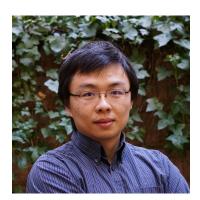
Managing ML Pipelines: Feature Stores and the Coming Wave of Embedding Ecosystems

VLDB 2021

Speakers

Laurel Orr Stanford

Atindriyo Sanyal Uber Al



Xiao Ling Apple

Karan Goel

Stanford

Megan Leszczynski Stanford

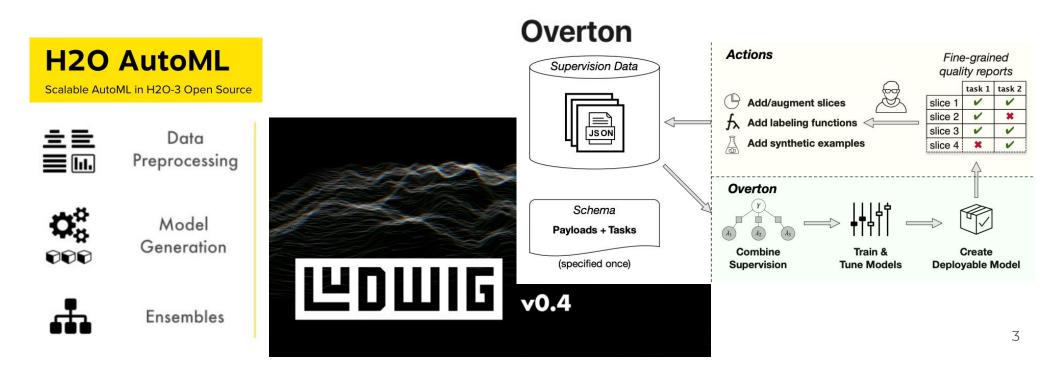
Modern ML Pipelines

ML pipelines help engineers build and deploy models

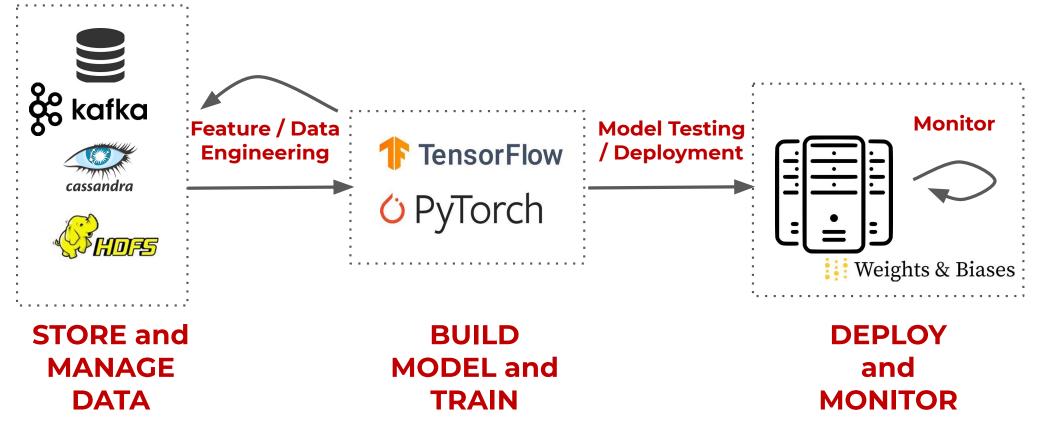
Standardization

Reproducibility

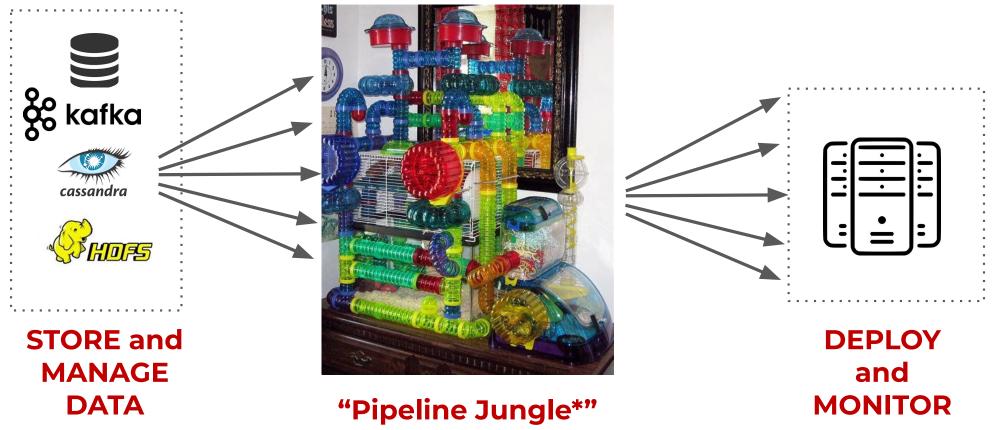
Easier to Maintain



Engineer Workflow Today



Engineer Workflow of Yesteryear (< 2017-8)



*Sculley, David, et al. "Hidden technical debt in machine learning systems." *Neurips* (2015)

The "Pipeline Jungle" Experience

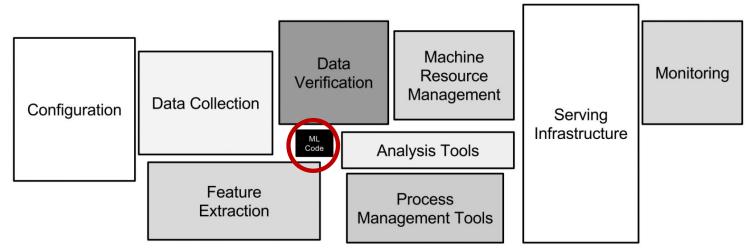
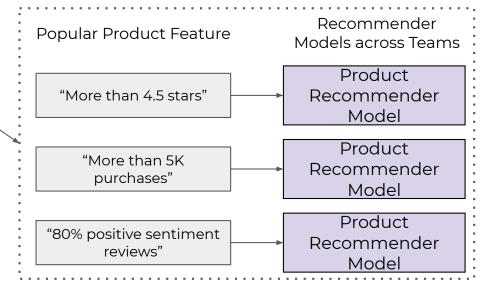


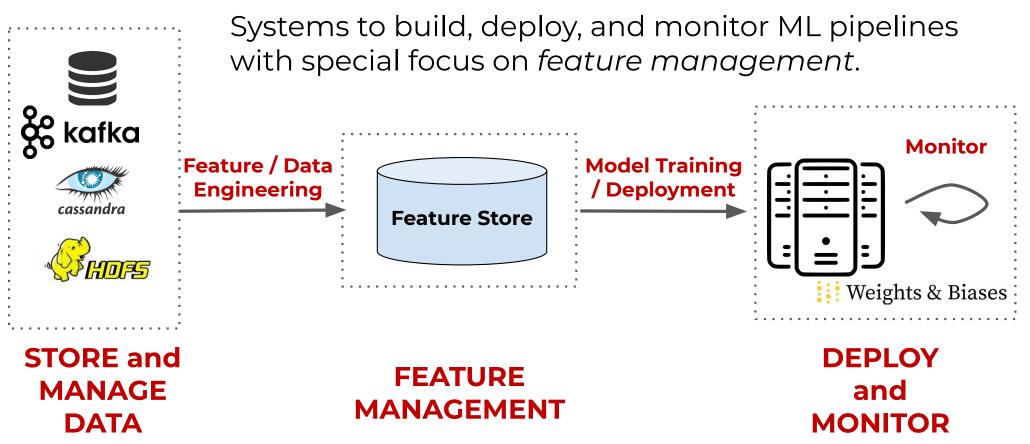
Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

The "Pipeline Jungle" Experience

The challenges to deploying a model:

- One-off feature definitions
- Lack of reproducibility
- Inconsistent storage
- No standard evaluations and testing
- Difficult to detect and recover from errors



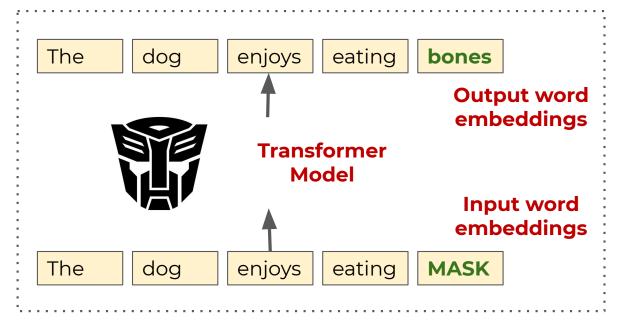


Enter Self-Supervision

Paradigm where models learn embedding representations of underlying training data *without* needed manually labels.

