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Abstract 
PIVOT and UNPIVOT, two operators on 

tabular data that exchange rows and columns, 
enable data transformations useful in data 
modeling, data analysis, and data presentation.  
They can quite easily be implemented inside a 
query processor, much like select, project, and 
join.  Such a design provides opportunities for 
better performance, both during query 
optimization and query execution.  We discuss 
query optimization and execution implications of 
this integrated design and evaluate the 
performance of this approach using a prototype 
implementation in Microsoft SQL Server. 

 

1. Introduction 
 

Pivot and Unpivot are complementary data 
manipulation operators that modify the role of rows and 
columns in a relational table.  Pivot transforms a series of 
rows into a series of fewer rows with additional columns.  
Data in one source column is used to determine the new 
column for a row, and another source column is used as 
the data for that new column.  Unpivot provides the 
inverse operation, removing a number of columns and 
creating additional rows that capture the column names 
and values from the wide form.  The wide form can be 
considered as a matrix of column values, while the narrow 
form is a natural encoding of a sparse matrix.  Figure 1 
demonstrates how Pivot and Unpivot can transform data 

between narrow and wide tables.  For certain classes of 
data, these operators provide powerful capabilities to 
RDBMS users to structure, manipulate, and report data in 
useful ways.  

Implementations of pivoting functionality already exist 
for the purpose of data presentation, but these operations 
are usually performed either outside the RDBMS or as a 
simple post-processing operation outside of query 
processing.  Microsoft Excel, for example, supports 
pivoting.  Users can perform a traditional SQL query 
against a data source, import the result into Microsoft 
Excel, and then perform pivoting operations on the results 
returned from that data source.  Microsoft Access (which 
uses the Microsoft Jet Database Engine) also provides 
pivoting functionality.  This pivot implementation is a 
post-processing operation through cursors.  While existing 
implementations are certainly useful, they fail to consider 
Pivot or Unpivot as first-class RDBMS operations, which 
is the topic of this paper.  
 

 
Figure 1 Pivot and Unpivot  
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Inclusion of Pivot and Unpivot inside the RDBMS 

enables interesting and useful possibilities for data 
modeling.  Existing modeling techniques must decide both 
the relationships between tables and the attributes within 
those tables to persist.  The requirement that columns be 
strongly defined contrasts with the nature of rows, which 
can be added and removed easily.  Pivot and Unpivot, 
which exchange the role of rows and columns, allow the a 
priori requirement for pre-defined columns to be relaxed.  
These operators provide a technique to allow rows to 
become columns dynamically at the time of query 
compilation and execution.  When the set of columns 
cannot be determined in advance, one common table 
design scenario employs “property tables”, where a table 
containing (id, propertyname, propertyvalue) is used to 
store a series of values in rows that would be desirable to 
represent columns.  Users typically use this design to 
avoid RDBMS implementation restrictions (such as an 
upper limit for the number of columns in a table or storage 
overhead associated with many empty columns in a row) 
or to avoid changing the schema when a new property 
needs to be added.  This design choice has implications on 
how tables in this form can be used and how well they 
perform in queries.  Property table queries are more 
difficult to write and maintain, and the complexity of the 
operation may result in less optimal query execution 
plans.  In general, applications written to handle data 
stored in property tables can not easily process data in the 
wide (pivoted) format.  Pivot and Unpivot enable property 
tables to look like regular tables (and vice versa) to a data 
modeling tool.  These operations provide the framework 
to enable useful extensions to data modeling. 

 
Figure 2 Property Table 

Including Pivot and Unpivot explicitly in the query 
language provides excellent opportunities for query 
optimization.  Properly defined, these operations can be 
used in arbitrary combinations with existing operations 
such as filters, joins, and grouping.  For example, since 
Unpivot transposes columns into rows, it is possible to 
convert a filter (an operation that restricts rows) over 
unpivot into a projection (an operation that restricts 
columns) beneath it.  Algebraic equivalences between 

Pivot/Unpivot and existing operators enable consideration 
of many execution strategies through reordering, with the 
standard opportunity to improve query performance.  
Furthermore, new optimization techniques can also be 
introduced that take advantage of unique properties of 
these new operators.  Consideration of these issues 
provides powerful techniques for improving existing user 
scenarios currently performed outside the confines of a 
query optimizer. 

We argue that pivoting operations can be performed 
more quickly and powerfully inside a RDBMS.  By 
implementing these operations as relational algebra 
operators within a cost-based optimization framework, 
superior execution strategies can be considered.  This 
design choice also allows other relational operations to be 
performed on the results of pivot and unpivot.  
Considerations of the interactions between pivot/unpivot 
and other operators yield more efficient orderings of 
operations over post-processing.  The inclusion of these 
operations within the declarative framework of a SQL 
statement also allows consideration of additional access 
paths, such as indexes or materialized views, to more 
efficiently compute results.  Consideration of Pivot and 
Unpivot within a cost-based optimizer framework 
provides opportunities for superior performance over 
existing approaches. 

