
performance dimensions, in Section 5, before concluding
in Section 6.

insert into BaselDF(token, idf)
select T.token, LOG(S.size) -
LOG(COUNT(T.tid))
from BaseTF T, BaseSize S

. . . group by T.token
2 Single Attribute TF-IDF Matching

In this section, we present a detailed description of tf-idf

(term frequency, inverse document frequency) and Cosm?esponding to a string can be easily computed by asso-
similarity for matching against the values in a single rela-Ciating the productf*idf with each token extracted
tional attribute, along with the SQL that serves as our baseg. | - "o string. However, this is an un-normalized
line ".] this paper. Our description is based on_the approac&/eight vector. Before comp’uting this vector, the second
mentioned by Gravano et al. [4]. Our techniques can beStep computes this normalization term, for edich , as
adapted to use aIte_rnate approaches, such as the one PiRe Io-norm (length in the Euclidean space) of the un-
posed by Chaudhur et al. [2], as we!l. . normalized weight vector. This is computed into the
Let Base denote a base table with a string-valued at'BaseLength(tid len) table below
tributesva against which the flexible matching needs to be ' '
performed, and lebearch denote the table containing the
search strings (this may consist of just a single record with
a single attribute value, or may be more complex). Flexible
string matching is performed in two stages:

Once thedf ’s have been computed, and ttie’s are
known from theBaseTF table, the weight vector cor-

insert into BaseLength(tid, len)
select T.tid,
SQRT(SUM(Lidf*Lidf*T.tf*T.tf))
from BaseTF T, BaselDF |
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where T.token = Il.token (i.e., some answers are not returned), for substantial
group by T.tid performance gains. However, for the answers that are

returned, their scores are computed accurately.
In the third, and final, pre-processing step, the normal-

ized weight vector, associated with each string, is computed In each section, we provide both the conceptual con-

into the BaseWeights(tid, token, weight) ta-  tributions and an experimental evaluation of the impact of
ble below. these contributions.
insert into BaseWeights(tid, token, weight) 3 Functionality Enhancements
select T.tid, T.token, T.tf*lLidf/L.len
from BaseTF T, BaselDF |, BaselLength L 3.1 Multiple attributes
where T.token = Il.token

Consider &Contacts table containing the name and ad-
dress for all companies. We can perform flexible string
matching on each field individually. But what may be de-
sired is a “combined” search which, given a name-address

and T.tid = L.tid

2.2 Query Time: Steps

At query time, given a query string in tf&earch(sva) pair(N; A), returns all tuples from the table that are “close”
table, the above sequence of steps are performed to corte the search pair. The problem is to define metrics for
pute theSearchWeights(tid, token, weight) the distance between a search gair, A) and a tuple pair

table. Note that th&aselDF table is used to obtain the (N;; A;).

idf's of the tokens extracted from the search string, to en- These metrics should be efficient to implement and have

sure that the data in the database table drives the weiglihe same robustness properties as the cosine similarity met-

vector associated with the search string. ric. We also want these metrics to be “data-driven” to the
Finally, our baseline query, for computing all matchesextent possible. In other words, the number of parameters

(along with the scores) whose scores exceed a pre-specifi¢dat require user intervention to adjust should be kept to a

similarity thresholdT, is given below. minimum. The cosine similarity metric can be categorized
_ _ _ _ as “data-driven” because it has a single parameter, the simi-
select S.tid, B.tid, SUM(S.weight*B.weight) larity threshold, that has to be varied to change the behavior
from SearchWeights S, BaseWeights B of the match.
where S.token = B.token For the sake of illustration, the rest of the discussion

group by S.tid, B.tid

having SUM(S weightB weight) > T is in terms of theContacts table with name and ad-

dress attributes. But is should be noted that our enhance-
pments work with any table that has multiple string-valued

If, instead of being given a single search string to matc .
99 g 9 |ﬁlttrlbutes.

against a database table, we would like to compute the joi
of two database tables based on a flexible string match g 11 Attribute C tenati
their columns, the above SQL code works (more or less)y ribute L-oncatenation

unchanged. A straightforward approach is to concatenate the name and
address attributes into a single string and perform flexible
2.3 Contributions of the Paper string matching on this concatenation. The disadvantage