Self-Supervision Example: Transformers and MLM

Learn word embeddings by train a language model to predict a masked word in a given context.

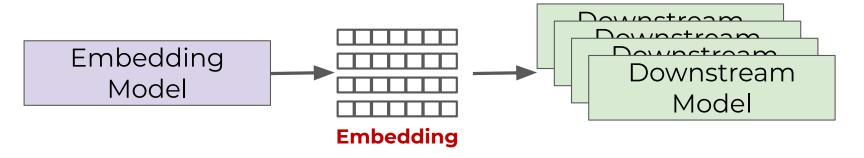


Word embeddings encode contextual information.

Enter Self-Supervision

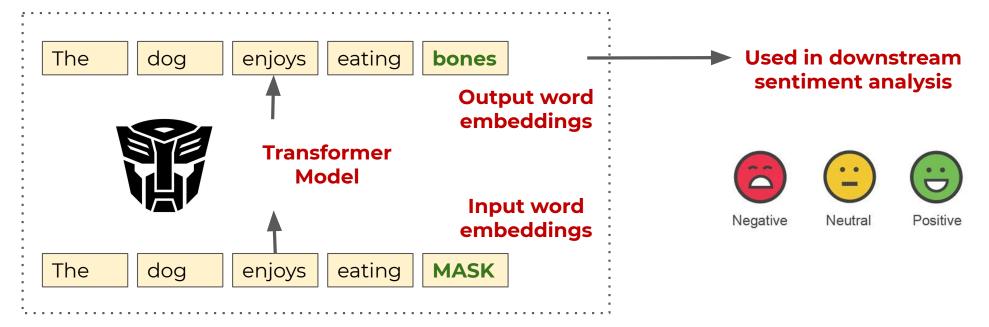
Paradigm where models learn embedding representations of the underlying training data *without* manual labels.

Embeddings are then used in downstream models.



Self-Supervision Example: Transformers

Learn word embeddings by train a language model to predict a masked word in a given context.

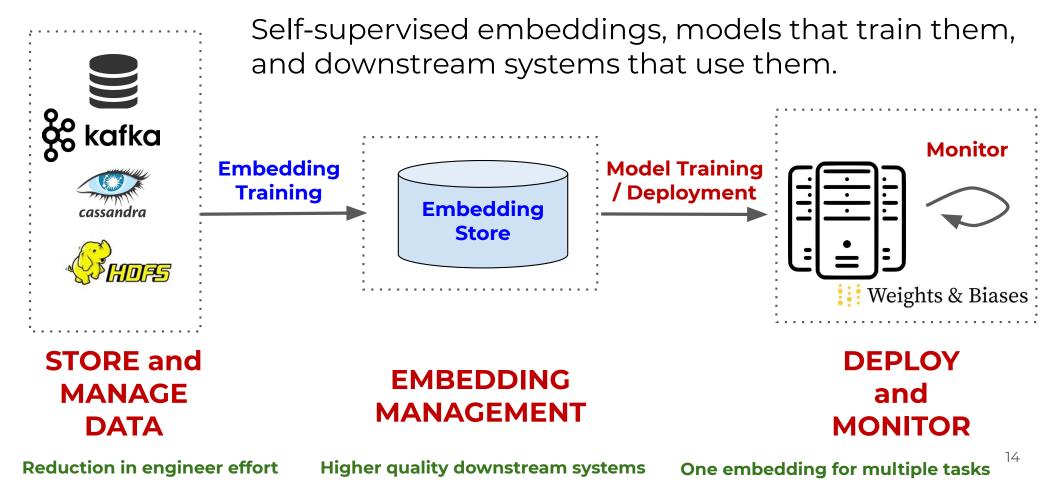


Word embeddings encode contextual information.

& kafka **Monitor Model Training** Feature / Data Engineering / Deployment cassandra ٠ **Feature Store** HOFS Weights & Biases DEPLOY **STORE and FEATURE** MANAGE and MANAGEMENT **MONITOR** DATA

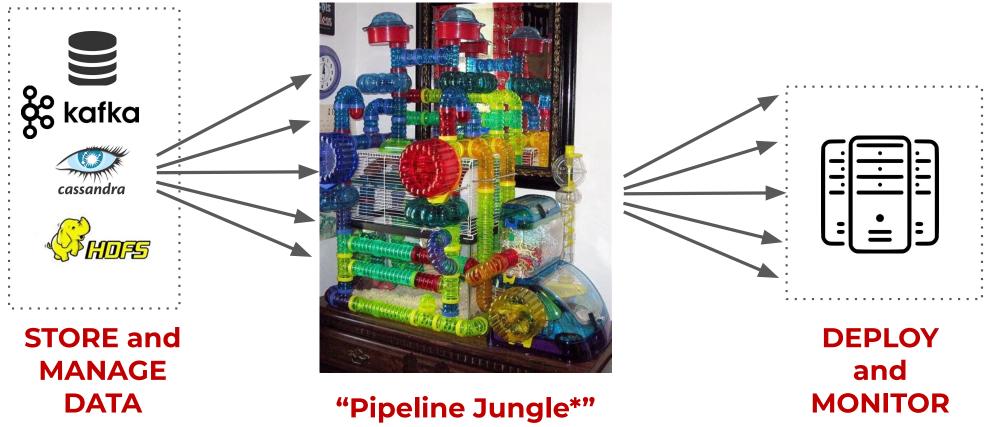
Recall Feature Store Solution

Embedding Ecosystems



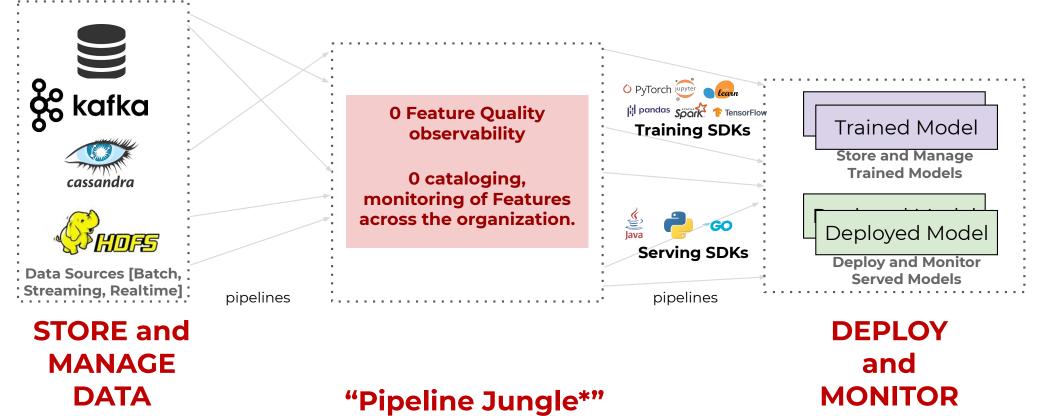
Feature Stores

Engineer Workflow of Yesteryear (< 2017-8)