The rest of this paper is organized as follows: Section 
2 defines Pivot and Unpivot syntax and semantics as well 
as useful variations.  Algebraic optimizations are covered 
in Section 3, followed by execution considerations in 
Section 4.  An implementation and evaluation of these 
operators using Microsoft SQL Server is performed in 
Section 5.  Possible extensions are discussed in Section 6, 
followed by related work and conclusions. 
 

2. Introducing Pivot and Unpivot 
 
2.1. PIVOT and UNPIVOT in SQL 

 
It is possible to implement pivoting in standard SQL, 

though the syntax is cumbersome and its performance is 
generally poor.  One method to express pivoting uses 
scalar subqueries in the projection list.  Each pivoted 
column is created through a separate (but nearly identical) 
subquery as seen in Figure 3.  For database 
implementations that do not support PIVOT, users could 
employ this technique to perform pivoting operations.  
(Note that SalesTable is defined graphically in Figure 1). 
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Figure 3 Possible PIVOT Syntax 
 
Unfortunately, this approach has limitations that 

restrict the power of pivoting.  Each column has repetitive 
syntax, which is cumbersome as the number of pivoted 
columns increases.  These syntaxes are also potentially 
harder to optimize.  For this syntax, the query optimizer is 
presented with a number of subqueries, making it more 
difficult to determine that this whole operation represents 
a “Pivot” on a single table.  In practice, this is not an easy 
operation, making pivot-specific optimizations very 
difficult.  The common problem is that the intent of the 
query is difficult to infer from the syntax or common 
relational algebra representation. 

Therefore, we propose the following syntax for PIVOT 
in  Figure 4 as an additional option under the <table 
expression> rule of the ANSI SQL grammar.  This syntax 
is easier to read and better captures the intent of the 
desired operation.  Repetition is eliminated, making 
queries easier to ready, write, and maintain.  Section 3 
shows that this approach also enables additional query 
optimization techniques. 

 
Figure 4 PIVOT Syntax 
 

PIVOT operates on a table, like other operations, 
converting from narrow form to wide form.  The column 
‘Sales’ in SalesTable provides values for the pivoted 
columns, while the values of the Month column define the 
mapping describing in which column the value from Sales 
belongs.  The IN list describes the values of interest from 
the Month column as well as the names of the new 
columns to create in PIVOT.  The remaining columns 
from SalesTable, though not listed, implicitly divide the 
rows of SalesTable into groups.  Each group of rows 
becomes a single output row as a result of PIVOT.   

For Unpivot, we propose similar syntax to undo the 
pivoting operation.  The UNPIVOT syntax in Figure 5 
contains the same major elements.  The set of columns to 
be removed are listed in the IN list, and the two new 
columns to create are listed (Sales and Month in this 
example).   While PIVOT collapses similar rows into a 
single, wider row, UNPIVOT does the opposite.  The 
operation multiplies the number of rows by the number of 
elements in the IN list while reducing the number of 
columns.   

 

 
Figure 5 UNPIVOT Syntax 
 
2.2. PIVOT and UNPIVOT Semantics 

 
While the conceptual model for PIVOT and 

UNPIVOT is straightforward, several important details 
must be further defined to operate well with existing SQL 
constructs.  One problem that must be addressed is how to 
handle data collisions (two values mapping to the same 
location).  Missing values is the opposite condition, and 
behavior must also be defined for this case.  Finally, the 
use of PIVOT and UNPIVOT on dynamic (open) schemas 
must be addressed.  Any Pivot and Unpivot definitions 
must handle these semantic issues. 

Data collisions are possible and can be handled in a 
number of ways.  It is possible to error on collisions, 
though this requires special run-time logic in a query plan 
to enforce the behavior.  It may be useful to pivot data that 
has duplicate values, and adding a collapsing function 
(such as an aggregate) enables PIVOT to work in this 
scenario.  In Figure 6, the PIVOT syntax is extended to 
handle collisions through the SUM() aggregate.  
Avoidance of collisions is also possible through a special 
constraint that precludes duplicates from being introduced 
at all.  For example, if the grouping columns and the pivot 
column (Sales, in this example) together form a unique 
key, then PIVOT is guaranteed not to have any collisions.  
Still another strategy could involve nested result sets, 
where all values are preserved in nested tables in the 
output of PIVOT.  All of these strategies are effective 
techniques in our implementation to resolve any ambiguity 
of the PIVOT operation. 