In the rest of this paper, we describe how the above tec with this simple metric is that it ignores a lot of statis-

nique for effectively identifying flexible string matches was ical information. For example, if “Corporation” is com-

- S . mon within the name attribute but rare within the address
extended by us to satisfy the needs of applications agaméﬁtribute then all the tokens derived from “Corporation”
AT&T databases.

are assigned a low weight in the combined name-address

T In Section 3, we discuss functionality enhancementsStfing. Hence, a search for an address containing “Corpo-

In particular, the ability to flexibly match multiple :glt:vgr?tv(tau \1\(/3(2’1 te\?ZrS]I?fntr?ept?)rligriaggrihvlgg fsrgﬁqre“ é%rthg_
string-valued attributes (eg., company name and ad- pIes, P

dress), and the ability to take advantage of knownrate” are uncommon among addresses. By concatenating

semantic relationships (e.g., multiple names for theiﬂi Foirgr?savr\]/ﬂiiﬁc:;risgosrglr:gi gr?]gﬁvenlzgriteussk?&jIn%atlt;ln?gr?m
same company, or multiple addresses for the same lo- ; 9 9
cation). addresses (or vice versa).

t In Section 4, we discuss performance enhancement3-1.2 Using Static Weights
that are necessary when dealing with large databasegnother metric that comes to mind is combining the simi-
(tens of millions of records) with string-valued at- |ayity scores from individual flexible matches on name and
tributes. Most of these result in a small loss of recallgqgress. That is, if, after running two separate flexible

1The only change would be to use the strings in both tables to comput§€arches, the name attribUt_e value in a tuple has pcamd
the idf’s. the address attribute value in that tuple has sqdhen we
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sim name address sim name address

0,75 WORLDCOM 600 5 federal st chicaga il 0.565945894359856 TC PAYPHONES w hauston st mar
0,75 WORLDCOM 400 international play dallas tx 0.563179091332391 TC PAYPHONES W 30th st manhat
0.7 WORLDCOM 300 renaissance ctr detroit mi 0.559600367626103 PSI COLOCATE AMTRAK w 33rd st manhat
075 WORLDCOM 111 Bth ave new york ny 0,559800387826103 LIRR W 33rd st manhat
0.75 WORLDCOM 165 boulevard se atlanta ga 0.543052687383242 AMERICAN MUSELM OF N W 79th st manhat
0.75 WORLDCOM 165 boulevard ne atlanta ga 0.522269095184392 AUDREY ZUCKNER manhattan ny
0.75 WORLDCOM 910 15th st denver co 0.522263095184392 TUMBLE INTERACTIVE M manhattan ny
0,75 WORLDCOM 401 fielderest dr greenburgh ny 0.522269095164392 AMS TECHNOLOGIES manhattan ny
0.75 WORLDCOM 1102 grand blvd kansas city mo 0,522269095184392 EASTERN ELECTRONICS CORP manhattan ny
0,75 WORLDCOM 1102 grand blvd kansas city mao 0493439926229466 SPRINT SPECTRUM fath st manhattal

Figure 1: Static weights: name = 0.75, address = 0.25  Figure 3: Static weights: name = 0.25, address = 0.75

sim name address sim name address tid1 |tid2
0.5 WORLDCOM 600 5 federal st chicago il

X X 0.540166767574879 | WORLDCO 110 wall st new yark ny 1 (90213
0.5 WORLDCOM 400 international pkwy dallas tx
0. WORLDCOM 300 renalssance cir defroit mi 0,540166767574878 | WORLDCO 110 wall stnew yorkny |1 |90740
0.5 WORLDCOM 111 8th ave new yark ny
05 WORLDCOM 165 boulevard s atlantz ga 0.482300726524807 | MANHATTAN CENTER FOR  |& 116th manhattan ny 1 97312
0.5 WORLDCOM 185 boulevard ne atlanta ga 0 447666521564224 | WORLDCOM POP t?ﬂSU & main st chattanaaga 1 |za302
0.5 WORLDCOM 910 15th st denver co o= p——

