
QStream: Deterministic Querying of Data Streams

Sven Schmidt, Henrike Berthold and Wolfgang Lehner

Dresden University of Technology
Database Technology Group

dbgroup@mail.inf.tu-dresden.de

Abstract

Current developments in processing data
streams are based on the best-effort principle
and therefore not adequate for many appli-
cation areas. When sensor data is gathered
by interface hardware and is used for trigger-
ing data-dependent actions, the data has to
be queried and processed not only in an ef-
ficient but also in a deterministic way. Our
streaming system prototype embodies novel
data processing techniques. It is based on an
operator component model and runs on top of
a real-time capable environment. This enables
us to provide real Quality-of-Service for data
stream queries.

1 Motivation

In recent years, the amount of data delivered by a va-
riety of sensors has grown significantly. There are a lot
of examples of sensors being installed to continuously
measure physical properties and to send these values
to back-end systems for further processing.

Once a sensor data stream is connected to a stream
processing system, the continuous/standing queries
have to be evaluated on that data. Based on the
query results, fast reactions may be necessary. To give
an example, think of a meteorological system where
acquired data such as temperature, humidity, atmo-
spheric pressure, brightness and rainfall etc. form the
basis for statistical analyses on the one hand and for
sophisticated forecast and reaction on the other hand.
The latter includes the detection of abnormal situa-
tions identified by characteristic constellations of the
sensor input values.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,

Toronto, Canada, 2004

In industrial application areas, sensors are used in
production processes to observe the progress of single
manufacturing steps. For example, the positional mea-
sures of a complex robotics form a data stream and are
used for position tracking. Once the robotics reaches
its final destination or is intended to stop immediately
in case of an emergency, the data stream processing
system has to react within a given time limit. Thus,
based on the sensor data, the processes can be con-
trolled and successfully completed.

Within a best-effort streaming system (e.g. [1, 2]),
no one can give any guarantees for the exact evaluation
of queries and for the amount of time elapsing between
a characteristic constellation of input values and the
reaction of the system. Within our real-time streaming
project (QStream) we

• describe a set of stream operators plus their func-
tional and non-functional properties,

• rely on a model for resource description in stream-
ing environments,

• define Quality-of-Service parameters and enable
the user to negotiate them, and

• implement this conceptual work on top of a real-
time capable system environment.

The goal of QStream is to evaluate queries on data
streams in a deterministic way: Once a query is reg-
istered and accepted by the system, it will be success-
fully completed independently from any system load
or data stream load without compromising the nego-
tiated quality constraints. These quality constraints
mainly consist of result precision and time delay of
the query evaluation system.

2 Operator Component Model

In QStream, after query parsing, a stream query is
represented by a network of operators (figure 1). This
network deals with a number of sensor originated in-
put streams and produces one single output stream for
each registered query.

1365



query
result

sensors

query

Figure 1: operator network

Thereby an operator is a small work unit which
reads tuples from its input buffer, does some process-
ing work, and writes the resulting tuples to an output
buffer. The basic work includes one data read, one
data processing and one data write. We will call it a
run. The amount of data such an operator processes
within a certain (amount of) time is reflected by the
data rate. The initial data rate is determined by the
sensor data sources. The relationship between input
and output data rate of an operator belongs to the
operator description.

Within QStream we do not contribute a new data
model or completely new operators. Instead we pro-
pose a novel technology for their implementation. For
sake of completeness, the operators currently sup-
ported are listed below:

• Filter: A filter drops tuples which do not conform
to a given predicate. The resulting data rate de-
pends on the input data rate and on the selectivity
of the applied predicate, which has to be derived
from statistical information, such as value distri-
butions, about the input stream.

• Sample: The sample operator randomly discards
tuples with a specified sampling rate. The data
rate of the output stream can be calculated from
the data rate of the input stream and the sampling
rate.

• Aggregation: An aggregation operator is either
a summation or the calculation of an average on
a specified attribute. The output data rate de-
creases with a larger aggregation group size.

• Grouping and Aggregation: The grouping-and-
aggregation operator performs a grouping on an
ordering attribute (such as the minutes of a time
attribute with precision of seconds) and an aggre-
gation (SUM or AVG) on another attribute. As
with aggregation, the output data rate depends
on the input data rate and on the average group
size.

• Map: The map operator applies a scalar function
locally to a tuple. It calculates for example a new
value from two tuple values and adds it to the tu-
ple. The data rates of both streams are identical.
Only the tuple size may change.

• Pairing: The pairing operator performs a join op-
eration on an ordered attribute for example on a

global time. It consists of two input streams and
one output stream. The data rate of the output
stream is identical to the data rates of the input
streams.

