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Questions This Tutorial Answers

• how important are high-dimensional (high-d) data nowadays?

• what types of analyses are performed on high-d data?
• how can we speed up such analyses?

• what are the different kinds of similarity search?
• what are the state-of-the-art high-d similarity search methods?
• how do methods designed for data series compare to those designed for 

general high-d vector similarity search?

• how do similarity search techniques support interactivity?
• how can AI help similarity search and vice versa?
• which similarity search techniques exploit modern hardware and distribution?

• what are the open research problems in this area?
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High-d data are everywhere

Finance Manufacturing

Seismology

Neuroscience

Paleontology

Biology

AstronomyAgriculture

Medicine

Aviation

Criminology
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High-d data are everywhere
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• operation health monitoring

▫ classification, anomaly detection

• data integration

▫ entity resolution, data discovery

• recommender systems

▫ predict user interest

• information retrieval

▫ similarity search

• software engineering

▫ find software dependencies

• cybersecurity

▫ network usage profiling, intrusion detection

• …



≈ 500 ZB per year

> 500 TB per day
1 PB = 1 thousand TB

1 ZB =  1 billion TB
> 5 TB per day

> 40 PB per 
day

≈ 130 TB

High-d collections are massive
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Popular High-d data

Time

Position
Frequency

Mass

Data series

A collection of points ordered over a dimension

embedded
text, images, video, graphs, etc. 

Deep Embeddings

A high-d vector learned from data using a DNN

High-d data -> High-d vectors
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Similarity 
Search

Outlier Detection

Clustering

Classification

Predictive 
Maintenance

Classification

Recommendation

Extracting value requires analytics

Data Cleaning Data Integration
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Similarity 
Search

Outlier Detection

Clustering

Classification

Predictive 
Maintenance

Classification

Recommendation

Extracting value requires analytics

Data Cleaning Data Integration

HARD, because of very high dimensionality:
each high-d vector has 100s-1000s of dimensions!

even HARDER, because of very large size:
millions to billions of high-d vectors (multi-TBs)!
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Problem Variations

Series
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Univariate

each point represents one   
value (e.g., temperature)

Multivariate

each point represents many   
values (e.g., temperature, 

humidity, pressure, wind, etc.)
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Problem Variations

• similarity search is based on measuring distance between 
sequences

• dozens of distance measures have been proposed
▫ lock-step 

 Minkowski, Manhattan, Euclidean, Maximum, DISSIM, …

▫ sliding
 Normalized Cross-Correlation, SBD, …

▫ elastic
 DTW, LCSS, MSM, EDR, ERP, Swale, …

▫ kernel-based
 KDTW, GAK, SINK, …

▫ embedding 
 GRAIL, RWS, SPIRAL, SEAnet, …

Data Series Distance Measures

Publications

Ding-
PVLDB‘08

Paparrizos-
SIGMOD’20
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Problem Variations

• similarity search is based on measuring distance 
between vectors

• A variety of distance measures have been proposed
▫ Lp distances (0<p≤2, ∞),  (Euclidean for p = 2)

▫ Cosine distance 

▫ Correlation

▫ Hamming distance

▫ …

High-d Vectors Distance Measures

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

17



Problem Variations

• similarity search is based on measuring distance 
between vectors

• A variety of distance measures have been proposed
▫ Lp distances (0<p≤2, ∞),  (Euclidean for p = 2)

▫ Cosine distance 

▫ Correlation

▫ Hamming distance

▫ …

High-d Vectors Distance Measures

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

18



Euclidean Distance

• Euclidean distance

▫ pair-wise point distance

v1
v2
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Correlation

• measures the degree of relationship between data series
▫ indicates the degree and direction of relationship

• direction of change
▫ positive correlation

 values of two data series change in same direction

▫ negative correlation

 values of two data series change in opposite directions

• linear correlation
▫ amount of change in one data series bears constant ratio of change in 

the other data series

• useful in several applications
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Pearson’s Correlation (PC) Coefficient

•
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Pearson’s Correlation (PC) Coefficient

• used to see linear dependency between values of data series of 
equal length, n

• takes values in [-1,1]
▫ 0 – no correlation
▫ -1, 1 – inverse/direct correlation

• there is a statistical test connected to PC, where null hypothesis 
is the no correlation case (correlation coefficient = 0)
▫ test is used to ensure that the correlation similarity is not caused by 

a random process 
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PC and ED

• Euclidean distance: 

• In case of Z-normalized data series (mean = 0, stddev = 1):

and

so the following formula is true:  

• direct connection between ED and PC for Z-normalized data 
series
▫ if ED is calculated for normalized data series, it can be directly 

used to calculate the p-value for statistical test of Pearson’s 
correlation instead of actual PC value.

𝐸𝐷2 = 2𝑛 𝑛 − 1 − 2෍
𝑖=1

𝑛

𝑥𝑖𝑦𝑖

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

23



Distance Measures:

LCSS against Euclidean, DTW

• Euclidean
▫ rigid

• Dynamic Time Warping (DTW)
▫ allows local scaling

• Longest Common SubSequence (LCSS)
▫ allows local scaling

▫ ignores outliers
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Distance Measures:

Cosine Distance

▫ Cosine distance = 1 - cosine similarity
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▫ ED vs. Cosine similarity

 If  A and B are normalized to unit length in L2, the square of 
ED is proportional to the cosine distance:

 ||A||2=||B||2=1  →||A−B||2=2−2cos(A,B)



Problem Variations

Queries

Whole matching

Entire query

Entire candidate

Subsequence matching

Entire query

A subsequence of a candidate
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Problem Variations

Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

and more…
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Nearest Neighbor (NN) Queries… Publications

Echihabi et al.
PVLDB‘19

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

28



OQ

Nearest Neighbor (NN) Queries…
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OQ

Ox

exact 
NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN
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OQ

Ong

Ox

exact 
NN

dng

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…
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OQ

Ong

Ox
Oε

exact 
NN

dε

dng

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…
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Oδε

Ong

Ox

OQ

δ-ε-approximate
neighbor

Oε

exact 
NN

dε

dδε

dng

Prob(dε <= dx (1+ε)) >= δ

result within (1+ ε) of exact NN 

with probability at least δ

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…
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Maximum Inner Product Search (MIPS)
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• Problem Definition:
▫ Given a collection of candidate vectors S and a query Q , find a 

candidate vector C maximizing the inner product with the query: :

 Given S ⊂ Rd and Q ∈ Rd , C = argmaxX∈S QT X



Maximum Inner Product Search (MIPS)
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• Problem Definition:
▫ Given a collection of candidate vectors S and a query Q , find a 

candidate vector C maximizing the inner product with the query: :

 Given S ⊂ Rd and Q ∈ Rd , C = argmaxX∈S QT X

▫ MIPS is closely related to NN search:

 If ∥Q∥2 = 1,  ∥Q − X∥2 = 1 + ∥X∥2− 2QTX

▫ MIPS and NN search are equivalent when all vectors X in S have 
constant length c

▫ Otherwise, MIPS can be converted to NN search with ED or Cosine
similarity [1][2][3]

[1] Anshumali Shrivastava and Ping Li. 2014a. Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search 
(MIPS). In NIPS. 2321–2329.
[2] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir Nice, and Ulrich Paquet. 
2014. Speeding Up the Xbox Recommender System Using a Euclidean Transformation for Inner-product Spaces. In RecSys. 
257–264.
[3] B. Neyshabur and N. Srebro. 2014. On Symmetric and Asymmetric LSHs for Inner Product Search. ArXiv e-prints (Oct. 
2014).





Similarity Search Process
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Query Answering ProcedureData Loading Procedure

Raw data



data-to-query time 

Query Answering ProcedureData Loading Procedure

Data Series 
Database/
Indexing

DataRaw data
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Similarity Search Process



data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries
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data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries
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Similarity Search Process



data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

we need solutions 
for both problems!