 

 Figure 6 PIVOT Syntax with Aggregation 
 

Missing values as a result of both PIVOT and 
UNPIVOT is the complimentary condition to data 
collisions.  For PIVOT, it is possible just to use NULL to 
represent this condition.  However, NULLs are also a 
valid output, leading to the problem of disambiguating 
which NULLs were introduced by the PIVOT operation.  
This problem is also seen in operations such as CUBE [4], 
and can be handled by a special disambiguating function 
that outputs whether the row was introduced in the 
operation.  Another technique to handle the absence of 
values exists if a collapsing function (such as an 
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aggregate) is used.  In this case, it is possible to treat this 
as an empty set, returning whatever the empty aggregate 
result would be.  For COUNT(column), this would be 
zero.  UNPIVOT is relatively simple - it transposes the 
values in columns into their own rows, so no new NULLs 
are introduced.  UNPIVOT can be defined to preserve or 
eliminate NULL values when generating rows. 
 

  
Figure 7 Collisions and Empty Values 
 

PIVOT and UNPIVOT may or may not preserve data, 
based on how they are defined and used in queries.  To 
fully preserve data, these operations must be defined to 
avoid collisions and to not introduce empty values 
(NULLs).  Furthermore, “missing” values in the PIVOT 
IN list are implicitly removed, acting like a projection.  
PIVOT and UNPIVOT are not inverses if their IN lists do 
not cover the complete set of data values in the pivot 
operation, so care is required to preserve data when using 
PIVOT and UNPIVOT.  As a whole, avoiding these 
restrictions would reduce the flexibility of these operators, 
so extending PIVOT and UNPIVOT to work on non-
invertible data enables broader application to operations 
beyond inversing data.   

While there is no formal database mechanism to 
enforce that PIVOT and UNPIVOT be used in a data-
preserving, invertible fashion, it is possible to get most of 
this capability through CHECK constraints.  By restricting 
the pivot column to a list of valid values, the query 
optimizer can infer whether the PIVOT operation is data-
preserving if its IN-list matches the constraint.  This could 
be further extended by either limiting PIVOT and 
UNPIVOT to cases when such constraints exist or through 
the creation of a stronger class of constraint in the 
RDBMS. 

In the syntax proposed in this paper, the pivot columns 
are explicitly defined in the query.  If PIVOT were to 
generate output columns at runtime (i.e. late binding), this 
would introduce problems about how references would be 
resolved for query operators in a tree. Typically, SQL 
queries must define the list of columns at compile time to 
allow the user know the set output columns before running 
the query.  If PIVOT exists below other query operators 
(as this client syntax allows), it also would cause problems 
for existing operators that expect a fixed set of columns 
(i.e. distinct).  The actual limitations imposed by this 
restriction are small, as most database systems support 
transactions with multiple commands that could be used to 
build the current list of columns and then pivot on them in 
separate queries, maintaining the existing strongly bound 
semantic. 

Let R be the input relation.
Let D be the set of columns from R that define groups.
Let p be a column in R not in D. Its value is the name of the new column to create when pivoting.
Let v be a column in R not in D where p not equal to v.
Let F be a collapsing aggregate function.
R' is a copy of R, with columns D', p', v' corresponding to D, p, and v respectively.
Let X by the set of columns w1..k-1 representing the set of pivoted columns.
PIVOT has result columns D plus columns w1..k representing the pivoted values.

PIVOT(D, v, p in {}, F)

R

=

GroupBy(D)

R

Base Case (no pivoted rows):

Inductive  Case (one or more pivoted value(s) x):

PIVOT(D, v, p in X + {x}, F)

R
PIVOT(D, v, p in X, F)

R

LeftOuterJoin(D=D’)

GroupBy(D’, wi = F(v'))

R’

s  (p’ = x)

=

Figure 8 PIVOT Definition 
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3. Algebraic Optimizations 
 

Queries containing PIVOT and/or UNPIVOT have the 
opportunity to perform better if interactions with existing 
operators (filters, projections, join, etc.) are considered.  
Algebraic rewrites of PIVOT/UNPIVOT and other 
operators enable cost-based optimizers to consider 
alternative execution strategies to find more optimal plans.  
This section covers some basic rewrites related to filters 
and projections, more complicated transformations 
converting PIVOT or UNPIVOT into existing operators, 
using pivoting efficiently in property tables, and the 
introduction of PIVOT and UNPIVOT into queries that 
contain neither. 

As a note about the terminology used in this section, 
this paper assumes that duplicates work as in SQL.  As a 
result, Project and Union operations preserve duplicates 
and are cardinality-preserving.  Group By operations are 
used to distinct values and can also be used to compute 
aggregate functions. 

We formally define PIVOT in Figure 8 by defining 
PIVOT without any pivoted columns as DISTINCT, and 
then inductively add pivoted columns to the base 
definition through a left outer join to calculate the pivoted 
values.   

UNPIVOT is defined using the same variables used in 
the definition of PIVOT.  It is defined as an Apply over 
the Union of a series of row constructors (one for each 
column to be unpivoted). 