manhattan ave
0.5 WORLDCOM 401 fieldcrest dr greenburgh ny 0.445944366954701 COMMUNICATION bracklyn ny 196278
0.5 WORLDCOM 1102 grand blvd kansas city mo 0.436408539297653 | ALS CAGE AT MANHATTA lzskn;anhat'tan avenew | |anees
05 WORLDCOM 1102 grand blvd kansas city mo RS
o Lo
Figure 2: Static weights: name = 0.50, address = 0.50 Figure 4: Attribute concatenation

define the combined score of that tuple torpet- (1 j r)q andY = (y1;Y2;::591). LetL(X); L(Y ) be thely-norms

wherer is a real number betweeghand1. Such metrics of these two vectors Then, rather than dividing each

have been well studied. It has the advantage of being easyeight in X by L(X Epd each weight irY by L(Y),

to implement and by varying the value ofve can adjust we defineL(X; Y) L(X)2 + L(Y )2 and divide all

the relative importance of the name and address attributegeights inX andY by L(X;Y).

in the search. And while it preserves the different distri-  Such normalization across attributes results in a dy-

butions of the name and address tokens it has the drawbaglamic adjustment in the relative importance of the at-

that we a-priori have to fix the value ofand cannot change tributes. For example, a search containing a common ad-

the weights assigned to the name and address scores indgess like “100 Main St” will tend to give more importance

dynamic manner. Itis also not obvious how to infer a goodto the name component. Conversely, a search on a com-

value forr from the data. mon name will tend to place more emphasis on the address
component.

3.1.3 Using Dynamic Weights

The metric we propose avoids these shortcomings by gen?f'l'4 Experiments

eralizing the normalization step performed during flexibleWe now present an experiment comparing our dynamic
matching. Recall that, in the 1-column flexible matchingweighting technique with static weighting. A table con-
algorithm the raw tf-idf weights of all tokens in a tuple are taining 100,000 rows of company names and addresses was
divided by thely-norm of the weight vector to obtain nor- used for this purpose. Both the name and address columns
malized weights in the range [0, 1]. This normalization were indexed for flexible matching. We then ran a series
step also ensures that the similarity score of any tuple wilbf searches for the name-address pair (“Worldcom”, “Wall
be between 0 and 1. St Manhattan NY”) using static weights. The weights on
In our metric, we run two flexible matches on the namethe name and address columns took on the values (0.25,
and address attributes. But rather than normalize eac®.75), (0.5, 0.5) and (0.75, 0.25). Finally, the same search
weight vector separately, we normalize the disjoint unionwas performed using attribute concatenation and with our
of the two vectors. Thus, the raw weight vectors from thetechnique.
name and address strings might e=(Xy; Xo; i1 Xk) Figures 1, 2 and 3 show the top results from static weight
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- n25a75 —+—
sim name address nS0aso

n75a;
56832201 7579254 WORLDCO 110 wall st new york ny conestenaton
0.568322017929254 WORLDCO 110 wall st new yark ny
0.481776516566935 WORLDCOM 111 &th ave new york ny
0.462023103220271 WORLDCOM 60 hudson st new york ny
0.461736595695425 WORLDCOMM 140 west st new york ny
0.461223919217079 WORLDCOM POP 750 & main st chattanooga t
0,455999984346651 LIRR W 33rd st manhattan ny
0,43316429737569 WORLDCOM 600 5 federal st chicaga
0.425981077229952 TC PAYPHONES w houston st manhattan ny
0.424860726305206 TC PAYPHONES w 30th st manhattan ny