Data Series 
Database/
Indexing

DataRaw data

Queries
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Similarity Search Process
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Publications

Keogh -
KDD‘04

for a complete 
and detailed 
presentation, 
see tutorial:





Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan
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Similarity Matching

Serial Scan
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Disk
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths
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Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

bsf     = +ꝏ

lbcur = +ꝏ

lower-bounding (lb) property:   
dlb(Q’, Ci’)  <= d(Q, Ci)

Publications

Faloutsos-
SIGMOD’94
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The summary of Q (Q’) is compared to 

the summary of each candidate

Q is compared to a raw candidate only if 
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Q is compared to each raw candidate in the 
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Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
bsf     = +ꝏ

lbcur = dlb(Q’,C1’)
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(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf d(Q,C2) >= 

prune C2

LB Property   
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,Cx’) 
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Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,Cx’) < bsf  
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,Cx)

lbcur = dlb(Q’,Cx’) < bsf  
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,Cx)

lbcur = dlb(Q’,Cn’) < bsf  
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

72



Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3
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Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = +ꝏ
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Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = +ꝏ
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Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,C3)
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,C3)
1  

Queue
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Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,C3)

lbcur =  dlb(Q’, )1   QueueQueue
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Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4
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3

1   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueueQueue
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Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

1   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueueQueue

2  3  
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Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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1

4

1 2

3

2   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, )Queue

3  
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

2   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueue

3  
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Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

2   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueue

5  4  3  

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

83



Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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1

4

1 2

3

5   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) Queue

4  3  
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Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

5   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueue

4  3  
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Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

5   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsf

4  3  2

Queue
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) 2

4  3  

Queue
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsf2

4  3  

Queue
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsf2

4  3  

Queue
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) < bsf2

4  3  

Queue
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) 

3  

Queue 4  
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) > bsf

3  

Queue 4  

prune

LB Property   

4  
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Memory
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Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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1

4
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3

bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) > bsf

3  

Queue 4  
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) > bsf

3  

Queue 4  
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Memory

Disk

2

4

1

Answering a similarity search query using different access paths

(a) Serial 
scan

(b) Skip-sequential 
scan

(c) Tree-based index

3

1 2

Access Paths

OQ O
Q

OQ

The summary of OQ (OQ’) is compared to 
the summary of each candidate

Ox OxOx

OQ is compared to each raw candidate in 
the dataset before returning the answer Ox

OQ is compared to a raw candidate only if 
its summary cannot be pruned 
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Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf
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Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf

lbcur =  dlb(OQ’, Ox’) < (1+ε) bsf
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Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε) = δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)
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Memory

Disk

Extensions: Skip-Sequential Scans

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)
If bsf <=(1+ε) rδ(OQ)

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ
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Memory

Disk

2

4

1

Q

bsf = d(OQ,O3)

lbcur =  dlb(OQ’,      ) < bsf

3

1 2

Extensions: Indexes

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

1   

Ox
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Memory

Disk

2

4

1

Q

bsf = d(OQ,O3)
lbcur =  dlb(OQ’,        ) < bsf
lbcur =  dlb(OQ’,        ) < (1+ε) bsf

3

1 2

Extensions: Indexes

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

1   
1   

Ox
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Memory

Disk

2

4

1

Q

bsf = d(OQ,O3)

lbcur =  dlb(OQ’, ) < bsf

lbcur =  dlb(OQ’, ) < (1+ε) bsf

3

1 2

1   

Extensions: Indexes

1   

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

Ox
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Disk

2

4

1

Q

bsf = d(OQ,O3)

If bsf <=     

3

1 2

Extensions: Indexes

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ

(1+ε) rδ(OQ)

Ox
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for a more complete and detailed presentation, see tutorial:

Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas. Big Sequence Management: Scaling Up and Out. EDBT 2021
http://helios.mi.parisdescartes.fr/~themisp/publications.html#tutorials

Publications

Echihabi-
EDBT‘21

http://helios.mi.parisdescartes.fr/~themisp/publications.html#tutorials


iSAX Summarization
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• Symbolic Aggregate approXimation
(SAX) 



iSAX Summarization
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• Symbolic Aggregate approXimation
(SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)
 T typically normalized to μ = 0, σ = 1

 PAA(T,w) =                         

where
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iSAX Summarization
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• Symbolic Aggregate approXimation 
(SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)
 T typically normalized to μ = 0, σ = 1

 PAA(T,w) =                         

where

▫ (2) Discretize into a vector of symbols 
 Breakpoints map to small alphabet a

of symbols

wttT ,,1 =


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=
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iSAX Summarization

• iSAX representation offers a bit-aware, quantized, multi-
resolution representation with variable granularity

=    { 6, 6, 3, 0}  =    {110 ,110 ,0111 ,000}

=    { 3, 3, 1, 0}    =    {11  ,11  ,011 ,00 }

=    { 1, 1, 0, 0}    =    {1 ,1 ,0 ,0  }

Publications

Shieh-
KDD‘08
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

e.g., th=4, w=4, b=1

1  1  1  0
1  1  1  0
1  1  1  0
1  1  1  0
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

1  1  1  0
1  1  1  0
1  1  1  0
1  1  1  0

e.g., th=4, w=4, b=1

Insert:
1  1  1  0
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

1  1  10 0
1  1  10 0

1  1  11 0
1  1  11 0

e.g., th=4, w=4, b=1

1  1  11 0

1  1  1 0
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

• Approximate Search
▫ Match iSAX representation at each level

• Exact Search
▫ Leverage approximate search

▫ Prune search space
 Lower bounding distance

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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ADS+

• novel paradigm for building a data series index

▫ does not build entire index and then answer queries

▫ starts answering queries by building the part of the index needed by 
those queries

• still guarantees correct answers

• intuition for proposed solution

▫ builds index using only iSAX summaries; uses large leaf size

▫ postpones leaf materialization to query time

▫ only materialize (at query time) leaves needed by queries

▫ parts that are queried more are refined more

▫ use smaller leaf sizes (reduced leaf materialization and query 
answering costs)

Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16
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Raw data

PARTIAL
PARTIAL

ROOT

I1

L5L2

L1

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

TOO BIG!

Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16
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Raw data

PARTIAL

PARTIAL

ROOT

I1

L5

I3

L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

PARTIAL

L5L4

Adaptive split

Create a smaller leaf

Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16
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Raw data

PARTIAL

PARTIAL

ROOT

I1

L5

I3

L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

FULL

L5L4

Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16
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ADS Index creation
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35%

5%

60%

Breakdown of time consumption 

Read data

Write data

CPU

~60% of time spent in CPU: potential for improvement!

60%



Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Lavchenko-
KAIS’20
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Lavchenko-
KAIS’20
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Lavchenko-
KAIS’20
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current solution for modern hardware

▫ completely masks out the CPU cost

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current solution for modern hardware

▫ completely masks out the CPU cost

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions
18x faster

k-NN Classification

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions

18x faster

k-NN Classification

classifying 100K objects using a 100GB dataset 
goes down from several days to few hours!

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

• MESSI: current single-node parallel solution + in-memory data

▫ answers exact queries at interactive speeds: ~50msec on 100GB

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21

Peng-
ICDE’20

Peng-
VLDBJ’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

• MESSI: current single-node parallel solution + in-memory data

▫ answers exact queries at interactive speeds: ~50msec on 100GB

• SING: current single-node parallel solution + GPU + in-memory data

▫ answers exact queries at interactive speeds: ~32msec on 100GB

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21

Peng-
ICDE’20

Peng-
VLDBJ’21

Peng-
ICDE’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

• MESSI: current single-node parallel solution + in-memory data

▫ answers exact queries at interactive speeds: ~50msec on 100GB

• SING: current single-node parallel solution + GPU + in-memory data

▫ answers exact queries at interactive speeds: ~32msec on 100GB

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21

Peng-
ICDE’20

Peng-
VLDBJ’21

Peng-
ICDE’21
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iSAX Index Family

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.