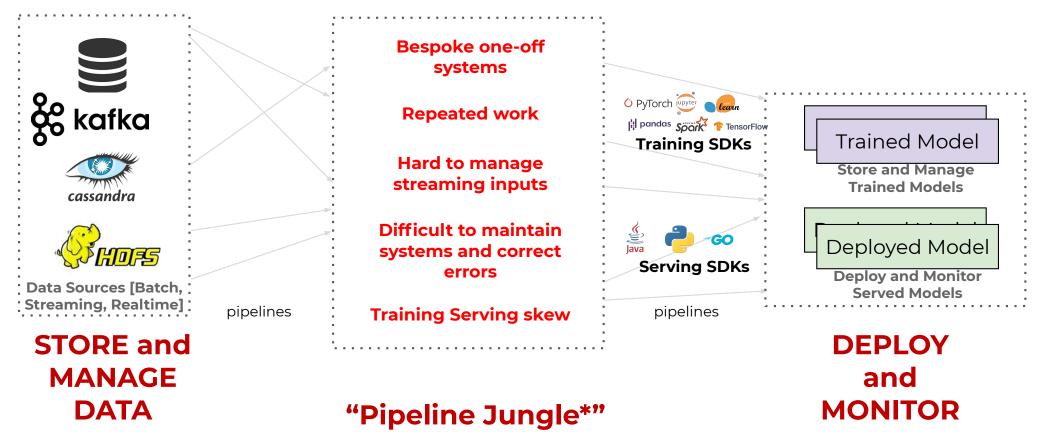


*Sculley, David, et al. "Hidden technical debt in machine learning systems." *Neurips* (2015)

Lack of Feature Management



Lack of Feature Management



18

Lack of Feature Management

Days/Weeks to make data ML ready

- Materializing Features from **various data sources**.
- Duplicating code while materializing in training & serving
- **No guarantees** of trainingserving parity

Near 0 monitoring of Features

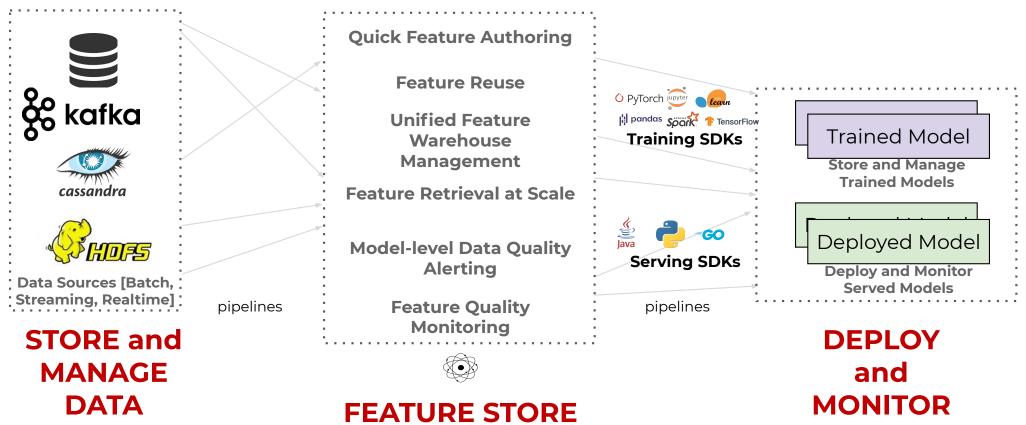
- No Feature health metrics out of the box (due to the various sources problem)
- No online-offline parity monitoring, leading to models performing poorly
- No feature drift monitoring
- No idea about Feature impact on a model

High latency, unreliable Feature serving in production models at scale

- **Poor Model latencies** leading to bad user experience.
- No dedicated dynamic resource allocation for feature engineering
- Multiple RPC calls at high throughputs to fetch features dramatically increasing latencies

19

Feature Stores



Use case - ETA of an Uber EATS Order

Key ML Features

- How large is the order? (order_size)
- How busy is the restaurant? (n_meal)
- How quick is the restaurant? (*meal_preptime*)
- How busy is the traffic? (n_busy)

Good morning Sunshine ■ • \$0.99 Delivery Fee • 35-45 min

Cafe de Casa (San Francisco) ■ • \$1.99 Delivery Fee • 30-40 min

Palette Feature Store: Workflow

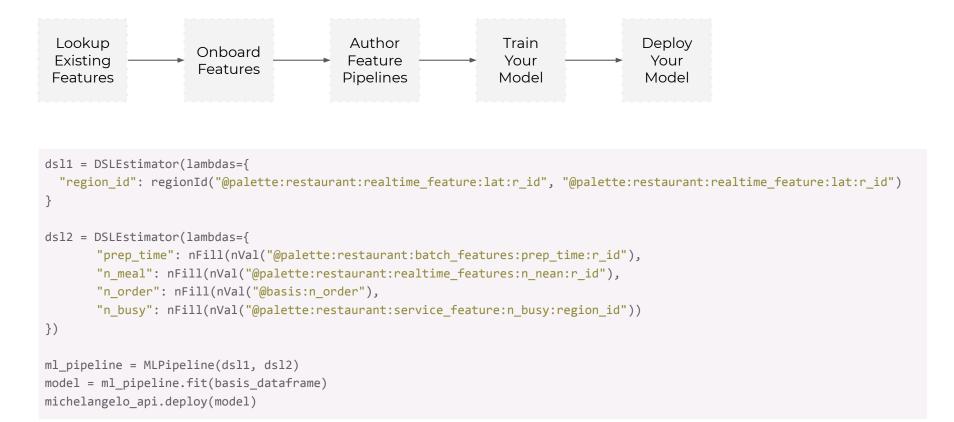
Lookup Existing Features

- Search for features
 - by feature_name
 - by entity (e.g. eater_features)
 - by type (e.g. categorical_features)
 - by models (e.g. features used in eta_prediction_model) or any combination ...

Palette Feature Store: Workflow

- Onboard Features and Author Pipelines
 - Metadata driven onboarding process
 - Feature Pipelines automatically created
 - Immediately available for consumption during Training & Inferencing

Palette Feature Store: Workflow



Palette Feature Store: Workflow

- Monitor Feature Metrics
 - Training-Serving **Skew**
 - Feature **Drift**
 - Feature **Importance<>Drift** correlation
 - Feature Quality (Freshness, Consistency, Null Rate)

Feature Store (Palette) Lifecycle

Feature Preparation

Batch & Streaming ETLs

Feature Monitoring

Data Quality reporting

Feature Storage

Historical & Near Real-Time Curated & Crowd-sourced Metadata Scalable offline access Scalable online access Online/Offline data parity