Recall of top-10 tuples in multi-attribute result

Figure 5: Dynamic weights Figure 6: Ordered recall

searches. It is interesting to observe that the results frorfluery. Other queries exhibit a similar behavior in that
all the static weight searches are lopsided: figures 1 and static weighting tends to miss tuples that don’t have a high
have exact matches on the name string but poor matches @hatch on at least one of the attributes. Thus the results
the address string, while figure 3 has poor matches on thef this section are illustrative of the ability of our multi-
name component, but better matches on the address corttribute matching technique to dynamically adjust the at-
ponent. This is exactly the problem with static weights thattribute weights and thereby return the most relevant tuples.
we alluded to previously: it is difficult to choose a good  There may very well be domains in which dynamic
distribution of weights among the attributes. weighting performs poorly as compared to other tech-
In contrast, the top result in the dynamic weights searcHiques. But the “data-driven” aspects of our multi-attribute
(“Worldco”, “110 Wall St New York NY”), shown in figure matching lead to very desirable results, in all the domains
5, is a very good overall match. This tuple is completelyWe have encountered. An investigation into the quality of
absent from the static weights searches because neither e metrics considered here is left for the future.
match on name nor its match on address is high enough to
place it at the top of any of those searches. 3.2 Semantic knowledge

The attribute concatenation technique, shown in fig-The next enhancement involves incorporating domain spe-
ure 4, does have the same top-2 matches as our dynamigic semantic knowledge into the flexible string matching
WEIthS teChnique. However, the Iatter matches are not 3§|gor|thm It often happens that the same enuty is repre-
good: there are many tuples for which “Manhattan” ap-sented in multiple ways inside the database. For exam-
pears in the name attribute. This illustrates the drawback|e, the addresses “1 ATT Way Bedminster NJ” and “900
inherent in the loss of information resulting from concate-Rroute 202/206 Bedminster NJ” refer to the same location,
nating the two attributes. AT&T’s headquarters. Similarly, the same corporation may

The next experiment looks at top-k recall. Typically, we appear as “MCI” and as “Worldcom”. Observe that the
are interested in only the few top matches from a flexiblepresence of more than one representation is not in itself an
match. Rather than considering the entire result set, werror: as these examples show, all the representations may
can restrict attention to the top-k matches from dynamitme valid.
weighting and ask what fraction of those are found in the |f the representations of an entity are sufficiently close
top-* matches from competing techniques for various val-in a textual sense then they can be captured using the cosine
ues of*. Figure 6 presents the results of this experiment forsimilarity metric. Thus, a flexible search for “IBM Corp”
k=10 and*=5,10,15,20. on a company names database will pick up not only exact

The results demonstrate that dynamic weighting is qualmatches but also alternate names like “IBM Corporation”
itatively different from static weighting or attribute con- and “IBM Inc”. But some representations, like the address
catenation and cannot be approximated by those teclpair above, can be so far apart as to have few tokens in com-
niques. As' increases, some of the top-k matches from dy-mon. We would like our flexible matching to retrieve not
namic weighting are obtained using competing techniquesonly strings that are close to the search string but also their
But even with* = 20, the recall numbers of competing synonyms. Thus, a search for “900 Route 202 Bedisten
techniques are quite low: only 40% for the attribute con-NJ” should return “900 Route 2¢206Bedminster NJ” and
catenation approach, and between 30% and 70% for thalso “1 ATT Way Bedminster NJ".
static weights approach. Itis evident that the recall of static Our proposed solution to this problem assumes that se-
weighting is quite sensitive to the actual weights. mantic equivalences are explicitly specified in a new rela-

We have presented above a comparison of our multition. Conceptually, this is a symmetric two attribute rela-
attribute dynamic weights matching with the attribute con-tion S(A; B). That is, for each equivalenoce = X!, the
catenation and the static weights techniques, on a specifiaples(x; x’) and(x’; x) would be in relation S. L€t (P)
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on the addresses as described above with a threshold of 0.5.
sim address fidl |tid? A relatively low threshold is required because the equiva-
lences in the synonym table specified street aliases rather
than complete address synonyms. In other words, none of
Euglen sim | 0.7018512523313% | 4011 quens tlvd queens ry § |76 the equivalences included a street number and hence a low
threshold on the similarity score was needed when joining
to the address table. The search string was “4001 Rte 25
Exalsin sim |0.692697%32355297 | queens ny f 76830 Forrest Hills NY”. This string was joined to the synonym
table and a modified index was built using all tuples with
a score of 0.6 or higher. The top results from the semantic
Explain sim |0,692837532355297 | queens ny b |d65at match are shown in Figure 7.