Publications

Palpanas-
ISIP‘19

iSAX

iSAX2+ 

2008 2010 2014 2015 2017 2018 2019 2020

basic 

index

C

C#, C

C#

Java
(Spark)

C

C

C

timeline

iSAX 2.0

ADS / 
ADS+

ADSFull

DPiSAX 

ParIS ParIS+ MESSI

Coconut-Trie / 
Coconut-Tree

ULISSE

Coconut-LSM

iSAX2+*

ADS+*

+ Bulk 

Loading

+ Adaptive

+ Distributed 

+ Multi-Core, 

Multi-Socket, SIMD

+ Sortable Summarizations,

Streaming Data Series

+ Variable-Length Queries

CSING
+ Graphics Processing   

Units (GPUs)
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DSTree

Summarization

Intertwined with indexing

The APCA and EAPCA representations

Publications

Wang-
PVLDB‘13
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DSTree

Indexing

Each node contains
❑ # vectors
❑ segmentation SG
❑ synopsis Z

Each Leaf node also :
❑ stores its raw 
vectors in a separate
disk file

Publications

Wang-
PVLDB‘13
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ParSketch

⚫ solution for distributed processing (Spark)

⚫ represents data series using sketches

⚫ using a set of random vectors (Johnson-Lindenstrauss lemma)

⚫ define groups of dimensions in sketches

⚫ store the values of each group in a grid (in parallel)

⚫ each grid is kept by a node

⚫ for ng-approximate query answering (originally proposed for ε-range queries)

⚫ find in the grids time series that are close to the query

⚫ finally, check the real similarity of candidates to find the results

⚫ performs well for high-frequency series

node 1 node 2

Publications

Cole et al.
KDD‘05

Yagoubi et al.
DMKD‘18
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⚫ other techniques, not covered here:

⚫ TARDIS

⚫ KV-Match (subsequence matching)

⚫ L-Match (subsequence matching)

• for a more complete and detailed presentation, see tutorial:

▫ Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas. Big Sequence 
Management: Scaling Up and Out. EDBT 2021

Publications

Feng-
IEEE Access‘20

Wu-
ICDE‘19

Zhang-
ICDE‘19

Echihabi-
EDBT‘21
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High-d Vector Similarity Search Methods

• Tree-Based Methods

• Hash-Based Methods

• Quantization-Based Methods 

• Graph-Based Methods

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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Tree-Based Methods
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Publications

• A large body of work

• Some representative methods:

▫ KD-tree 

Bentley
CACM’75



Tree-Based Methods
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Publications

Silpa-Anan
CVPR’08

• A large body of work

• Some representative methods:

▫ KD-tree 

▫ Randomized KD-tree

Bentley
CACM’75



Tree-Based Methods
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Publications

Silpa-Anan
CVPR’08

• A large body of work

• Some representative methods:

▫ KD-tree 

▫ Randomized KD-tree

▫ FLANN

Bentley
CACM’75

Muja et al.
VISAPP’09



Tree-Based Methods
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Publications

Silpa-Anan
CVPR’08

• A large body of work

• Some representative methods:

▫ KD-tree 

▫ Randomized KD-tree

▫ FLANN

▫ Mtree

Bentley
CACM’75

Muja et al.
VISAPP’09

Ciaccia et al.
VLDB’97

Ciaccia et al.
ICDE’00



Tree-Based Methods
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Publications

Silpa-Anan
CVPR’08

• A large body of work

• Some representative methods:

▫ KD-tree 

▫ Randomized KD-tree

▫ FLANN

▫ Mtree

▫ HD-Index

Bentley
CACM’75

Muja et al.
VISAPP’09

Ciaccia et al.
VLDB’97

Ciaccia et al.
ICDE’00

Arora et al.
PVLDB‘18



Tree-Based Methods
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Publications

Silpa-Anan
CVPR’08

• A large body of work
• Some representative methods:

▫ KD-tree 
▫ Randomized KD-tree
▫ FLANN
▫ Mtree
▫ HD-Index

• for a more complete and detailed presentation, see tutorial:
▫ Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas. High-

Dimensional Similarity Search for Scalable Data Science. ICDE 2021

Bentley
CACM’75

Muja et al.
VISAPP’09

Ciaccia et al.
VLDB’97

Ciaccia et al.
ICDE’00

Arora et al.
PVLDB‘18

Echihabi et al.
ICDE‘21





• Solution for δ-ε-approximate kNN search δ < 1

• Random projections into a lower dimensional space using hashing

• Probability of collisions increases with locality

• c-Approximate r-Near Neighbor: build data structure which, for any query q:

▫ If there is a point p ∈P, ||p-q|| ≤ r  Then return p’ ∈ P, ||p-q|| ≤ c r 

• c-approximate nearest neighbor reduces to c-approximate near neighbor

▫ Enumerate all approximate near neighbors

• Find a vector in a preprocessed set S ⊆ {0, 1} d that has minimum Hamming 

distance to a query vector y ∈ {0, 1} d

Locality Sensitive Hashing (LSH) Publications

Indyk et al.
STOC’98

(r1, r2, p1, p2)-sensitive [IM98]
• Pr[ h(x) = h(y) ] ≥ p1 , if dist(x, y) ≤ r1

• Pr[ h(x) = h(y) ] ≤ p2 , if dist(x, y) ≥ r2

152
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• A large family

▫ Different distance measures:

 Hamming distance

 Lp (0 < p ≤ 2): use p-stable distribution to generate the projection vector

 Angular distance (simHash)

 Jaccard distance (minhash)

▫ Tighter Theoretical Bounds

▫ Better query efficiency/smaller index size

Locality Sensitive Hashing (LSH)
Publications

Andoni et al.
CACM’08

153
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d dims

P

𝜋(P)

m dims

𝜋(O) = [h1(O), h2(O),  …, hm(O)]

Probabilistic Mapping

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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Slide by W. Wang

• Probabilistic, linear mapping from the original space to the projected space



Probabilistic Mapping
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• Probabilistic, linear mapping from the original space to the projected space

• What about the distances (wrt Q or 𝜋(Q)) in these two spaces?

d dims

Dist(P)

P

𝜋(Q)

𝜋(P)

m dims

Q

Slide by W. Wang

𝜋(O) = [h1(O), h2(O),  …, hm(O)]



SRS
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• Given that ProjDist(P) ≤ r, what can we infer about Dist(P)?

▫ If Dist(P) ≤ R, then Pr[ ProjDist(P) ≤ r ] ≥  Ψm( (r/R)2 )

▫ If Dist(P) > cR, then Pr[ ProjDist(P) ≤ r ] ≤ Ψm( (r/cR)2 ) = t

▫ (some probability) at most O(tn) points with ProjDist ≤ R

▫ (constant probability) one of the O(tn) points has Dist ≤ R

d dims

Q

Dist(P)

P

𝜋(Q)

𝜋(P)

m dims

Publications

Sun et al.
PVLDB’ 14

ProjDist(P)2 ~ Dist(P)2 * χ2
m

• This solves the so-called (R, c)-NN queries ➔ returns a c2 ANN
• Using another algorithm & proof ➔ returns a c-ANN Slide by W. Wang

𝜋(O) = [h1(O), h2(O),  …, hm(O)]



C2LSH/QALSH

d dims

Q

Dist(P)

P

𝜋(Q)

𝜋(P)

m dims

Publications

• Given that P’s #collision ≥ 𝛼m, what can we infer about Dist(P)?