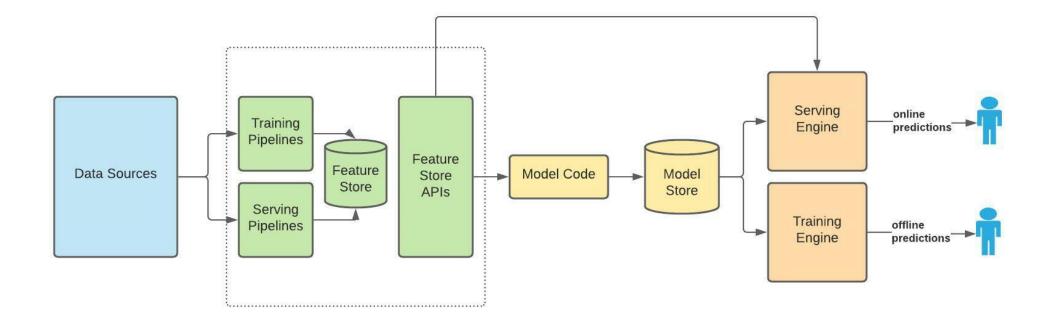
Feature Discovery

Sharing across Models Automatic feature selection

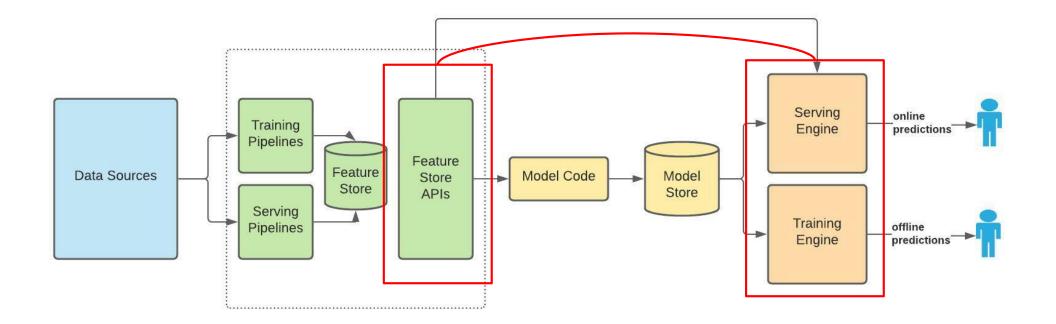
Feature Transforms

Model specific transforms

Feature Stores in an End to End ML Platform



Feature Stores in an End to End ML Platform



Palette Feature Store Organization

Organized as entity : feature_group : feature : join_key

e.g. restaurant : order_history : meal_preptime : restaurant_uuid

- Feature Store Abstractions:
 - Entity: A Top Level Business Unit (e.g. eater, courier, restaurant)
 - **Feature Group**: Group of Features commonly used together (e.g. **order_history**)
 - Feature: The Feature (e.g. meal_preptime, n_meal, sum_orders_1week)
 - Entity Key: The UUIDs of the entities (e.g. eater_uuid, restaurant_uuid)
- Bring your join keys or UUIDs
- Join together cross-entity Feature sets with minimal code
- **Train** on historical Feature values
- Serve the latest, most accurate values of Features at Low Latency
- Backed by a dual datastore system (training & serving)
- Get Training Serving parity out of the box

Feature Types in Palette (Michelangelo)

• 💾 Batch Features:

Features calibrated on **historical data** Generated via offline **batch jobs Auto dispersed** for model inferencing E.g. meal_preptime (average prep time of historical orders)

• 🗱 Near Real Time Features:

Features calibrated on **streaming data** Generated via **near real-time streaming jobs** (Flink, AthenaX) Auto dispersed for model training E.g. n_meal (how busy is the restaurant)

• RPC Features: Features retrieved via 3P APIs

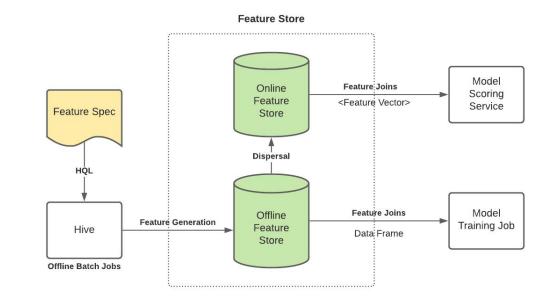
Features calibrated on 3P API calls Calculated at run time and served to models directly Auto dispersed for model training

E.g. location_geohash (current geohash location of the courier)

30

Computing Batch Features

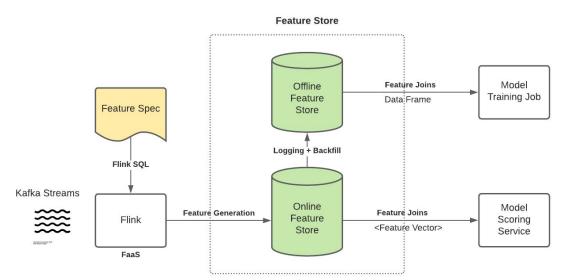
- Computed using Historical Data
- Not time sensitive
- Ingested from Hive Queries or Spark Jobs
- Aggregates over days/weeks
- E.g. meal_preptime



Computing Near Real Time Features

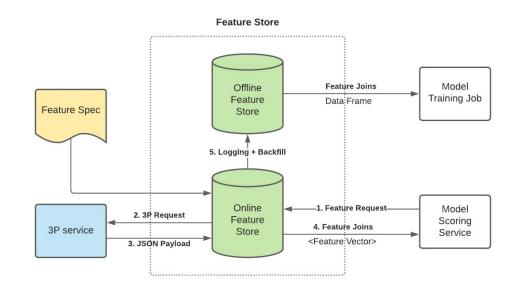
- Signals generated **seconds ago**
- Write Flink SQL to perform real time aggregations
- Materialize to the online store
- Auto ETL and Backfill to the offline store
- E.g. n_busy (How busy is the restaurant)
 - Kafka event streams
 - Perform **Real-Time**

aggregations



Computing RPC Features

- Signals generated **in real-time** •
- Make RPC calls to Fetch Features • behind the scenes
- Auto ETL and Backfill to the offline store
- E.g. lat/long: •
 - Fetched via HTTP calls 0



Feature Extraction & Transformation

- Michelangelo Transformer
 - transform() and scoreInstance()
 - ML Readable / Writable
 - Extension of the Spark Transformer Framework
 - Parity across Spark and Spark-less environments
 - UDFs / DSLs
 - In-house unit testing framework for parity
- Feature Store APIs as Transformers
 - Feature Engineering as an integral part of the ML Pipeline

Michelangelo Feature Store APIs as Spark Transformers

```
palette_tx1 = PaletteTransformer( {
    "nMeal": "@palette:restaurant:realtime_feature:nMeal:r_id",
    "prep_time": "@palette:restaurant:batch_feature:prep_time:r_id",
    "lat": "@palette:restaurant:realtime_feature:lat:r_id",
    "long": "@palette:restaurant:realtime_feature:long:r_id",
})
```

- Instantiate Palette Transformer with Feature expressions
- Create a pipeline with one or more stages of estimators and transformers
- model = pipeline.fit()
- Evaluate your model via transform()
- Score your model via **scoreInstance()**

➡ DSLs: Feature Manipulation / Imputation

- Write expressions to define Transformations
- Pre-compiled Scala code execution at runtime
- Example Michelangelo code:

```
dsl_est1 = DSLEstimator(lambdas={
    "region_id": regionId("restaurant:fg:lat:r_id", "restaurant:fg:long:r_id")
}
dsl_est2 = DSLEstimator(lambdas={
    "prep_time": nFill(nVal("restaurant:batch_fg:prep_time:r_id"), -1),
    "n_meal": nFill(nVal("restaurant:realtime_fg:n_meal:r_id"), -1),
    "order_size": nVal("basis:order_size"),
    "n_busy": nFill(nVal("restaurant:service_fg:n_busy:region_id"), -1)
})
```

*fg: feature_group

Uber

Uber EATS Transformation Example

Computation Order

- n_meal:restaurant_id -> n_meal
- meal_preptime:restaurant_id -> meal_preptime -> DSL
- busy_scale: restaurant_id -> lat, long -> regionId(lat, long) -> busy_scale

- Id Id -> m	Transformer > n_meal eal_preptime > lat, long	DSL Transformer Lat, long -> region_id	Palette Transformer region_id -> n_busy	DSL Transformer impute(n_meal) impute(meal_preptime)

Training: transform()
Serving: score_instance()