Operator interfaces

One of our basic ideas is to run each operator of the
operator network independently within the operating
system environment. Thus, an operator has a con-
trol and a data exchange interface (figure 2). Through
the control interface, each operator is parameterized
before the data stream processing starts; it is con-
tinuously monitored; and (if necessary) it is adjusted
during runtime. The data exchange interface is re-
sponsible for transferring the tuples from operator to
operator.

operator n+1operator n

control interface

interface
data exchange

Figure 2: operator interfaces

3 Controlling the Operator Network

The QStream control application first builds an oper-
ator network from a stream query. Thereafter, it cal-
culates memory requirements and processing times for
each single operator based on the data stream char-
acteristics and on the users negotiated quality con-
straints. When the network construction and resource
calculation process is complete, the control application
tries to schedule the values with the operating system’s
resource manager and, thus, performs an admission
control. This implies that the number of accepted
stream queries depends on the characteristics of the
data stream (data rate, bursts) and on the complex-
ity of the queries, and that it is limited by the overall
resources of the QStream system. It is important to
notice that once a query has passed the admission con-
trol, a successful evaluation of the data streams within
the negotiated quality constraints is guaranteed.

Scheduling

Scheduling covers issues about how often and how long
an operator is supposed to perform its work. We pro-
pose the concept of an ’optimal processing speed’ of
the operator network: If the operators run too slow
(perform a run very rarely), the quality constraints
regarding query delay and precision may not be ful-
filled. On the other hand it is inadequate to speed
up the operator network (perform the runs very fre-
quently) or pass through the sensors high data rates if
the user is only interested in approximate values and

1366



if a time limit for answering the queries does not ex-
ist. This would result in slowing down concurrently
running processes.

For the deterministic behavior regarding the pro-
cessing times we rely on a real-time operating system
(RTOS) environment. Firstly, this enables us to sched-
ule precisely, and secondly, we are able to encapsulate
the QStream operators from applications with no real-
time requirements.

All of the QStream operators are periodic processes.
Thus, an operator periodically performs some work.
Moreover, the RTOS signals the operator the start of
the next run.

Periods

Based on the data rate of the sensors and based on
the data rate requirements/quality constraints at the
output of the operator network, the period length PO

of each operator is determined. Therefore, the number
of tuples which are to be produced during a single
run (given by the operator description) is taken into
account. The resulting periods are scheduled for the
QStream operators. The RTOS has the responsibility
to signal each period start to the specific operator.
The operator itself has to ensure that it completes its
work during the operator processing time tO, whereas
tO << PO.

The processing time tO is the time required by a
virtually isolated operator for a single operation. The
simplest method for obtaining tO is to measure it on
a reference system with only one operator running at
a time.

In general, multiple operators O1, ..., On form an
operator network and, thus, work in parallel (all in
real-time mode). The time needed to run all n op-
erators is the sum of the single operators’ processing
times. Therefore, the operator processing times tO

have to be normalized (t̂O) to a common period length

P̂O for summation: T =
∑n

k=1
(t̂O). The n opera-

tions may be considered as ’serialized’, even though
the RTOS scheduler will break down each tO into a
number of CPU time slices and execute them in an
interleaved way.

Thus, for a well-scheduled system we have to ensure
that T < P̂O. Otherwise, there would be not enough
processing time to let all the operators work in parallel.

Data Exchange Model

Since operators are independently scheduled real-time
processes within our prototype, they cannot make
blocking function calls to the previous or to the next
operator for handing over tuples. Obviously, an inter-
mediate buffer between each pair of consecutive oper-
ators is established. One of the operators takes the
role of a data producer, the other has the role of a
consumer regarding the intermediate buffer (figure 3).

buffer

lead time

(producer)
operator n

(consumer)
operator n+1

Figure 3: producer-consumer-relationship

Each time the producer completes a run, it puts the
output tuples into the intermediate buffer for the con-
sumer to pick them up at the start of its next working
period. There are two conditions that must hold for
the non-blocking data exchange: The producer must
not try to write into a full buffer and the consumer
must not try to read from an empty one. Thus, the
minimum size of the buffer as well as the starting point
of the different operators are of interest. In our proto-
type, we use the model of jitter-constrained periodic
streams (JCP, [4]). This model is applied to a single
producer-consumer relationship and allows the calcu-
lation of the minimum intermediate buffer size B and
the lead time tlead of the consumer. Relying on the
model, we have to provide

• the average number of tuples the producer writes
during one run

• the number of tuples the consumer reads during
one run

• the period lengths PO of both producer and con-
sumer

• the producers’ processing time tO for one run

Additionally, this model takes into account the effects
of jitter within the data stream and within the op-
erators behavior: A size jitter allows the operator to
produce a varying number of output tuples (depend-
ing on the stream data) per operation and a time jitter
reflects the fact that the processing time for a run tO

may jitter in certain constraints. The general observa-
tion is: the larger the different jitters are, the higher
the resulting intermediate buffer must be.