▫ If Dist(P) ≤ R, then Pr[ #collision ≥ 𝛼m ] ≥  𝛾1

▫ If Dist(P) > cR, then Pr[ #collision ≥ 𝛼m ] ≤ 𝛾2

▫ (some probability) at most O(𝛾2*n) points with #collision ≥ 𝛼m

▫ (constant probability) one of the O(𝛾2*n) points has #collision ≥ 𝛼m

Collision wrt w: if |hi(P) – hi(Q)| ≤ w

Huang et al.
PVLDB’ 15

Gan et al.
SIGMOD’12

Slide by W. Wang

𝜋(O) = [h1(O), h2(O),  …, hm(O)]
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Query-oblivious LSH functions Publications

Huang et al.
PVLDB’15

• The query-oblivious LSH functions for Euclidean distance:

ℎ𝑎,𝑏 𝑜 =
Ԧ𝑎 ⋅ Ԧ𝑜 + 𝑏

𝑤

𝒙𝟎

𝒚

𝒐 𝒂

Ԧ𝑎 ⋅ Ԧ𝑜
random shift 
𝒃

Ԧ𝑎 ⋅ Ԧ𝑜 + 𝑏

random 
projection

Query-Oblivious Bucket Partition: 

– Buckets are statically determined before 
any query arrives;

– Use the origin (i.e., “0”) as anchor;

– If 𝒉𝒂,𝒃 𝒐 = 𝒉𝒂,𝒃 𝒒 , we say 𝒐 and 𝒒 collide

under ℎ𝑎,𝑏 ⋅ .

Slide by Q. Huang
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Publications

Huang et al.
PVLDB’ 15

QALSH

• Query-aware LSH function = random projection + query-aware bucket 

partition 

𝒉𝒂 𝒐 = 𝒂 ⋅ 𝒐

Query-Aware Bucket Partition: 

– Buckets are dynamically determined when 
𝒒 arrives;

– Use “𝒉𝒂(𝒒)” as anchor ;

– If an object 𝑜 falls into the anchor bucket, 

i.e., 𝒉𝒂 𝒐 − 𝒉𝒂 𝒒 ≤
𝒘

𝟐
, we say 𝒐 and 𝒒

collide under ℎ𝑎 ⋅ .𝒙𝟎

𝒚

𝒒 𝒂random 
projection

𝒉𝒂(𝒒)

𝒉𝒂(𝒐𝟏)

𝒉𝒂(𝒐𝟐)

𝒐𝟏

𝒐𝟐

Slide by Q. Huang
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Publications

Lu et al.
PVLDB’ 20

VHP

▫ Indexing:

 Store LSH projections with independent
B+ trees.

▫ Querying

 Impose a virtual hypersphere in the 
original high-d space

 Keep enlarging the virtual hypersphere to 
accommodate more candidate until the 
success probability is met

• Solution for δ-ε-approximate kNN search

Slide by W. Wang
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Method Collision Count (Observed) Distance Max Candidates

SRS = m ≤ r T

QALSH ≥ 𝛼m n/a 𝛽n

VHP ≥ i (i = 1, 2, …, m) ≤ li 𝛽n

Candidate Conditions

Candidate Regions

SRS

VHP = SRS ∩ QALSH

VHP

Some Comparisons

Slide by W. Wang

Publications

Huang et al.
PVLDB’ 15

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

161





Quantization

• A lossy compression process that maps a set of infinite numbers 
to a finite set of codewords that together constitute the 
codebook:

▫ Scalar Quantization

 Operates on the individual dimensions of the original vector 
independently

▫ Vector Quantization

 Considers the original vector as a whole

▫ Product Quantization

 Splits the original vector of dimension d into m smaller subvectors, on 
which a lower-complexity vector quantization is performed. The codebook 
consists of the cartesian product of the codebooks of the m subquantizers.

▫ Scalar and vector quantization are special cases of product quantization, 
where m is equal to d and 1, respectively

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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11

10

01

00

00 01 10 11

p1 0.1  0.6

p2 0.7  0.4

p3 0.9  0.3

p1

p2

p3

p1 00 10

p2 10  01

p3 11  11

Data space

Feature values VA-file

Publications

Blott et. al
VLDB’98

VA-file

Slides by M. Patella.

• A solution for exact kNN search

• The basic idea of the VA-file is to speed-up the sequential scan by exploiting a 
“Vector Approximation”

• Each dimension of the data space is partitioned into 2bi intervals using bi bits 
(scalar quantization)

▫ E.g.: the 1st coordinate uses 2 bits, which leads to the intervals 00,01,10, and 
11

• Thus, each coordinate of a point (vector) requires now bi bits instead of 32 

• The VA-file stores, for each point of the dataset, its approximation, which is a 
vector of i=1,D bi bits

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

164



Publications

Blott et. al
VLDB’98

VA-file

Slides by M. Patella.

actual results
false drops
excluded points

q
r

• Query processing with the VA-file is 
based on a filter & refine approach

• For simplicity, consider a range query

Filter: the VA file is accessed and only 
the points in the regions that intersect 
the query region are kept

Refine: the feature vectors are 
retrieved and an exact check is made
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VA+file

• Solution for exact kNN search

• An improvement of the VA-file method:

▫ Does not assume that neighboring dimensions are uncorrelated

▫ Decorrelates the data using KLT

▫ Allocates bits per dimension in a non-uniform fashion

▫ Partitions each dimension using k-means instead of equi-depth

Publications

Ferhatosmanoglu
et al.

CIKM’00
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Visual codebook

"Visual word"

Publications

Sivic et al.
ICCV’ 03

The Inverted Index

Slide by A. Babenko
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• Have to consider several words 
for best accuracy

• Want to use as big codebook as 
possible 

• Want to spend as little time as 
possible for matching to 
codebooks

conflict

Query:

Querying the Inverted Index Publications

Sivic et al.
ICCV’ 03

Slide by A. Babenko
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1. Split vector into correlated subvectors
2. use separate small codebook for each chunk

For a budget of 4 bytes per descriptor:

1. Can use a single codebook with 1 billion codewords many minutes     128GB 

2. Can use 4 different codebooks with 256 codewords each    < 1 millisecond    32KB

IVFADC+ variants (state-of-the-art for billion scale datasets) =
inverted index for indexing + product quantization for reranking

Quantization vs. Product quantization:

Product Quantization Publications

Jegou et al.
TPAMI’ 11

Slide by A. Babenko
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Idea: use product quantization
for indexing 

Main advantage:
For the same K, much finer 
subdivision achieved

Main problem:
Very non-uniform entry size 
distribution

The Inverted Multi-Index
Publications

Babenko et al.
TPAMI’ 12

Slide by A. Babenko
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1 2

3 4

5 6

7

8

9

1
0

Input: query
Output: stream of entries

Answer to the query:

Querying the Inverted Multi-Index Publications

Babenko et al.
TPAMI’ 12

Slide by A. Babenko
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Publications

Guo-ICML’20Google ScaNN
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• Quantization-based similarity search using MIPS

▫ A novel score-aware loss function: 

 The approximation error on the pairs which have a high 
inner product is far more important than that of pairs 
whose inner product is low.



Publications

Guo-ICML’20Google ScaNN
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• Quantization-based similarity search using MIPS

▫ A novel score-aware loss function: 

 The approximation error on the pairs which have a high 
inner product is far more important than that of pairs 
whose inner product is low.





Conceptual Graphs

• Voronoi/Delaunay Diagrams

• kNN Graphs

• Navigable Small World Graphs

• Relative Neighborhood graphs
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The Delaunay Diagram
Publications

Delaunay
CSMN’ 39

Delaunay Diagram – Dual of Voronoi Diagram   

• The VD is constructed by decomposing the 
space using a finite number of points, called 
sites into regions, such that each site is 
associated to a region  consisting of all points 
closer to it than to any other site. 

• The DT is the dual of the VD, constructed by 
connecting sites with an edge if their regions 
share a side.

Voronoi Diagram

Delaunay Diagram
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kNN Graphs

• Exact kNN graphs on n d-dimensional points:

▫ Each point in the space is considered a node

▫ A directed edge is added between nodes node A and B (A -=> B) if B is a kNN of A

▫ O(dn2)

▫ Example: L2knng

• Approximate kNN Graphs:

▫ LSH

▫ Heuristics

 Example: NN-Descent: “a neighbor of a neighbor is also likely to be a neighbor”

Publications

Anastasiu et al.
CIKM’ 15

Dong et al.
WWW’ 11
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NSW Graphs

• Augment approximate kNN graphs with long range links:

▫ Milgram experiment

▫ Shorten the greedy algorithm path to log(N)

Publications

Kleinberg
STOC’ 00

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

178



Relative Neighbourhood graph (RNG)

 A superset of the minimal spanning tree (MST) and a subset of the 
Delaunay Diagram.