Uber

Feature Store Results & Takeaways

- **Democratized Usage**: 20K+ Features used across 8K+ production models
- Model development times reduced from days to hours
- Multi Modality Support: Batch, Realtime and RPC Features with online and offline parity
- **Offline scalability**: Joins across billions of rows
- Online serving latency: Parallel IO, fast storage with caching
- Feature Transformers: Setup chains of transformations at training/serving time

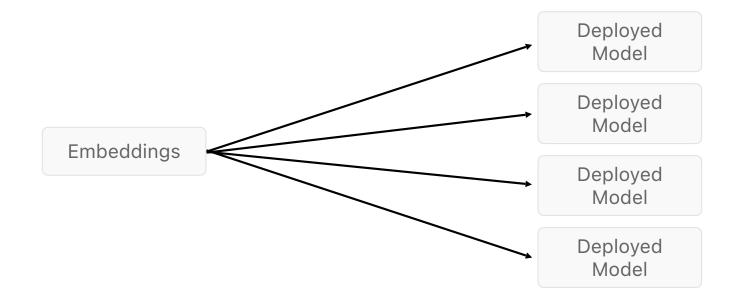
Embedding Ecosystems

Managing ML Pipelines: Feature Stores and the Coming Wave of Embedding Ecosystems

Xiao Ling | VLDB Tutorial 2021

Recap: Self-Supervision Embeddings

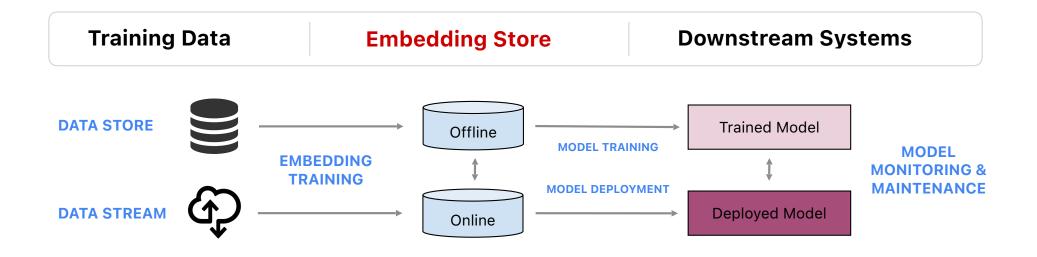
Used in many different downstream systems



Downstream systems require less supervised data and provide a quality lift compared to hand-tuned predecessors.

Recap: Embedding Ecosystems

New age of feature store systems manage pretrained embeddings downstream systems use them as inputs.



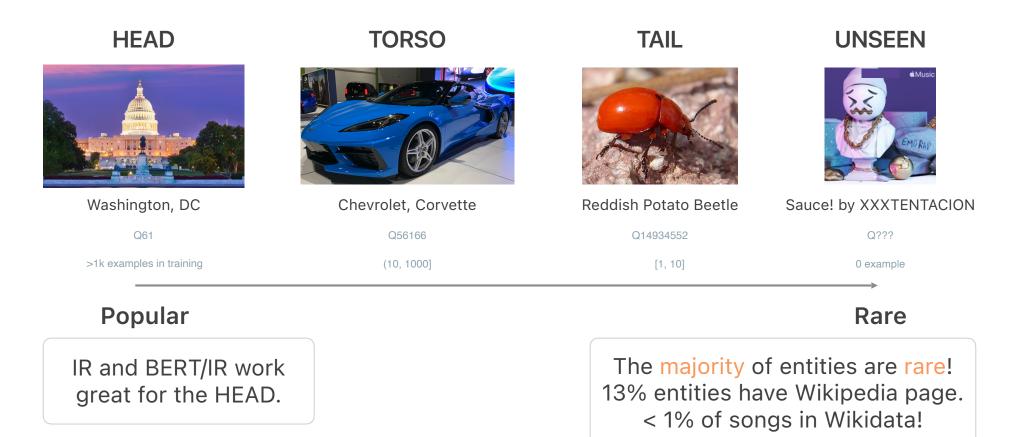
Grounding Use Case: Named Entity Disambiguation

Map "strings to things" in a knowledge base.

Key part of assistant, search, and information extraction

<image>

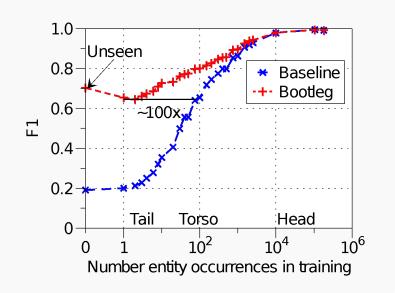
The Long Tail of Entities



#1 Tail Scalability Challenge

Large number of patterns needed to resolve the tail, making it difficult to scale a system that can learn the patterns.

90 million entities in Wikidata -> 90*100 million examples for 60 F1



Subtle reasoning clues are needed for the tail! (+40 F1 points by encoding these reasoning patterns)

Bootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation. Orr et al, CIDR 2021

Entity Embeddings in Downstream Applications

Experiment on the entity linking task in an existing Q&A system

- With and without Bootleg-learned entity embeddings
- The entity embeddings significantly improve F1 by a relative 8% Also, a relative 8% improvement on tail entities!

#2 Memory Usage

Embeddings linearly grow per number of entities

- 128d float32 x 5M ~= 2.4 Gb (English Wikipedia)
 - 128d float32 x 96M ~= 46.08 Gb (Wikidata)

It requires larger and larger servers over time 🤾 🍂

- More computation affects service latency @ Mar Mar

Hard to fit on device!

Memory Usage

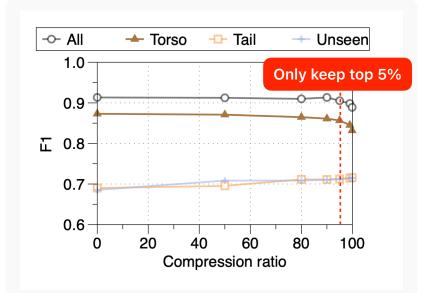
Memory can be saved w/o a big quality sacrifice

Only keep the top k entity embeddings (i.e., compression ratio 100 - k)

- Uses a random UNK entity embedding
- Less memory-heavy signals remain

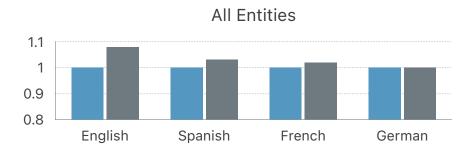
F1 only drops by 0.8 overall

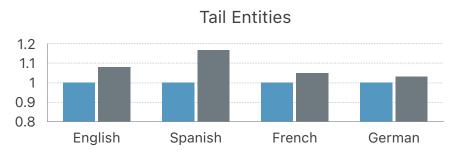
- Memory drops from 5.2GB to 0.3GB!



#3 Embeddings in i18n languages

Embeddings work on other languages





Challenges

- Lack of equally abundant resources in English
- Memory usage increases the size of embeddings by the num of languages

Multilingual Entity Embeddings

Botha et al. 2020 proposed to train multilingual entity embeddings

- Memory usage doesn't grow with the number of languages
- Entity embeddings trained from resources across languages
 - Enabled by a multilingual language model

Entity Linking in 100 Languages. Botha et al., EMNLP 2020

#4 Embedding Stability

Entity embeddings are self-supervised from Wikipedia

- 20k new articles / month

Updating the model is hard

- Retraining entity embeddings takes hours, even days

Also, need to retrain *each* downstream application!

- Previous correct prediction might change!

Apple Confidential–Internal Use Only

retrain

retrain

Deployed Model

Deployed Model

#5 Model Evaluation and Monitoring

Are the embeddings

- sensitive to questions?
- vulnerable to attacks?
- biased to entities popular in one country?, Etc...