 
Figure 9 UNPIVOT Definition 
 
3.1. Projections and Filters 

 
Projections and Filters are both restricting operations 

on different dimensions of relations (one restricts 
columns, while the other restricts rows).  Interestingly, 
since PIVOT and UNPIVOT exchange rows and columns, 
this provides an opportunity to transform a projection to 
and from selections.  This section describes different 
PIVOT/UNPIVOT algebraic rewrites invoking projection 
and selection. 

Projections can be used to simplify PIVOT and avoid 
unnecessary computation.  If a query uses a Project to 
restrict column(s) introduced by PIVOT, the query can be 

rewritten to not PIVOT those columns at all.  This 
simplification is possible since each pivoted column is 
independent from all others. 

It might be assumed this class of projection also 
implies that a filter could be introduced below pivot to 
restrict the pivot column (Month, in this example) to be 
limited to ‘Jan’ or ‘Feb’.  Unfortunately, this is not true.  
Semantically, PIVOT produces a row for each group even 
when input rows exist that do not match the pivot column 
list.  Pushing such a filter would eliminate groups with no 
pivoted values, and it therefore does not work in the 
general case.  There are situations when filters can be 
used, and these are described later in this section. 

)(Aπ )(Aπ

 
Figure 10 PIVOT Projection Pushdown Identity 
 

Filters over columns created in PIVOT can be pushed 
in some cases.  If there are guaranteed to be no duplicates 
(if the grouping columns and the pivot column together 
comprise a key) and the collapsing function is the identity, 
it is possible to use the technique described in Figure  11.  
One scan of the input finds any value matching the filter 
criteria, and then a join is performed with another instance 
of the input to gather the remaining columns to complete 
the PIVOT operation.  This technique is most beneficial if 
indexes are defined that allow efficient searching of these 
tables.  

 
Figure 11 PIVOT Filter Pushdown 

 
Projections over UNPIVOT are straightforward.  

Projections limiting grouping columns can be safely 
applied below the UNPIVOT.  A projection removing the 
value column implies that none of the pivoted columns are 
actually needed to perform the UNPIVOT.  It is still 
necessary to perform some transformation in this case to 
generate the correct number of duplicates of each input 
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row to UNPIVOT.  However, this transformation could 
actually performed by UNION ALL instead of 
UNPIVOT. 

Filters interact with UNPIVOT in a similar fashion to 
how Projects interact with PIVOT.  A filter on the 
columns introduced by UNPIVOT enables a whole 
column to be removed from the input to UNPIVOT.  
UNPIVOT does not have the same problem PIVOT faces 
in preserving groups since it operates on columns.  
Columns listed for transformation are all transformed, and 
columns not listed become grouping columns.  Thus, data 
is preserved in all cases and a projection can be safely 
introduced below the UNPIVOT.  

UNPIVOT (v, p in {w1,…wk})

Row(p=Name(wj),
v=R.wj)

R

Apply

R

=

σ (p=z)

If z=wj and j in 1..k

Figure 12 Filters Interact with UNPIVOT 
 

The PIVOT syntax described in  Figure 4 contains an 
IN list describing the set of values used to create new 
pivoted columns.  This limits the set of interesting rows to 
rows that have a column value in this IN list, as other 
values would be ignored by PIVOT.  While it seems 
possible to use this IN list to introduce an implied filter 
under PIVOT, it does not preserve all groups correctly.  
The following section describes a scenario when an 
implied filter can be used.  

 
3.2 PIVOT and Property Tables 
 

PIVOT is useful in data modeling because they can 
hide the physical storage design and provide a consistent 
“wide” format to the rest of a database.  In a typical 
scenario, two tables are used, storing a list of items in one 
table and all its properties with their values in the other.  
In terms of PIVOT, the grouping columns are delivered 
from one table, while the pivot and value columns are 
delivered from the other.  Property tables contain property 
name and value columns that represent the sparse matrix 
of (column, value) pairs of the virtualized table.  PIVOT 
can transform this physical representation into a virtual 
table containing all the columns (with NULLs in any 
missing locations).    As these tables are typically joined 
together using a left outer join on a set of key columns 
(matching the grouping columns in PIVOT), it is possible 

to perform transformations on this structure to improve 
plan selection. 

While the additional complexity of this design does 
have some overhead, the overall impact can be minimized 
through proper plan and index selection. In most cases, 
creating indexes over the grouping columns on the item 
table as well as the property and value columns of the 
property table enable index lookup plans. One observation 
about query transformations in this design is that pushing 
projections and filters will not always produce superior 
plans.   Some transformations require additional scans of 
the input, so they will only be beneficial if the proper 
indexes exist and predicates are sufficiently selective. 

When used against property tables, a projection that 
removes all pivoted columns can be simplified as in 
Figure 13.  PIVOT becomes a Distinct over the left outer 
join between the item and property table.  However, since 
no columns are used from the property table, that join can 
be removed.  Furthermore, since the property table design 
typically has a key over the grouping columns in the item 
table, the complete pattern can be satisfied with a scan of 
the item table. 