 Two algorithms for obtaining the RNG of n points on the plane:

 An algorithm for 1-d space in 0(n2) time

 Another algorithm for d-dimensional spaces running in 0(n3).

 An edge is constructed between two vertices if there is no vertex in the 
intersection of the two balls

Publications

Toussaint
Pat. Recognit.’80
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N2=N/4

N1=N/2

N0=N

● In HNSW we split the graph into layers (fewer 

elements at higher levels) 

● Search starts for the top layer. Greedy routing at 

each level and descend to the next layer.

● Maximum degree is capped while paths ~ log(N) 

→ log(N) complexity scaling.

● Incremental construction 

Publications

Malkov et al.
TPAMI’ 20
Arxiv’16

HNSW

Slides by Malkov
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Publications

Fu et al.
PVLDB’ 19Navigating Speading-out Graph (NSG)

 RNGs do not guarantee monotonic search

 There exists at least one monotonic path. Following this path, the 
query can be approached with the distance decreasing 
monotonically

 Propose a Monotonic RNG (MRNG)

 Build an approximate kNN graph.

 Find the Navigating Node. (All search will start with this 
fixed node – center of the graph ).

 For each node p, find a relatively small candidate neighbour 
set. (sparse)

 Select the edges for p according to the definition 

of MRNG. (low complexity)

 leverage Depth-First-Search tree (connectivity)

Slides by Fu
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Other tutorials
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• for a more complete and detailed presentation, see tutorials:

▫ Jianbin Qin, Wei Wang, Chuan Xiao, Ying Zhang: Similarity Query
Processing for High-Dimensional Data. PVLDB. 13(12): 3437-
3440 (2020).

▫ Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas. High-
Dimensional Similarity Search for Scalable Data Science. ICDE 2021

https://dblp.org/pid/01/9727.html
https://dblp.org/pid/57/4384-1.html
https://dblp.org/pid/13/6769-1.html
https://dblp.org/db/journals/pvldb/pvldb13.html#Qin0X020




Publications

Haghani-
EDBT’09

Distributed LSH

184

• A two-level mapping strategy
▫ Condition 1: assign buckets likely to hold similar data to the same peer. 

▫ Condition 2: have a predictable output distribution which fosters fair load 
balancing.

• Theoretical guarantees on locality preserving properties of the 
mapping

• Significant improvement over state-of-the-art
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Publications

Bahmani-
CIKM’12

Layered LSH
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• One of the early works

• Entropy-based LSH in Euclidean space

• Apache Hadoop for disk-based version

• Twitter storm for in-memory version

• Theoretical guarantees 

▫ Only for the single hash tables setting



Publications

Sundaram-
PVLDB’13

PLSH
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• In-memory, multi-core, distributed LSH 

▫ Designed for text data (angular distance)

• Main idea

▫ Use a caching strategy to improve online index construction

▫ Insert-optimized delta tables to hold indexes of new data 
 Merge periodically with main index structures

▫ Eliminate duplicate data using a bitmap-based strategy

▫ Model to predict performance 

• Experiments on a billion-tweet dataset on 100 nodes 

▫ 1-2.5 ms per query

▫ Streaming 100 millions of tweets per day
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Publications

Durmaz-
PLR’19

RDH
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• Distributed similarity search for images

• Main ideal:

▫ Randomly splits and distributes the dataset over compute 
nodes

▫ Each node builds an LSH index over its data subset

▫ Same hash functions used in all nodes

▫ No communication between nodes

▫ Network used to send hash functions and 

• 8x faster (with 10 nodes) than state-of-the-art while 
maintaining similar accuracy



Publications

Johnson-
ITBD’21

FAISS
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• Facebook’s library for similarity search
▫ CPU and GPU implementations

• FAISS GPU:

▫ Quantization-based inverted index

▫ kNN graph

• Experiments 
▫ Up to 8.5x faster than other GPU-based techniques

▫ 5x-10x faster than corresponding CPU implementation on a single 
GPU

▫ Near linear speedup with multiple GPUs over a single GPU 

▫ 95 million images in 35 minutes, and of a graph connecting 1 billion 
vectors in less than 12 hours on 4 Maxwell Titan X GPUs







How do similarity search methods compare?

• several methods proposed in last 3 decades by 
different communities

▫ never carefully compared to one another

• we now present results of extensive experimental 
comparison
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Similarity Search 
Methods

Methods

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees
0 ⩽ δ ⩽ 1, ε ⩾ 0

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Probabilistic

δ < 1, ε guarantee

0 ⩽ δ ⩽ 1, ε ⩾ 0

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

0 ⩽ δ ⩽ 1, ε ⩾ 0

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

0 ⩽ δ ⩽ 1, ε ⩾ 0

Publications

Echihabi-
PVLDB‘18
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

0 ⩽ δ ⩽ 1, ε ⩾ 0

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

* result is within distance

(1+ ε) of the exact answer 
with probability δ
extensions

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

* result is within distance

(1+ ε) of the exact answer 
with probability δ

extensions

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

VA+file[ ]

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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δ-ε-Approximate* ng-Approximate

Probabilistic ε-Approximate

Exact

Similarity Search 
Methods

δ,ε guarantees No guarantees

δ < 1, ε guarantee δ = 1, ε guarantee

δ = 1, ε = 0 guarantee

* result is within distance

(1+ ε) of the exact answer 
with probability δ

extensions

Methods

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

VA+file[ ]

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

QALSH

SRS

VA+file[ ]

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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Experimental Framework

• Hardware

▫ HDD and SSD

• Datasets

▫ Synthetic (25GB to 1TB) and 4 real (100 GB)

• Exact Query Workloads

▫ 100 – 10,000 queries 

• Performance measures

▫ Time, #disk accesses, footprint, pruning, Tightness of Lower Bound (TLB), etc.

• C/C++ methods (4 methods reimplemented from scratch) 

• Procedure:

▫ Step 1: Parametrization

▫ Step 2: Evaluation of individual methods

▫ Step 3: Comparison of best methods

Publications

Echihabi-
PVLDB‘18
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Scenario: Indexing and answering 10K exact queries on HDD

Recommendations

Publications

Echihabi-
PVLDB‘18
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Unexpected Results

• Some methods do not scale as expected (or not at all!)

• Brought back to the spotlight two older methods VA+file and DSTree

▫ New reimplementations outperform by far the original ones 

• Optimal parameters for some methods are different from the ones 
reported in the original papers

• Tightness of Lower Bound (TLB) does not always predict performance

Publications

Echihabi-
PVLDB‘18
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Insights

• Results are sensitive to:

▫ Parameter tuning

▫ Hardware setup

▫ Implementation

▫ Workload selection

• Results identify methods that would benefit from 
modern hardware

Publications

Echihabi-
PVLDB‘18
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Experimental Framework
• Datasets

▫ In-memory and disk-based datasets

▫ Synthetic data modeling financial time series 

▫ Four real datasets from deep learning, computer vision, seismology, and 
neuroscience (25GB-250GB)

• Query Workloads

▫ 100 – 10,000 kNN queries k in [1,100]

▫ ng-approximate and δ-ε-approximate queries (exact queries used as yardstick)

• C/C++ methods (3 methods reimplemented from scratch) 

• Performance measures
▫ Efficiency: time, throughput, #disk accesses, % of data accessed

▫ Accuracy: average recall, mean average precision, mean relative error 

• Procedure:

▫ Step 1: Parametrization

▫ Step 2: Evaluation of indexing/query answering scalability in-memory 

▫ Step 3: Evaluation of indexing/query answering scalability on-disk

▫ Step 4: Additional experiments with best-performing methods on disk

Publications

Echihabi-
PVLDB‘19
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Our extensions