Is the downstream application affected by updated embeddings?

- What about 10s or 100s downstream apps?
- How to enable safe regular model updates?

Robustness Gym: Unifying the NLP Evaluation Landscape. Goel et al 2021.

Summary of Challenges

#1 Long-tail of entities

#2 Memory usage

#3 Multi-lingual embeddings

#4 Embedding stability

#5 Model monitoring

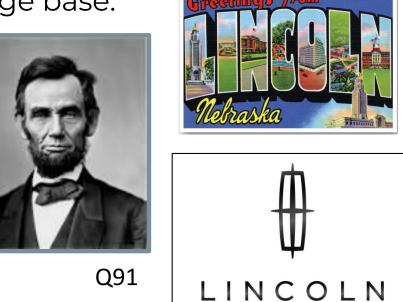
* Bold will be discussed in the following sections

TM and © 2021 Apple Inc. All rights reserved.

Self-Supervised Training Data: The Challenge of the Long Tail

Grounding Use Case: Named Entity Disambiguation

Map "strings to things" in a knowledge base.

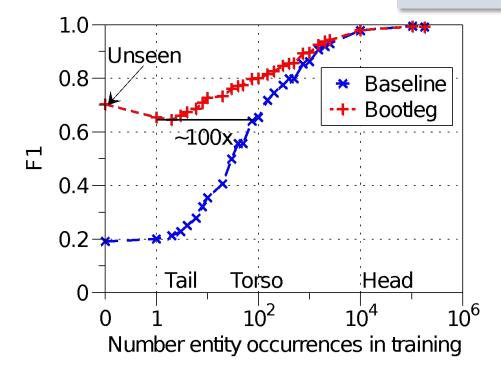


How tall is *Lincoln*?

Key part of assistant, search, and information extraction

Tail Challenge

Impossible to scale the data to memorize all patterns needed for rare entities



Subtle reasoning clues are needed for the tail! (+40 F1 points by encoding these reasoning patterns)

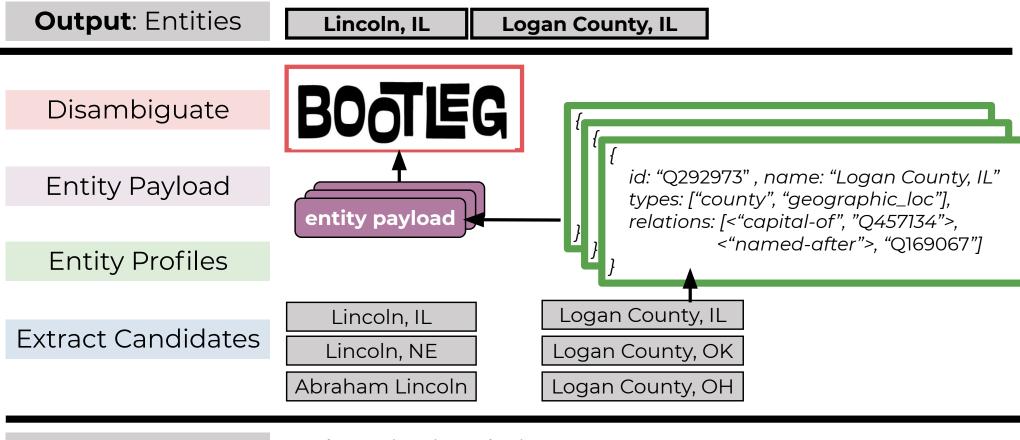
42

Bootleg: Tackles the Tail with Structural Knowledge

Key Idea: reasoning over *type* and *relationship* signals can resolve unseen entities.

Orr, Laurel, et al. "Bootleg: Chasing the tail with self-supervised named entity disambiguation." *arXiv preprint arXiv:2010.10363* (2020).

Disambiguation Inputs and Outputs

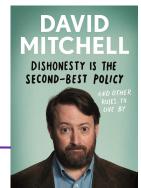


Input: Sentence Where is <u>Lincoln</u> in <u>Logan County</u>?

Reasoning over Relationships

spouses

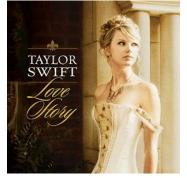
Victoria Mitchell (poker player, writer)



David Mitchell

Victoria Mitchell (runner)

David and Victoria Mitchell added spice to their marriage



Love Story by Taylor Swift

Love Story by Andy Williams

Play Love Story by Williams

Reasoning over Types

How tall is Lincoln?

What is the cheapest Lincoln?

How many people are in Lincoln?

LINCOLN

People have heights, not places or brands

Brands have prices, not places or people

Places have populations, not people or brands

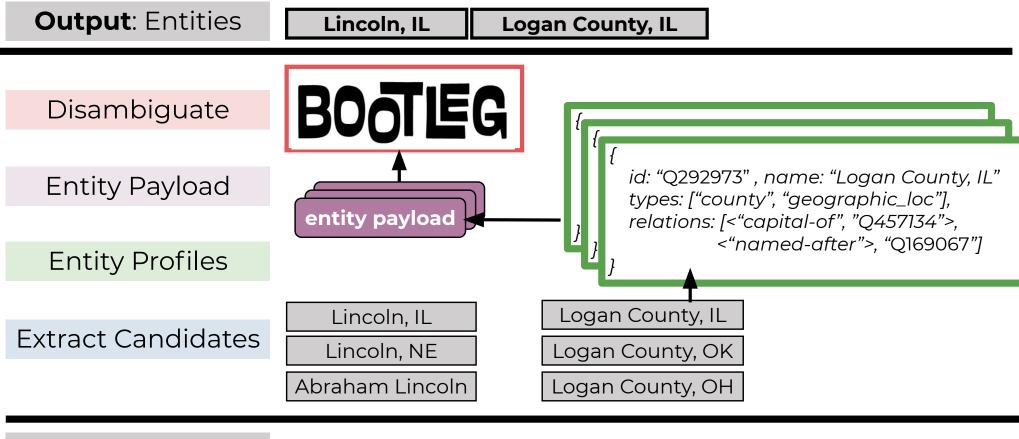
Bootleg: Tackles the Tail with Structural Knowledge

Key Idea: reasoning over *type* and *relationship* signals can resolve unseen entities.

Implementation: use *embeddings* to teach a model to reason over types and relationships.

Orr, Laurel, et al. "Bootleg: Chasing the tail with self-supervised named entity disambiguation." *arXiv preprint arXiv:2010.10363* (2020).

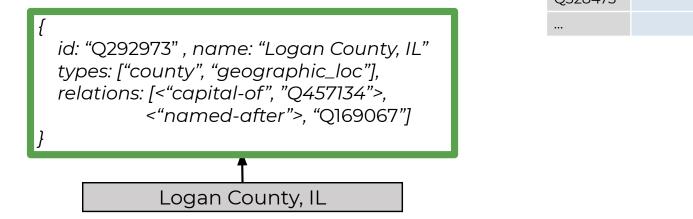
Disambiguation Inputs and Outputs



Input: Sentence Where is <u>Lincoln</u> in <u>Logan County</u>?