)(Dπ

 
Figure 13 Property Table Projection Reduction 

 
A filter can be implied from the IN-list in PIVOT 

when used against the property and item tables.  Since 
groups are preserved by the outer join, a filter can be 
introduced below the join to restrict the property table to 
only have property names in the set of columns being 
pivoted.  In Figure 13, the grouping columns are delivered 
by R, while the property table is S.  A left outer join 
between these tables allows all the properties from the 
groups listed in R to be surfaced above the join.  
However, it is known that PIVOT will only consume 
property values (from S) if they are in the IN-list of the 
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PIVOT.  Therefore, properties can be pre-filtered on S 
before the join. 

 
 Figure 14 Implying a Filter from PIVOT 
 

Projections restricting the set of pivoted output 
columns from PIVOT also can introduce a filter on the 
property table.  Since such a projection is equivalent to 
not pivoting the extra columns at all, the set of pivoted 
columns can be reduced, and the introduction of a filter 
follows from Figure 14. 

Filters over PIVOT can be pushed, but only with the 
introduction of an additional scan of the property table.  In 
Figure 15, a filter on a pivoted column can be rewritten to 
restrict the item table (R) to only consider items that have 
qualifying properties.  Since this rewrite introduces an 
additional scan of the property table, this may be 
appropriate only when certain indexes are defined on the 
item and property tables. 

 
Figure 15 Filter Pushdown on Property Tables 

 
3.3 PIVOT as GROUP BY 
 

It is possible to rewrite queries using PIVOT to instead 
use GROUP BY.  Each value in the IN-list uses a copy of 
the aggregate function listed in the PIVOT definition.  
Beneath each aggregate, conditional logic is used to pick 
only the input rows that map to the correct output column.  
Non-matching rows are changed to NULL instead.  
Columns not listed in PIVOT become the set of grouping 
columns for the GROUP BY.  The syntax from Figure 6 
maps as follows: 

 
MIN(CASE Month WHEN 'Jan' THEN Sales ELSE 
NULL END) AS 'Jan', 
MIN(CASE Month WHEN 'Feb' THEN Sales ELSE 
NULL END) AS 'Feb', 
MIN(CASE Month WHEN 'Mar' THEN Sales ELSE 
NULL END) AS 'Mar' 
 

PIVOT(D, v, p in X, F)

R
=

GroupBy(D’, wi = F(v') i=1..k)

R
 

Figure 16 PIVOT Identity 
 

While the transformation to GROUP BY is 
straightforward, there are very good reasons to perform 
this step during the optimization of the query instead of as 
part of the declarative SQL definition.  Queries defined 
using a series of aggregates in a GROUP BY are typically 
much harder for optimizers to examine and understand. 
Using PIVOT, logic is not distributed over a number of 
aggregate functions and operators with additional non-
trivial scalar logic in each.  Therefore, it is easier for rule-
based optimizers to target with special-purpose 
transformation logic.  Additionally, the syntax suggested 
in this paper is far simpler than current workarounds using 
standard SQL. 

Mapping PIVOT to GROUP BY requires an 
assumption that the collapsing (aggregate) function be 
invariant to additional NULLs.  The scalar logic beneath 
each aggregate substitutes NULL for each row that does 
not match that pivoted column.  Formally speaking, a 
collapsing function F needs to support the condition that 
for any set of input values S, F(S) = F(S U {NULL}).  
Aggregates such as SUM() and MAX() have this property.  
However, COUNT(*) does not have this property, as it 
counts each row in its output. 

Since PIVOT is a specialization of GROUP BY, 
RDBMS implementations can leverage this information to 
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easily add PIVOT support without writing new logic 
throughout every portion of a query processor.  
Transforming PIVOT into GROUP BY early in query 
compilation (for example, at or near the start of query 
optimization or heuristic rewrite) requires relatively few 
changes on the part of the database implementer.  With 
such an approach, no new execution operators are 
required, and little new optimization or costing logic is 
needed.  This provides an effective technique to extend 
existing RDBMS products with little effort. 

In addition to implementation simplicity, viewing 
PIVOT as GROUP BY also yields many interesting 
optimizations that already apply to GROUP BY.  Reusing 
existing GROUP BY optimization logic can yield an 
efficient PIVOT implementation without significant 
changes to existing code.  These benefits include: 
• Removal of duplicate or grouping columns by other 

grouping columns, which reduces overall row width 
• Filters and semi-joins restricting complete groups can 

be performed below the GROUP BY. 
• Local/Global techniques [7] for pushing grouping 

optimizations below joins and other operations 
• Query logic to perform groupings using parallel 

threads of execution. 
 