We note that even in the presence of deliberate errors
in both the synonym table (i.e., “Queen NY” instead of

. . .. “Queens NY”) and the search string (i.e., “Forrest Hills”
Figure 7: Semantics: search on “4001 Rte 25 Forrest H'”%r(lgstead of “Fgrest Hills”. and “Rte 2%( instead of “Route

Explain sim  |0,752483612033064  |4001 queens blvd queens ny b [7654E

Explain sim  |0632897932355297 | queens ny 6 [76627

Explain sim  |0632897932355297 | queens ny 6 [25573

NY” 25"), our algorithm was able to pick out the exact match
be the one attribute relation on which we would like to en-and place it at the top of the results. This is a good illustra-
able this semantic-aware search. tion of the robustness of our technique.
3.2.1 Pre-processing Relatio 4 Performance Enhancements

of T andS, using attributed® and A respectively. For malches above a certain simiianty thres

every result(p;; ai; bi) in the join with a “high” similar-

ity score, we augment the tokens associated with attribute
valuep; in relationT with tokens derived fronb;. This

has the effect of associating with each attribute value all
the tokens corresponding to its synonyms as per relation
S. In our company names example, the strings “MCI” and
“Worldcom” will both be associated with the same set of
tokens: those derived from the strings “MCI” and “World-

com-.

select S.tid, B.tid,
sum(S.weight*B.weight)

from SearchWeights S, BaseWeights B

where S.token = B.token

and S.tid = N

group by S.tid, B.tid

having sum(S.weight * B.weight) > T

whereN is the tuple id of the string we want to search on.

3.2.2 Processing at Query Time

4.1 Indexing the Weights Table
In the next step, we carry out an analogous procedure on

the search string. The search stringis used in a flexible The primary key on the BaseWeights table is (tid, token).
match operation on relatiad®. For all high scoring tuples In the absence of any other indices the above query has to
(0; aj;bj) in the result, the set of tokens associated withscan through the BaseWeights table for each token in the
the search string is extended by the tokens derived from search string. The obvious optimization that can be applied
attribute value;. at this point is to build an index 11(token) on BaseWeights.
The final step involves running the flexible match al- Adding this index results in a “nested loops with indexing”

gorithm on the pre-processed relatibrand the modified execution plan for the above query. The performance im-
search string. Because we augment the set of tokens asgarovement is shown below for base tables of different sizes.
ciated with both the search string and the attribute values in

relationT with synonym information, this method is very Table size] Running time (Sec)
robust in dealing with errors and multiple conventions in Nonindexed| Indexed
the string attributes of relatioh and of synonym relation 100000 > 1
S. 7000000 48 22
13000000 105 42

3.2.3 Experiments

We now present the results from an experiment on using Searches run much faster with the index but, as the fig-
the above algorithm. We used a table of addresses comwe shows, they can still take a significant amount of time.

taining 100,000 rows. A synonym table was populated byThe reason is that the SQL fragment above computes the
hand with a few sample equivalences. One of these tupledot product of the search vector with every tuple vector

identified “Route 25 Forest Hills NY” as a synonym for with which it shares a common token. For a base table
“Queens Blvd Queen NY”. The modified index was built with millions of rows that can be an expensive operation.
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4.2 Pre-selecting High Weight Tuples 4.2.3 03: Many High Weight Tokens

The next class of optimizations we consider all involve pre-Both O1 and O2 pre-select tuples that have at least one
selecting tuples from BaseWeights which are likely to be in“promising” token in common with the search string. To
the final result. This is done by adding another conjunctivefurther narrow down this set of tuples we can pre-select
condition to the where clause. This condition takes the fol-0nly those tuples which have at least ¥ (1) high weight

lowing form tokens in common with the search string.
Optimization O3 is obtained by applying this heuristic
B.tid in (SubQuery) to O1. The SubQuery in this case is as follows.

select B.tid

from SearchWeights S, BaseWeights B
where S.tid = N

and B.token = S.token

and B.weight > T * F

group by B.tid

having count(*) >= K

where SubQuery selects a subset of tids from BaseWeights.
Note that any optimization in this class has perfect preci-
sion: it may miss some tuples but it won’t overestimate or
underestimate the similarity score for any tuple. This is in
contrast with [4] where the scores themselves are approxi-
mated by the performance enhancements. We now consider
4 optimizations in this class.