4 Prototype

We selected the Realtime Application Interface (RTAI,
[3]) as operating system environment for QStream be-
cause, first, RTAI supports hard real-time as well as
soft real-time. Second, real-time code may not only
run as a kernel module but also as a user program.
And third, a lot of data exchange mechanisms such as
FIFOs, mailboxes and shared memory are originally
provided by RTAI.

Within RTAI, our operators run in real-time mode
while other processes (e.g. other Linux applications)
have only non-real-time privileges. Non-real-time pro-
cesses get the remaining processing time after all op-
erators have finished the work within their periods.

1367



Figure 4 illustrates measured times tO of a filter
operator running as a real-time process and the same
operator running as non-real-time. In both scenarios
we produce heavy load in the background.

The real-time graph of figure 4 shows that the back-
ground load does not significantly influence our peri-
odic filter operator because the background process
runs as non-real-time Linux process.

The measured run times for the filter operator in
non-real-time mode are permanently higher than in
real-time mode because the filter process only gets the
same priority as concurrently running Linux processes.

Much more important, the filter’s tO increases by
multiples of ten due to the varying load of the back-
ground process. Thus, for deterministic operator be-
havior we must rely on a real-time capable environ-
ment.

Figure 4: filter operator with background load

Controlling

The control application is executed in five steps. First,
the control application traverses the user-given opera-
tor network and calculates the data rates between each
couple of operators. This is done from the data sources
(sensors) down to the data sink (last operator). If the
resulting data rate at the data sink is higher than the
user requirements (QoS), an initial sample operator
is inserted in front of the first operator to reduce the
amount of processed data.

Second, the control application calculates the op-
erator period lengths with the operators’ input and
output data rate in mind. The model of jitter-
constrained periodic streams is subsequently applied
to each producer-consumer relationship of operators.
This provides the intermediate buffer sizes and the lead
time of an operator in producer role.

Third, the total memory requirement is obtained as
the sum of all buffer sizes plus the static amount of
operator memory. The absolute starting points of the
single operators are derived from the relative values

(lead time).
In a fourth step, the operator processes are initial-

ized with the period length PO and queued to start
exactly at the pre-calculated point in time.

Finally, the operators continuously work and peri-
odically start a new run after the specified period has
elapsed.

Data Exchange

We exploit the features of the RTAI FIFOs for data
exchange. An arbitrary number of applications is al-
lowed to connect to such a FIFO, either as a FIFO
writer (producer) or as a FIFO reader (consumer). In
QStream, two FIFOs are established between consecu-
tive operators: one for exchanging the tuples (variable
tuple size) and one for handing over the packet control
information.

The synchronization of the FIFO access is entirely
managed by RTAI. From the operators’ point of view,
the FIFO is created with a size parameter which is
equal to the buffer size B calculated in the control
application. Relying on the scheduling and on the de-
terministic real-time behavior, none of our operators
is blocked when reading from or writing to a FIFO.

The QStream demonstration will show how to nego-
tiate QoS parameters for a given operator network and
how the QStream operators run on top of the real-time
environment.

References

[1] Don Carney, Ugur Çetintemel, Alex Rasin, Stan
Zdonik, Mitch Cherniack, and Michael Stone-
braker. Operator scheduling in a data stream man-
ager. In Proc. of 29th International Conference
on Very Large Databases, September 9-12, 2003,
Berlin, Germany, pages 838–849, 2003.

[2] Charles D. Cranor, Theodore Johnson, Oliver
Spatscheck, and Vladislav Shkapenyuk. Gigascope:
A stream database for network applications. In
Proc. of the 2003 ACM SIGMOD International
Conference on Management of Data, June 9-12,
2003, San Diego, CA, USA, pages 647–651, 2003.

[3] Lorenzo Dozio and Paolo Mantegazza. Real time
distributed control systems using rtai. In In
Proc. of the 6th IEEE International Symposium
on Object-Oriented Real-Time Distributed Com-
puting, May 14-16, 2003, Hakodate, Hokkaido,
Japan, pages 11–18, 2003.

[4] Claude-Joachim Hamann. On the quantitative
specification of jitter constrained periodic streams.
In Proc. of the Fifth International Symposium on
Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, January 12-15,
1997 Haifa, Israel, pages 171–176, 1997.

1368