3.4 UNPIVOT as Apply 

 
UNPIVOT can leverage existing implementation code 

as well.  As an operation that takes each row and returns a 
number of additional rows as output, this is very similar to 
a correlated join (which we call an Apply [1]).  If a join is 
made with a special constant table containing one row for 
each column to unpivot, then one row for each pivot 
column will be created in the output.  This technique 
allows database implementations to get good performance 
characteristics without implementing a full operator in the 
query processor.  While this approach introduces some 
additional overhead by using multiple iterators, this has 
not been significant in our implementation.  It is not 
difficult to write a special purpose iterator if needed. 

This transformation yields similar performance 
benefits to implementing PIVOT as GROUP BY.  Apply 
can be reordered easily with other join operators, and it 
has well-defined interactions with filters, projections, and 
other query operations.  It is also possible to perform 
these operations in parallel by segmenting the input rows 
into different groups.  None of these problems need to be 
explicitly considered for UNPIVOT, as they are already 
solved for the regular join case.  This greatly reduces the 
required implementation effort while still providing 
excellent performance for the operation. 

Figure 9 describes a possible implementation of 
UNPIVOT using Apply, UNION, and a number of special 
“Constant Tables”.  Each UNION branch generates one 
unpivoted row with two columns.  One column contains 
the name of the original column, and another contains the 
value associated with that column.  The grouping columns 
are added to this row in the Apply.  The Apply needs to be 
a Left Outer Apply, preserving rows from the input table 
when the UNPIVOT specifies no matching column names 
from the relation. 
 
3.5 Join Cardinality Reduction 
 

If PIVOT and UNPIVOT are inverses, a query 
optimizer can introduce PIVOT and UNPIVOT into a 
query tree as a technique to reduce cardinality in portions 
of a query tree around expensive operations, such as joins.  
If PIVOT can be used to reduce the cardinality of the 
input in a lossless fashion, joins (or other expensive 
operations) would be executed far fewer times, followed 
by an UNPIVOT to expand rows back to their original 
state.  Cost-based optimizers can then pick the cheaper 
technique for query evaluation.  Figure 17 shows an 
example of this. 

The PIVOT and UNPIVOT operations must preserve 
the rows from the pivoted table as if they were processed 
by the join to be used in this transformation.  Furthermore, 
if PIVOT uses a collapsing (aggregate) function, then 
UNPIVOT must be able to invert it in all cases.  This 
could be achieved through nested scalars or other complex 
data types, invertible aggregate functions, or just avoiding 
data collisions through constraints on the input relation. 

 
Figure 17 PIVOT-based Join Cardinality Reduction 
 

PIVOT also provides the opportunity to represent a 
series of scalar subqueries (as seen in Figure 3) in a more 
semantically useful internal representation.  A naive 
implementation would create a series of subqueries over 
the same table to compute each column.  By converting 
this series of operations into PIVOT, the poor user 
representation can be handled with a far fewer number of 

1005



tables.  This allows the database implementer to handle 
existing work-around queries generated by users before 
PIVOT existed. 

 

4. Execution Strategies 
 

Defining PIVOT in terms of GROUP BY and Apply 
provide an excellent opportunity to re-use existing 
execution operators in new ways.   In Section 3.3, we 
demonstrated that PIVOT can be implemented as GROUP 
BY.  Hash and stream aggregation are available for 
PIVOT, and have similar execution properties.  Parallel 
query execution can also be supported using these 
execution strategies as long as the members of each group 
are processed in the same thread.  PIVOT does use a 
relatively large number of identical aggregates with 
almost identical scalar logic.  One novel execution 
strategy could group the computation of these aggregates 
together, either by treating the set of aggregates as a 
vector computation or by rewriting each individual 
aggregate computation into a dispatch table (as each 
column will be looking for a single and likely unique 
scalar for each input row).   

PIVOT can also be implemented through a special-
purpose iterator transposing rows into columns.  
Consuming a sorted (grouping columns and the pivot 
column) stream, the next row in the current group 
becomes the source of the value for the next column.  If a 
pivoted column does not have a corresponding row in the 
input, it returns the empty value for all output columns 
until the correct location for the current input row is 
located.  Similar to the grouping operators, this technique 
can be performed simultaneously over values from 
different groups. 

As described in this paper, UNPIVOT can be 
implemented as a correlated nested loops join (Apply).  
Each invocation of the Apply can be performed in 
parallel, leveraging existing parallel techniques available 
to joins.  UNPIVOT can also be implemented using a 
special purpose execution iterator that consumes one row 
and returns a number of rows in unpivoted form.  
Parallelism is slightly easier for UNPIVOT since each 
input row can be processed independently (instead of 
groups of rows).  
 

5. Experimentation 
 

We implemented PIVOT and UNPIVOT in Microsoft 
SQL Server, adding support in the parser and in the query 
processor for these new operators.  The architecture of our 
query optimizer is based on the Cascades framework [3], 
which enables defining new relational operators and 

optimization rules for them.  These optimization rules 
follow from the properties described earlier for PIVOT 
and UNPIVOT. 