Approximate Methods Covered in Study
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results

best

Accuracy

Time
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results

DSTree
iSAX2+
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results

DSTree
iSAX2+

DSTree
iSAX2+

DSTree
iSAX2+
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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DSTree
iSAX2+
VA+file

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint
DSTree
iSAX2+

Unexpected Results
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DSTree
iSAX2+

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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iSAX2+
VA+file

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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iSAX2+
VA+file

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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Exciting research direction for approximate similarity search in high-d 
spaces:

Currently two main groups of solutions exist:

We show that it is possible to have efficient approximate algorithms with 
guarantees

Insights
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Exciting research direction for approximate similarity search in high-d 
spaces:

Currently two main groups of solutions exist:

We show that it is possible to have efficient approximate algorithms with 
guarantees

approximate search solutions

without guarantees

relatively efficient

approximate search solutions 

with guarantees

relatively slow
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

kNNG-based techniques

slow indexing, difficult to tune, in-memory, no guarantees 

Quantization-based techniques

slow indexing, difficult to tune, no guarantees

Insights
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Quantization-based techniques

slow indexing, difficult to tune, no guarantees

Insights
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

kNNG-based techniques

slow indexing, difficult to tune, in-memory, no guarantees 

Quantization-based techniques

slow indexing, difficult to tune, no guarantees

Insights



Data series approaches 

are the overall winners!

The only exception is HNSW for in-memory

ng-approximate queries using an existing index

Recommendations for approx. techniques
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Scenario: Answering a query workload using an existing index

Recommendations
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Experimental evaluation of graph-

based methods

• A variety of evaluation criteria

▫ Indexing:

 Construction efficiency, index size, graph quality

▫ Search

 Efficiency, accuracy, candidate set size, query path length, 
memory overhead,

• 13 graph-based methods

• 8 real datasets and 12 synthetic datasets

▫ Largest contains 2M vectors

Publications

Wang-
PVLDB’2021
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Experimental evaluation of graph-

based methods

• Recommendations

Publications

Wang-
PVLDB’2021
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• analytics over high-d data is computationally expensive

▫ very high inherent complexity

• may not always be possible to remove delays

▫ but could try to hide them!
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exact



• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

▫ Exact or approximate
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 Tree-based indexes
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 Tree-based indexes
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution
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Gogolou-
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BigVis‘19
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the 
way
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the 
way
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the 
way
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the 
way
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the 
way
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the 
way
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the 
way
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Publications

Gogolou-
SIGMOD‘20

Gogolou-
BigVis‘19
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Contributions

Formalize data series progressive similarity search with 
probabilistic quality guarantees (wrt exact answers). 

Propose statistical models (linear, quantile & logistic regression, and 

multivariate kernel density estimation) to support reliable progressive 
estimation with a small number of training queries. 

Develop stopping criteria to stop a search long before normal query 
execution ends.
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Publications

Gogolou-
SIGMOD‘20

Gogolou-
BigVis‘19
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Time savings for 1NN queries 
Early stopping when predicted probability that current answer is exact is 

higher than 1 - φ

(nr = 100 training queries)

Publications

Gogolou-
SIGMOD‘20

Gogolou-
BigVis‘19

Need for Interactive Analytics

Exact Search

time savings up to 90%
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Early stopping when predicted probability that current answer is exact is 

higher than 1 - φ

time savings up to 90%, with ~99% of the answers to be exact

(nr = 100 training queries)

Publications

Gogolou-
SIGMOD‘20

Gogolou-
BigVis‘19

Need for Interactive Analytics

Exact Search

Time savings for 1NN queries 
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Publications

Echihabi-
submitted’21

Need for Interactive Analytics

Exact Search

time savings up to 95% with ~99% of the answers to be exact

Time savings for kNN classification 
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 Inverted files

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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Inverted file index (IVF)
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• interaction with users offers new opportunities

▫ progressive answers
 produce intermediate results

 iteratively converge to final, correct solution

 Inverted files and graph-based indexes
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Publications

Li-SIGMOD’20

Inverted file index (IVF)

Slide by C. Li
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Max = 
606/367/169

for 
DEEP/SIFT/GIST

• Search termination condition varies greatly

▫ Inverted indexes: number of nearest clusters

▫ Graph-based indexes: Minimum number of distance evaluations.

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

IVF index: CDF of min. termination conditions among queries.
DEEP10M and SIFT10M have 4000 clusters and GIST1M has 1000 clusters 

in total.
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Publications

Li-SIGMOD’20

Slide by C. Li
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• Learned Adaptive Early Termination

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

At index construction: At online search:

Build
index

Database vectors

Train
model

Training vectors,
Interm. results,
Other features

Query

Search small fixed
amount

Predict termination
condition

Continue based on
prediction

Query vector,
Interm. results,
Other features

Publications

Li-SIGMOD’20

Slide by C. Li
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On average, end-to-end latency is improved by up to 7.1x under 

the same accuracy targets





AI and Similarity Search

• Representation Learning

▫ Learned hashing

▫ Learned quantization

▫ Learned summarizations for data series

• Search and Indexing

▫ Learned indexes

▫ Similarity search on deep network embeddings
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• Learned Hashing

▫ Prior works:
• Classical locality sensitive hashing. Typically data insensitive
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OQ

…

h1(Oi)

…

h2(Oi)

…

hL(Oi)

Each object O is mapped to a single bucket in each of 
the L hash tables using hash function hj(O) 

…

AI and Similarity Search

Representation Learning



• Learned Hashing
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• Main goal: learn compact encodings that preserve 
similarity 

• Early works: semantic hashing, spectral hashing
• Learn projection vectors instead of the random projections

• A large body of follow-up work on data-sensitive 
approaches

• http://cs.nju.edu.cn/lwj/slides/L2H.pdf

• https://learning2hash.github.io/

• Deep-learning approaches

Publications

Salakhutdinov-
IJAR’09

Weiss-NIPS’09

AI and Similarity Search

Representation Learning

http://cs.nju.edu.cn/lwj/slides/L2H.pdf
https://learning2hash.github.io/


• Deep-Learned Hashing
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• Main Idea:
• Modify conventional DNN models (eg, AlexNet classification model) 

by replacing ouput layer with deep hashing modules

Publications

Yang-TPAMI’18

Krizhevsky-
NIPS’2012

AI and Similarity Search

Representation Learning



• Deep-Learned Hashing
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Publications

Cai-Arxiv’17

Network AE, CNN, GAN, Siamese/Triplets, Attention Networks, 
etc.

Loss Functions Pair-wise similarity, multi-wise similarity, semantic 
similarity (label-based), quantization loss, 
regularization loss, etc.

Optimization Backpropagation, relaxation, optimizing subproblems,  
continuation

Luo-Arxiv’20

Wang-
TPAMI’18

AI and Similarity Search

Representation Learning



• Deep-Learned Hashing

▫ OPFA, NeOPFA: approximate NN search for disk-based data
 learn hashing (i.e., mapping) functions that map vectors to (lower 

dimensional) embeddings, preserving data locality 

 build indexes (e.g.,. B+-trees) on lists of values of individual 
dimensions of the embeddings

 query answering makes bi-directional sequential access to each list, 
leading to sequential I/O
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Publications

Li et al. –
ICDE’20

AI and Similarity Search

Representation Learning

Slide by W. Wang



• Deep-Learned Hashing

▫ How do they compare?

 Evaluation Metrics: precision, recall, search time

▫ Conflicting results:

 [Luo-20]: Deep-learned hashing greatly outperforms traditional hashing 
methods (e.g., SDH and KSH) overall.

 [Cai17]:  Deep-learned hashing is inferior to traditional hashing methods if 
the later exploit multiple hash tables.