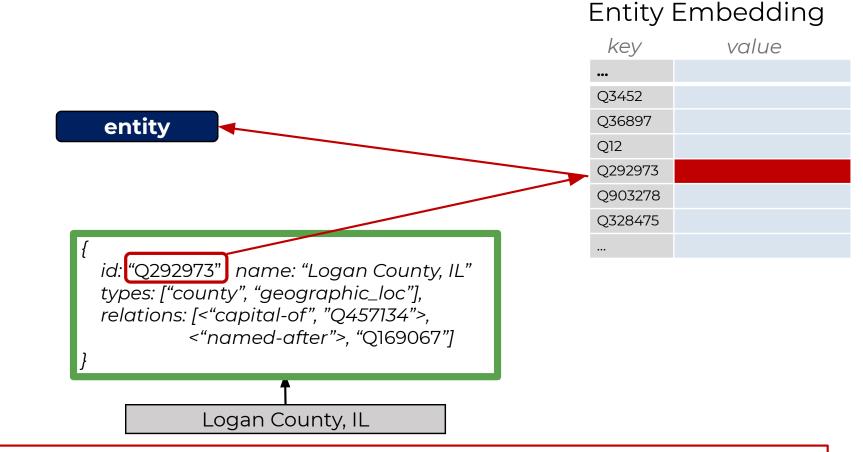
Entity Embedding

key	value
Q3452	
Q36897	
Q12	
Q292973	
Q903278	
Q328475	



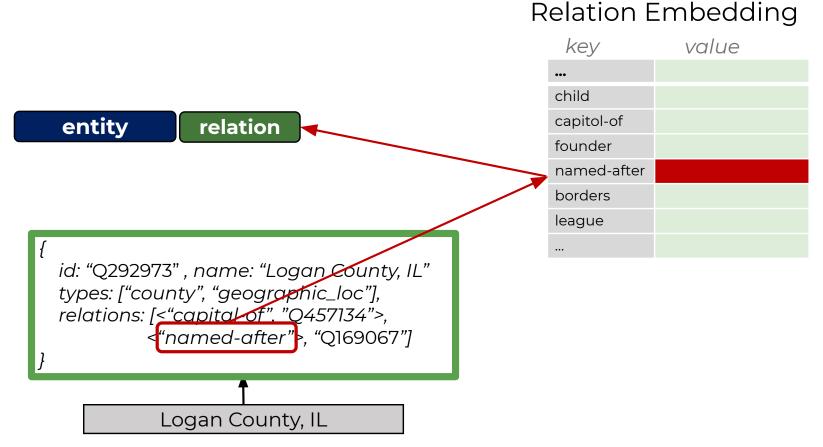
For each candidate, we use the entity profile to extract (learned) embeddings.

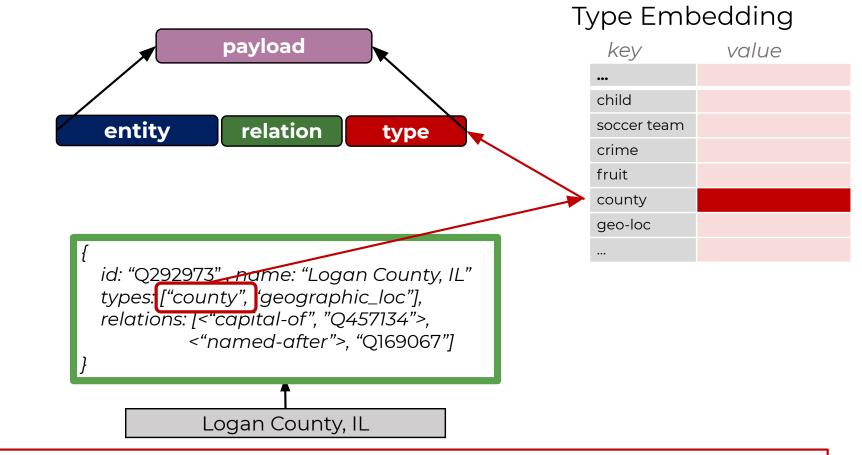
49



50

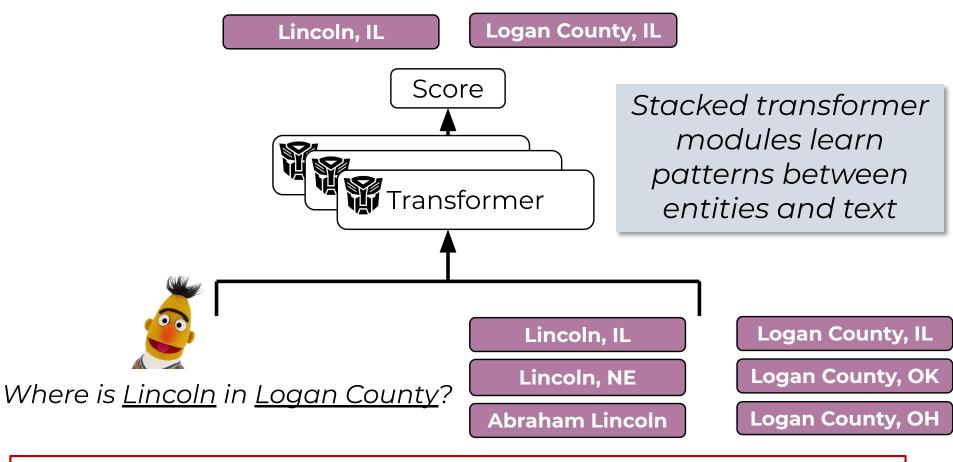
For each candidate, we use the entity profile to extract (learned) embeddings.





The entity payload has embeddings mapping for each structural resource. ⁵²

Bootleg Architecture



Simplest architecture that supports reasoning over types and relations.

Bootleg: Tail Performance

On the head, BERT-based baseline performs ~ 5 F1 points of Bootleg. On the tail, Bootleg outperforms baseline by > 40 F1 points!

Evaluation Set	BERT NED Baseline	Bootleg	# Examples
All	85.9	91.3	4,066K
Torso Entities	79.3	87.3	1,912K
Tail Entities	27.8	69.0	163K
Unseen Entities	18.5	68.5	10K

Performance results on Wikipedia dataset.

Bootleg: Industrial Performance

Included Bootleg embeddings into an Overton production task answering millions of users' factoid queries. We report relative lift.

Evaluation Set	English	Spanish	French	German
All Entities	1.08	1.03	1.02	1.00
Tail Entities	1.08	1.17	1.05	1.03

Using Bootleg Downstream: SoTA on the TACRED Benchmark

<u>Goal: extract the relationship between a subject and object pair.</u>

Mays worked with several other companies aside from Media Enterprises

Micro-Avg. F1 on TACRED Revised test dataset:

Model	Test F1 Score
SpanBERT	78.0
KnowBERT	79.3
Bootleg+SpanBERT	80.2 (SoTA)

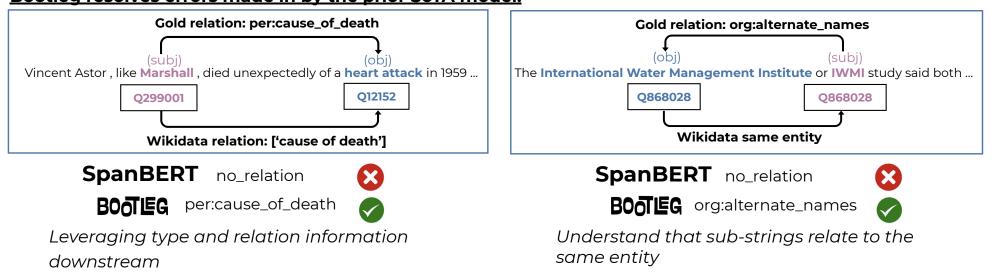
Zhang et al., 2017 and Hennig et al., 2020.

Bootleg resolves errors made in by the prior SoTA model.

Gold relation: per:employee_of

(subject)

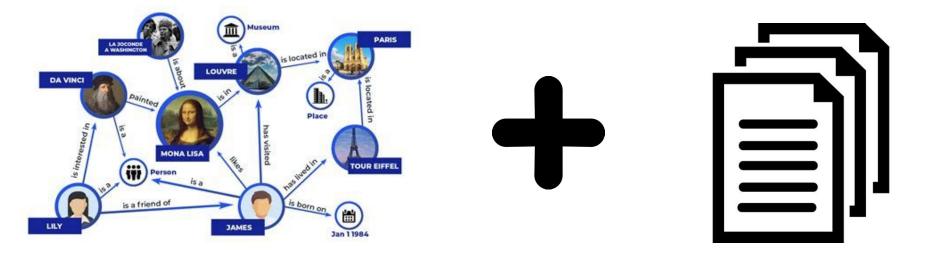
in his career.