In this section we go over a number of scenarios and 
show the performance obtained in our system.  We use the 
well-known TPCH database, at 1 GB scale, as a basis for 
our experiments.  The experiments were conducted on a 
dual-processor machine running at 2 Gigahertz, with 1 GB 
of main memory.  We flush data caches before executing 
queries, so the numbers shown are on a cold cache.  
Parallel execution is disabled in the results we present, 
since it does not qualitatively affect our results. 

 
5.1. PIVOT vs. SQL sub-query form 
 

We first compare the performance of our PIVOT 
operator with that of the equivalent formulation with sub-
queries described in Section 2.1.  The following query 
summarizes sales data in the ORDERS table, returning 
one row per year, and columns for each of the twelve 
months. 
 
SELECT * FROM 

(SELECT 
     YEAR(O_ORDERDATE), 
     MONTH(O_ORDERDATE), 
     O_TOTALPRICE 
     FROM ORDERS) ORD(YEAR, MONTH, PRICE) 
  PIVOT (SUM(PRICE) 
  FOR MONTH IN (1,2,3,4,5,6,7,8,9,10,11,12)) T 

 
Figure 18 shows the execution time of the PIVOT 

query and the equivalent sub-query formulation.  For each 
of the two forms, we change the number of months to 
PIVOT; only three months of the year, then six months, 
and finally all twelve months.  The performance 
difference is due to the duplication of work in the sub-
query formulation, as each pivoted column is computed 
separately, because our common sub-expression code 
does not currently handle this case. 

More indices can be used to speed up the computation 
of the sub-query form, even if the common sub-expression 
is not detected.  Fast lookup of the value from the 
dimensions columns (e.g. and index on year, month, price 
in the case above) would make performance comparable 
to the PIVOT form.  However, it remains verbose and 
repetitive to the application writer. 
 
5.2. Property table access 

 
Earlier, we mentioned the use of PIVOT to support 

property tables.  This allows presenting a view of wide 
rows to application writers, even if a sparse representation 
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is used to store data internally.  For this experiment, we 
added a property table to store information about the 
TPCH CUSTOMER table.  The property table has the 
following schema: 

 
CUSTPROPERTY(CP_CUSTKEY, CP_NAME, CP_VALUE) 

 
Columns (CP_CUSTKEY, CP_NAME) make up a key 

of the property table.  A customer property is registered in 
the database by inserting a new row to 
CUSTPROPERTY.  We also create an index on 
CP_NAME, CP_VALUE, CP_CUSTKEY, to lookup 
property values efficiently. 

We now create a view that exposes a “wide” customer 
row, having a column for property in a set of interest.  The 
view uses an outer join to find the registered properties for 
the set of customers, because we want to retain customers 
even if no property is defined for them.  Say we are only 
interested in five properties, ‘A’ through ‘E’: 

 
CREATE VIEW EXTCUSTOMER AS 
SELECT * 
FROM ( 
    SELECT * 
    FROM CUSTOMER LEFT JOIN CUSTPROPERTY 
       ON C_CUSTKEY = CP_CUSTKEY 
) CUSTNARROW 
     PIVOT (MIN(CP_VALUE) 
                   FOR CP_NAME IN (‘A’, ‘B’, ‘C’,’D’,’E’) 
                  ) CUSTPIVOTED 
 

An application wishing to find customers with a 
certain property can query the view directly, e.g. 
 
SELECT * FROM EXTCUSTOMER 
WHERE A IS NOT NULL 
 

Figure 19 shows the performance obtained on the 
abstraction provided by the view.  It compares three 
techniques: 

• Store all the information in a single “wide” table 
that has five columns for the properties above.  
Have a single-column index of each of the 
properties. 

• Have a separate property table, but do not exploit 
reordering properties, i.e. execute the view 
EXTCUSTOMER first and then apply additional 
operations such as filtering. 

• Have a separate property table and enable PIVOT 
reordering. 

 
To change the selectivity of predicates, we use 

different distributions for the property values.  There are 

only 10 customers for which property ‘A’ is defined (i.e. 
not null in the “wide” row); then there are 100, 1000, 
10000, and 100000 customers for which properties ‘B’ 
through ‘E’ are defined, respectively.  For this 
experiment, we scaled up the number of customers from 
150,000 to 600,000.  Figure 20 shows the execution plan 
picked for properties ‘A’ and ‘B’ in this example, which 
are both very selective.  An index seek is done against the 
non-clustered index on the CUSTPROPERTY table to 
determine what customers have this property.  Then, 
another index seek is performed on clustered index of the 
CUSTOMER table to retrieve all the columns from the 
base table.  Next, an index seek is performed to retrieve 
the remaining property values for this particular customer.  
After all the data has been assembled, it is sorted and 
stream aggregation is used to complete the pivot. 