▫ [Sablayrolles17]: 

 Need better evaluation criteria: retrieval of unseen classes and transfer 
learning.
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Publications

Cai-Arxiv’17

Luo-Arxiv’20

Wang-
TPAMI’18

Sablayrolles-
ICASSP’17
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• Learned Quantization 

Techniques

▫ Prior works:
 Product Quantization

 Efficient search with 

lookup tables
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Slide by A. Babenko

Publications

Jegou et al.
TPAMI’ 11
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• Learned Quantization
• Main goal: learn encodings that minimize quantization errors

• Early works: 

• SQ learns features and quantization separately

• Exploits Semantic (label-based) loss.

• DQN learns them simulatenaneously

• First end-to-end model

• Combines a similarity-preserving loss and a product quantization loss.

• But DQN’s codebook is trained with k-means clustering.

• No exhaustive survey

• we will focus on state-of-the-art deep-learning approaches

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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Publications

Wang-CVPR’16

Cao-AAAI’16
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• Supervised Learned Quantization
• DPQ:

• Learns centroids and parameters end-to-end

• Learns a cascade of two fully-connected layers followed by a softmax
layer to determine a soft codeword assignment.

• In contrast to original PQ, codeword assignment is no longer 
determined by distance between the original feature and codewords. 
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289

Publications

Klein-CVPR’19
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Publications

Yu-ECCV’18

• Supervised Learned Quantization
• PQN:

• Codewords are assigned based on similarity between the original 
features  and codewords

• Less prone to over-fitting compared to DPQ due to the smaller number 
of parameters. 

AI and Similarity Search

Representation Learning



• Unsupervised Learned Quantization
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Publications

Sablayrolles-
ICLR’19

• Catalyst-Lattice

▫ Idea: adapt the data to the quantizer rather than the opposite

 Train a neural network that maps input features to a uniform 
output distribution on a unit hypersphere, making high-
dimensional indexing more accurate

AI and Similarity Search

Representation Learning



• Unsupervised Learned Quantization
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Publications

Morozov-
ICCV’19

Slide by S. Morozov

• Unsupervised Neural Quantization (UNQ)
▫ Idea: train multi-layer encoder/decoder in end-to-end fashion in 

unsupervised setup

• UNQ Training Loss: 𝐿 = 𝐿1 + α𝐿2 + β𝐿3
 𝐿1 – reconstruction loss

 𝐿2 – triplet loss in compressed domain

 𝐿3 – enforces diversity among codebooks

AI and Similarity Search

Representation Learning



• Learned Quantization Techniques

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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Publications

Morozov-
ICCV’19

• UNQ vs. Catalyst-Lattice[1] and LSQ[2]

[1] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid and Hervé Jégou. Spreading vectors for similarity search. ICLR’19
[2] Julieta Martinez, Shobhit Zakhmi, Holger H. Hoos, and James J. Little. LSQ++: lower running time and higher recall in multi-codebook 
quantization, ECCV’2018

Slide by S. Morozov

AI and Similarity Search

Representation Learning

Slide by S. Morozov



AI and Similarity Search

Representation Learning for Data Series

• learn compact similarity-preserving representations

• use those for

▫ similarity search

▫ classification

▫ clustering

▫ …
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AI and Similarity Search

Representation Learning for Data Series

• GRAIL

▫ learns representations that preserve a user-defined comparison function

▫ for a given comparison function:

 extracts landmark series 

using clustering

 optimizes parameters

 exploits approximations 

for kernel methods to 

construct representations 

by expressing each series 

as a combination of the 

landmark series
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AI and Similarity Search

Representation Learning for Data Series

• GRAIL

▫ uses the learned representations for querying, classification, clustering, … 
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AI and Similarity Search

Representation Learning for Data Series

• Series Approximation Network (SEAnet)

▫ novel autoencoder architecture 

▫ learns deep embedding approximations

▫ uses those for similarity search

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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AI and Similarity Search

Representation Learning for Data Series

• Series Approximation Network (SEAnet)

▫ novel autoencoder architecture 

▫ learns deep embedding approximations

▫ uses those for similarity search
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AI and Similarity Search

Representation Learning for Data Series

• Series Approximation Network (SEAnet)

▫ novel autoencoder architecture 

▫ learns deep embedding approximations

▫ uses those for similarity search
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AI and Similarity Search

Representation Learning for Data Series

• Series Approximation Network (SEAnet)

▫ is an exponentially dilated ResNet architecture + Sum of Squares regularization

▫ minimizes 

 reconstruction error 

 difference between distance of two vectors in embedded space and distance in original 
space 

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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AI and Similarity Search

Representation Learning for Data Series

• Series Approximation Network (SEAnet)

▫ is an exponentially dilated ResNet architecture + Sum of Squares regularization

▫ minimizes 

 reconstruction error 

 difference between distance of two vectors in embedded space and distance in original 
space 
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• Search and Indexing

▫ Problem:
 High-d vector similarity search is hard

 Massive datasets and high dimensionality in 100s-1000s

 Sophisticated indexing structures and search algorithms

▫ Solutions:
 Learned Indexes

 Improve search efficiency using deep learning

 Indexing for learned embeddings

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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• Learned Indexes:
▫ Main idea: replace an index with a learned model

 One-dimensional learned indexes
▫ Seminal work: The Case for Learned Indexes

 Multi-dimensional indexes
▫ Exhaustive tutorial on this topic at SIGSPATIAL’20: 

https://www.cs.purdue.edu/homes/aref/learned-indexes-tutorial.html

 Some initial attempts for similarity search

▫ Main challenges for multi-dimensional indexes:
 How to sort the data?

 How to correct prediction errors?

 Which ML model to choose?

 How to store the data?
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Kraska-
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• focus

• updatable or static

• fixed data layout or arranged by 

model

• data type

• model structure

RMI[22]One-d

Multi-d
Immutable

Mutable

Dynamic Data 

Layout

Fixed Data 

Layout

One-d

Multi-d

One-d

Multi-d

ALEX[4]

CDF Shop[29]

Drift Model[13]IFB-Tree[14]

Pavo[44]

SageDB[21] ZM-index[41] ML-index[3]

LISA[24]

Hands-off[16]

Qd-tree[45]Flood[31] Case[32

]

Learned BF [27]

PGM[7]MADEX[15] Acc

B+ Tree[26]

Tsunami[5]

RS[20]

SpatioTemporal Trie with HMM

Sequential

Handwritten Trie[22]

Music Retrieval[46] R-Tree with HMM

Benchmarking One-d SOSD[19] Benchmark[28]

ASLM[25]

Hybrid-O[34]

SIndex[42]

SoftFunctional[11]

LEARNED 

INDEX

Learning the 

Index

Indexing 

Learned 

Models

RSMI[33]

Doraemon[38] AIDEL[23]XIndex[39] BF-Sandwich[30]Fiting-tree[10]
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• Learned Indexes:

Publications

Al-Mamun-
SIGSPATIAL’20
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Slide from W. Aref

• Learned Indexes for similarity search:

▫ The ML-Index: A multidimensional, learned index for  
point, range and NN queries

Publications

Davitkova-
EDBT’20

ML-Index:

• Z/Morton order cannot be easily learned by ML 
models.

• Multi-dimensional data should be sorted in an 
order that can be easily learned.

• Partition and transform the data into one-
dimensional values based on distribution-aware 
reference points.

• Combines the scaled ordering with ML models

Core Idea

Offset Method:

• m reference points Oi are chosen each can be thought as a centroid of the data 
partition Pi.

• The closest reference points of Oi are used to build the partition Pi.

• The minimal distance of a point to the reference points is dl

• Scaled value = offseti + dist(Oi, dl) 

• For reference points O1, O2,…Om and their partitions P1,P2,…Pm,

• r: The maximal distance from Oj to the points in partition Pj

Efficient Scaling

O2
O1

Q

Key = dist(O1,Q) + offset1

ML Model

Predicted 
positionPosition - error

Position + error

3. Local search

dist(O1,Q)

1. Find the closest reference point 
Oi and calculate the scaled value.

2.Model (key)🡪 predicted 
position.