4.2.4 0O4: Many High Weight Terms

The SubQuery obtained by applying the above heuristic to
Each score in the final result is a sum of terms with eactoptimization O2 is given below.
term being the product of the weight of a token in the search

4.2.1 O1: High Weight Token

string and the weight of that token in the base table. We can ~ S€lect B.tid .
conjecture that if this sum of terms exceeds the thresfold from SearchWeights S, BaseWeights B
then at least one of the base weights exceeds a fixed fraction ~ Where S.tid = N
F of T. This is the basis for our first optimization which is and B.token = S.tofen .
defined by the following SubQuery. and B.weight > T * G / S.Weight
group by B.tid
select B.tid having count(*) >= K

from SearchWeights S, BaseWeights B
where S.tid = N
and B.token = S.token We now present some experiments comparing these opti-
and B.weight > T * F mizations. We used a company names table containing
13 million rows for the flexible matching. The similarity
Perusing the query above we observe that another indereshold was set to 0.4. Parameter F was varied from 0.2
12(token, weight) on the BaseWeights table is called for.  to 0.8 (for optimizations O1 and O3), parameter G was var-
ied from 0.05 to 0.20 (for optimizations O2 and O4) while
4.2.2 02: High Weight Term parameter K was varied from 2 to 4 (for_optimiza_tions 03
and O4). These ranges were chosen to illustrate interesting
It may be the case that a token has low weight in the bast&radeoffs in the various enhancements. In each experiment,
table but high weight in the search string. The above opwe measured the running time and recall of each optimiza-
timization will miss such tuples. To compensate for thistion relative to the naive query presented at the beginning
deficiency, we can change the last condition in O1’s whereof this section (with the 11 index on BaseWeights).

4.3 Experiments

clause to get the SubQuery below. Figures 8, 9, 10 and 11 show the effect of parameters

F, G and K on the recall and running time of these opti-

select B.tid mizations. We note that recall is inversely proportional to
from SearchWeights S, BaseWeights B parameters F and G. Low values of these parameters lead to
where S.tid = N perfect (or near-perfect) recall. As we increase F and G, the
and B.token = S.token number of tuples pre-selected by the SubQuery decreases

and B.weight > T * G / S.Weight because fewer tuples are likely to share a high weight to-

ken (optimizations O1 and O3) or a high weight term (op-
where G is a suitable fraction. Here, we cast a wider net inimizations O2 and O4) in common with the search string.
the SubQuery by also considering tokens which may havélso, increasing K means that we insist on more and more
a low base weight, provided that the product of the searctigh weight tokens or terms in common. Therefore, recall
weight and the tuple weight is at least a fixed fraction ofdeclines as K increases.
thresholdT . Note that the index 12 we defined previously = Execution time is positively correlated with recall for
on BaseWeights also improves the execution plan for thisthe same reasons. As we increase F, G and K the subset
SubQuery. of tuples pre-selected by the SubQuery decreases in size.
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Consequently, there are fewer tuples for which we havdhe final score and we lower the bar a tuple must meet for

to compute the exact cosine similarity score and hence thBré-selection. This adjustment makes the choice of param-
overall query runs faster. eters more robust to a different data set.

Since optimizations O3 and O4 have very good running
times but low recall, the next two experiments try to under-5 Open Issues
stand which tuples from the base result set are absent fro
the results of these optimizations. We fixed the paramete
values at F=0.6 and G=0.15, and measured the ordered rgtulti-column flexible matching is important in many prac-
call for the top-50 results in the base result set. Figures 18cal applications. Our proposed technique for this prob-
and 13 plot the number of these top-50 tuples found in th@em works on columns within a single table. In general,
top-i result sets for optimizations O3 and O4 for i=50, 100,the columns on which we want to enable flexible match-
150, 200. ing will belong to different tables, with various join paths