The property table is relatively small compared to the 
CUSTOMER table, so the performance difference 
between a separate property table and the “wide” table, 
when all the data is retrieved, is mostly due to the 
execution cost of our current PIVOT implementation.  
When there are predicates, our transformation rules can 
generate very efficient execution plans that exploit indices 
to locate qualifying rows quickly, making performance 
comparable to that obtained if we had a single table. 

There is one restriction to point out regarding the 
benefits that can be obtained through indexing.  When 
modeling directly as a “wide” table, it is possible to create 
and exploit multi-column indices.  A separate property 
table does not naturally allow setting up such access paths, 
so the expected behavior is similar to that obtained with 
single-column indices. 

 
Figure 18 PIVOT vs. scalar sub-queries 
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Figure 19 PIVOT Property Table Results 

 
Figure 20 Property Table With Filter Pushdown Plan 
 

6. Extensions 
 
While this paper’s PIVOT and UNPIVOT examples 

show a single value column, it is not difficult to extend 
this to an arbitrary number of columns.  Each value 
column could be transposed into independent sets of 
columns in PIVOT, and UNPIVOT can similarly collapse 
different groups at the same time.  Each group could use a 
different collapsing function (aggregate), and different 
aggregates could be used over the same column.  
Alternatively, complex data types could be created to hold 
multiple values in the same result column for as many 
values as are desired.  None of these extensions 

significantly change the possible optimization or 
implementation techniques presented in this paper. 

Extending the collapsing function also increases the 
utility of these two operators.  The collapsing function is 
described as a single column aggregate function (SUM(), 
MIN(), etc.).  Any RDBMS aggregate function, including 
user-defined or order-sensitive aggregate functions, could 
be allowed without affecting the transformations presented 
in this paper.  Even more exotic aggregate functions, such 
as those that allow multiple input columns and/or produce 
multiple output columns, also fit nicely with simple 
extensions to the syntax proposed.  Finally, it is possible 
to consider non-aggregate functions in this context.  These 
could be used to throw an error when a data collision is 
detected in a cell or to handle data collisions by storing 
data from multiple rows as a nested relation or some other 
format that UNPIVOT can reassemble into multiple rows 
without losing data.  These extensions allow a great deal 
of flexibility beyond traditional aggregation for PIVOT 
and UNPIVOT. 

PIVOT and UNPIVOT are related to OLAP structures 
such as data cubes.  However, OLAP operations do not 
always fit nicely into the SQL language.  If a multi-
dimensional structure is accessible through SQL, PIVOT 
and UNPIVOT could work on a portion of a cube visible 
as a relation (i.e. a two-dimensional set of rows and 
columns).  Unpivoting a portion of a cube would be 
analogous to the operations presented for UNPIVOT in 
this paper.   
 

7. Related Work 
 
The idea behind PIVOT is not new.  [4] described a 

number of extensions to grouping including a “cross-tab” 
query, though discussion was limited to PIVOT and did 
not discuss how to efficiently implement it or to expose 
pivoting below other operators. 

SchemaSQL [5] implements transposing operations.  
The implementation appeared to be outside the RDBMS, 
however, and there was not significant discussion of query 
optimization in this context. [6] implements pivoting and 
unpivoting through unfold and fold operations, 
respectively.  This work also does not attempt to push this 
capability deeply into the RDBMS. 

[8] describes a system to expose spreadsheet-like 
functionality into a RDBMS, including how queries can 
be optimized using this approach.  This model exposes 
behavior closer to OLAP than traditional flat relations, 
though some predicate pushing would be related in these 
two models. 

[8] also describes a model of data n-dimensional array 
where cells are described through a coordinate system 
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using names.  While similar in capabilities, the paradigm 
presented to the user differs from traditional SQL 
operators and may be harder to understand.  We feel that 
our representation is a more natural representation of data 
rotation in the SQL language. 

Both [8] and [4] describe that a relational table is a 
two-dimensional view of a cube, and this can represent a 
cross-tabulation of data.  However, only [4] discusses how 
to move between the cross-tabulated and flat (narrow) 
form of data, and [4] only mentions that this capability 
exists in Microsoft Access. 

Finally, our own prior work [2] exploited the basic 
design of unpivot operations for a special purpose that 
would be better served by deep integration into a database 
query processor. 
 

8. Conclusion 
 

We introduce two new data manipulation operators, 
Pivot and Unpivot, for use inside the RDBMS.  These 
improve many existing user scenarios and enable several 
new ones.  Furthermore, this paper outlines the basic 
syntactic, semantic, and implementation issues necessary 
to add this functionality to an existing RDBMS based on 
algebraic, cost-based optimization and algebraic data flow 
execution.  Pivot is an extension of Group By with unique 
restrictions and optimization opportunities, and this makes 
it very easy to introduce incrementally on top of existing 
grouping implementations.  Finally, we present a number 
of axioms of algebraic transformations useful in an 
implementation of Pivot and Unpivot. 
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