Query Processing (Point) 

Echihabi, Zoumpatianos, Palpanas - VLDB 2021
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• Learned Indexes for similarity search:

▫ The ML-Index: A multidimensional, learned index for  
point, range and NN queries

Publications

Davitkova-
EDBT’20

ML-Index:

• Z/Morton order cannot be easily learned by ML 
models.

• Multi-dimensional data should be sorted in an 
order that can be easily learned.

• Partition and transform the data into one-
dimensional values based on distribution-aware 
reference points.

• Combines the scaled ordering with ML models

Core Idea

Offset Method:

• m reference points Oi are chosen each can be thought as a centroid of the data 
partition Pi.

• The closest reference points of Oi are used to build the partition Pi.

• The minimal distance of a point to the reference points is dl

• Scaled value = offseti + dist(Oi, dl) 

• For reference points O1, O2,…Om and their partitions P1,P2,…Pm,

• r: The maximal distance from Oj to the points in partition Pj

Efficient Scaling

O2
O1

Q

Key = dist(O1,Q) + offset1

ML Model

Predicted 
positionPosition - error

Position + error

3. Local search

dist(O1,Q)

1. Find the closest reference point 
Oi and calculate the scaled value.

2.Model (key)🡪 predicted 
position.

Query Processing (Point) 
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• Selecting grid resolution for Z-order for learned multi-dimensional index (e.g. ZM-Index[41]) is difficult:

• Large cells

• More false positives due to many points per cell

• Small cells

• Hard to learn due to uneven gaps in Cumulative Distribution Function (CDF)

Motivation

Original 

Space

Rank 

Space

Easily 

Learnable

CDF

• Spatial index based on ordering the data points by a rank space-based transformation*

• Simplify the indexing functions to be learned 

• M(search keys)         disk block Ids (location)

• For scaling to large datasets, proposes: 

• Introduce a Recursive Spatial Model Index (RSMI) (in lieu of RMI)

• Support point, window, and kNN queries

• Support updates

Core Idea

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

• Learned Indexes for similarity search:

▫ Effectively Learning Spatial Indices

Publications
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• Learned Indexes for similarity search:

▫ Effectively Learning Spatial Indices

• Recursive Spatial Model Index (RSMI):

• Recursively partitions a dataset

• Partitioning is learned over the distribution of data

• Steps:

• Initially distribute the data into equal sized partitions 

• Use a Space Filling Curve (SFC) to assign Ids to partitions

• Learn the partition Ids using a model M0,0

• Rearrange the data based on the prediction of  M0,0 

• Recursively repartition

 Until each partition can be learned with a simple model

308

0

2 3

p1 p2

p3 p4

1

Point p1 p2 p3 p4

Initial partition Id 0 1 2 3

Model predicted Id 0 1 3 3

Learned partition Id 0 1 3 3

RSMI

Discussion

• Window and kNN query results are highly accurate but not exact.

• i.e., over 87% across a variety of settings

• Separate mechanism has been proposed for exact answer.

• Does not support query for spatial objects with non-zero extent

Publications

Qi-PVLDB’20
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AI and Similarity Search

Search and Indexing

• Indexing Deep Network Embeddings (DNE)

Extensions to data series indexes outperform competitors
sequences

text
images

video
graphs

... 

deep embeddings
high-d vectors learned using a DNN
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sequences
text

images
video

graphs
... 

deep embeddings
high-d vectors learned using a DNN

AI and Similarity Search

Search and Indexing

• Indexing Deep Network Embeddings (DNE)

▫ Data series techniques provide effective/scalable similarity search over 
DNE

▫ They outperform hashing-based, quantization-based inverted indexes 
and kNN graphs on many scenarios

Extensions to data series indexes outperform competitors





Challenges and Open Problems

• we are still far from having solved the problem

• several challenges remain in terms of 

▫ usability, ease of use

▫ scalability, distribution

▫ benchmarking

• these challenges derive from modern data science 
applications
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Massive High-d Data Collections
314

Human Genome project

130 TB

NASA’s Solar Observatory 

1.5 TB per day

Large Synoptic Survey 
Telescope (2019)

~30 TB per night

data center and
services monitoring

2B data series
4M points/sec

Publications

Palpanas-
SIGREC’19
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Previous Studies

316

• chosen from the data (with/without noise)

evaluate performance of indexing methods using random queries
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Previous Studies
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With or without noise

noise
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Previous Workloads
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Most previous workloads are skewed to easy queries

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

DNA

64 256 1024

Publications

Echihabi, Zoumpatianos, Palpanas - VLDB 2021

Zoumbatianos
KDD’15

Zoumbatianos
TKDE’18



Previous Workloads

320

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

DNA

EEG

R
an

d
o

m
w

al
k

64 256 1024

Most previous workloads are skewed to easy queries
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Benchmark Workloads
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If all queries are easy 
all indexes look good

If all queries are hard 
all indexes look bad

need methods for generating queries of varying hardness
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Distribute points such that:
The worse a summarization
the more data it checks

Equal number of points in every “zone”

Q
1

Densification Method:

Equi-densification

323

New points

Original points
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Summary

326

Theoretical background
Methodology for characterizing 
NN queries for data series indexes

Nearest neighbor query workload generator
Designed to stress-test data series indexes 
at varying levels of difficulty

Pros:

Time complexity
Need new approach to scale to very large datasets

Cons:
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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• interaction with users offers new opportunities
▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the 
way

• several exciting research problems in intersection of 
visualization and data management
▫ frontend: HCI/visualizations for querying/results display

▫ backend: efficiently supporting these operations
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Need for

Parallelization/Distribution

• further scale-up and scale-out possible!
▫ techniques inherently parallelizable

 across cores, across machines

• need to 
▫ propose methods for concurrent query answering 

▫ combine multi-core and distributed methods 

▫ examine FPGA and NVM technologies

• more involved solutions required when optimizing for energy
▫ reducing execution time is relatively easy

▫ minimizing total work (energy) is more challenging
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing high-d vectors

▫ different representations for different high-d data types

▫ eg, autoencoders can learn efficient data series summaries
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Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing high-d vectors

▫ different representations for different high-d data types

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures

▫ learn an index for similarity search
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Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing high-d vectors

▫ different representations for different high-d data types

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures

▫ learn an index for similarity search

• deep learning for query optimization

▫ search space is vast

▫ learn optimization function
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Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing high-d vectors

▫ different representations for different high-d data types

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures

▫ learn an index for similarity search

• deep learning for query optimization

▫ search space is vast

▫ learn optimization function
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• learning data distributions
• answer approximate aggregate queries

• learning cardinality estimation
• estimate query answering cost
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Connections to Deep Learning

• data series indexing for deep embeddings
▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing high-d vectors
▫ different representations for different high-d data types

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures
▫ learn an index for similarity search

• deep learning for query optimization
▫ search space is vast

▫ learn optimization function

• dimensionality of high-d vectors and overall dataset size are major 
challenges!
▫ transfer learning to play an important role
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Overall Conclusions

• High-d data is a very common data type

▫ across several different domains and applications

• Complex analytics on high-d data are challenging

▫ have very high complexity
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Overall Conclusions

• High-d data is a very common data type

▫ across several different domains and applications

• Complex analytics on high-d data are challenging

▫ have very high complexity

• Data series indexing techniques provide state-of-the-art performance for 

▫ exact similarity search

▫ approximate similarity search with quality guarantees

▫ disk-based datasets
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Overall Conclusions

• High-d data is a very common data type

▫ across several different domains and applications

• Complex analytics on high-d data are challenging

▫ have very high complexity

• Data series indexing techniques provide state-of-the-art performance for 

▫ exact similarity search

▫ approximate similarity search with quality guarantees

▫ disk-based datasets

• Several exciting research opportunities

▫ parallel, progressive, and deep learning techniques can lead to further 
performance improvements
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thank you!

google: Karima Echihabi

Kostas Zoumpatianos

Themis Palpanas

visit: http://nestordb.com
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