From the figures we see that K = 4 leads to very badbetween them. Efficiently implementing flexible matching
recall. That is, optimizations O3 and O4 fail to return evenacross tables (without having to materialize the join of the
50% of the top-50 tuples with this value of K, even when base tables beforehand) is a topic for future work.
the range is extended to the first 200 tuples. K = 3 is also Another open question is the handling of semantic dis-
not particularly good on recall. Therefore, for applicationssimilarities, a.k.a. antonyms. We have come across this
in which recall in the top tuples is important it is best to problem very frequently in the context of flexible address
stick to lower values of parameters F and G at the cost ofatching where the same city name may be present in
increased execution time. multiple states, e.g., Manhattan K& Manhattan NY. In

It can be said that the parameters which control the Subthis setting, the algorithm has to somehow filter out the
Query are somewhat arbitrary. An improvement that can b@ntonyms corresponding to the search string while still as-
made in that regard is to replace F and G in all SubQueriesigning a high score to all the synonyms.
with (F/L) and (G/L) respectively, where L is the length of ~ An ad-hoc approach would be to create a separate
the search string. The idea is that when the search string entonym table and query this table before returning the re-
long there are many tokens/terms which can contribute tgults. Thus a search string of “Manhattan KS” would match

.1 Functionality
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% ‘ ‘ ‘ p— flexible matching purposes: a google search on “186000”
turns up a few pages mentioning the speed of light but a
search on “185900” does not find any such pages. Part
s T of the reason is that the string representation of numbers
w0l | which are very close may not have enough tokens in com-
mon. Alternatively, we could define a notion of tf/idf for
numbers. The extension of the cosine similarity metric to
non-string data types is an intriguing research direction [1].
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of 1 5.2 Performance

‘ ‘ ‘ ‘ Also of importance is the adaptation of our techniques to

o 50 o 150 200 a dynamically updated database. So far, we have assumed
that the data does not change (or if it does, we can quickly
rebuild the flexible string match index). In practice, there
are tables that are big enough that rebuilding the index on
every change is not feasible. The key difficulty arises with
“global” metrics such as tf-idf and cosine similarity. There
the weight of a token depends on its inverse document fre-
guency which in turn is a function of the fraction of tuples

in which that token appears. Therefore, inserting a new tu-

g Or 1 ple into the table, in principle, changes the weights of all
§ 25 1 tokens and thereby necessitates an index rebuild. In prac-
g0l 1 tice, the token weights will have changed by a non-zero but
Il ] small amount. Since we are doing flexible matching it is ac-
8 Ll i ceptable to not insist on absolute accuracy. The challenge

then is to identify criteria for the index rebuilds which work
in practice by striking the right balance between accuracy

0 5 ‘60| 150 200 and efﬁciency_
Index rebuilds can take a long time (a few hours for a
Figure 13: Ordered recall for optimization O4 table with a few million rows) during which time flexible

matching cannot be performed against the table. So once

“Manhattan NY” with a high score but the final step would We define a _suitab_le criterion for rebuilding the index we
consult the antonym table and drop that tuple. Howevera!S0 need to investigate ways to restructure the computation
this method is very rigid when it comes to mistakes in thet©® @void causing any downtime of the query functionality.
search string and/or the antonym table. ldeally, we would )
like antonyms to be processed in a robust manner, in mucB  Conclusion
the same way that the cosine similarity metric captures ef this paper, we related our experiences in deploying flexi-
rors in both the search string and the field values. An intery|e string matching on large databases within AT&T. We
esting research problem is the development of principlediarted with the cosine similarity metric and extended it
techniques (as opposed to ad-hoc ones) that can correcly handle multi-attribute flexible matching. We enhanced
and flexibly process such semantic negations. the algorithm to use semantic equivalences that cannot be
So far, we have dealt only with string attributes. How- captured by textual means. We also suggested a number
ever, there are many data types that are commonly encouef optimizations that allow the results to be retrieved more
tered in practice. Numeric data is of particular interest. Foiquickly. These performance improvements preserve preci-
example, a table might contain an age field of type intesion and enable a dramatic reduction in the running time

ger or latitude/longitude fields of type double. The con-while decreasing recall by only a small amount.
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