(object)

Self-Supervised Data Take Away

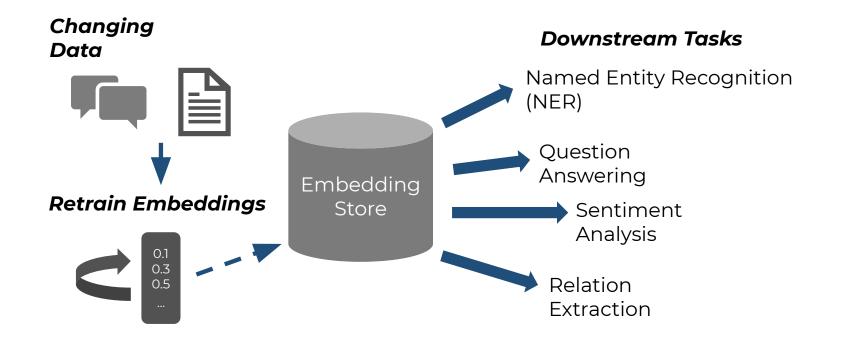
Self-supervised data does not well represent tail distributions -> embeddings may not be high quality for rare entities



Solution: merged unstructured data with structured knowledge that can generalize to the tail.

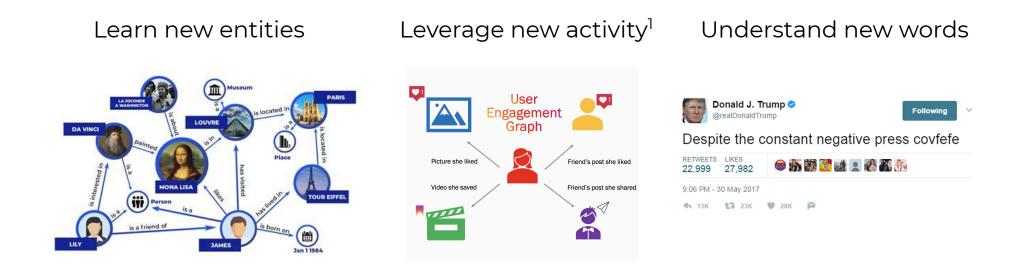
Embedding Management: Stability

Problem Setting: Embedding Store



New embeddings require downstream tasks to be retrained!

Why do embeddings need to be retrained?



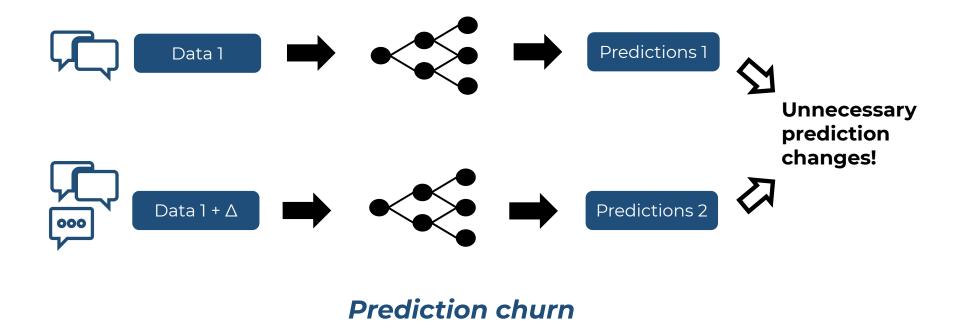
Model freshness is necessary for user satisfaction in many products.

[1] https://about.instagram.com/blog/engineering/designing-a-constrained-exploration-system

Google retrains their app store Google Play models *every day*, and Facebook retrains search models *every hour*.

Baylor et al. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. KDD, 2017.
 Hazelwood et al. Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. HPCA, 2018.

But model training can be unstable...



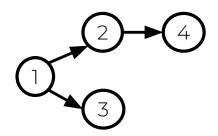
[1] Cormier et al. Launch and Iterate: Reducing Prediction Churn. NeurIPS, 2016.

Challenges of Instability

Debugging

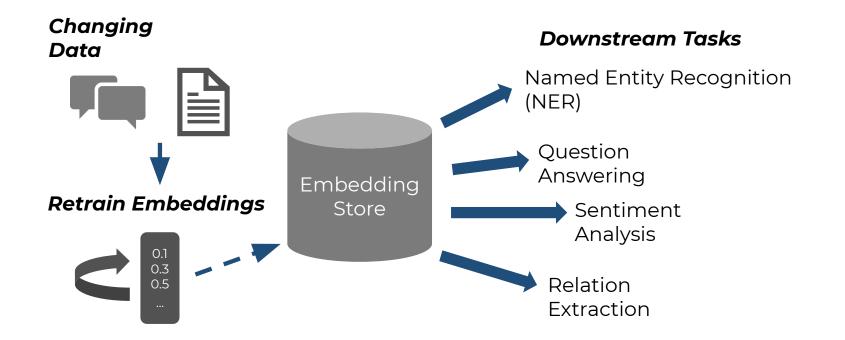
Consistent user-experience

Model dependencies



Research reliability

Problem Setting: Embedding Store

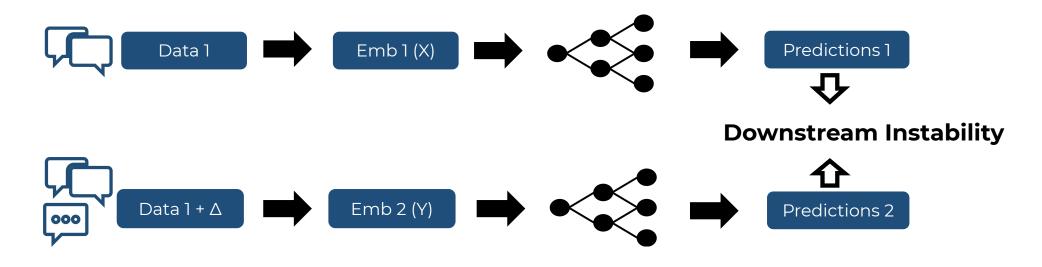


How does the embedding instability propagate to downstream tasks?

Outline

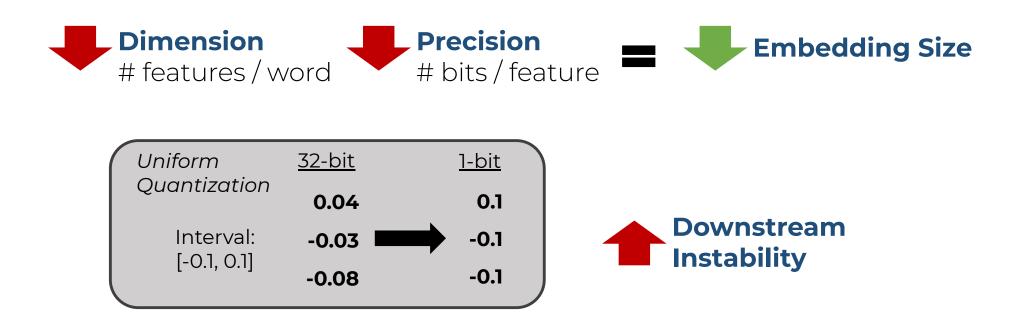
- Downstream instability definition
- Stability-space tradeoff
- Measuring embedding quality with distance measures

Definition: Downstream Instability

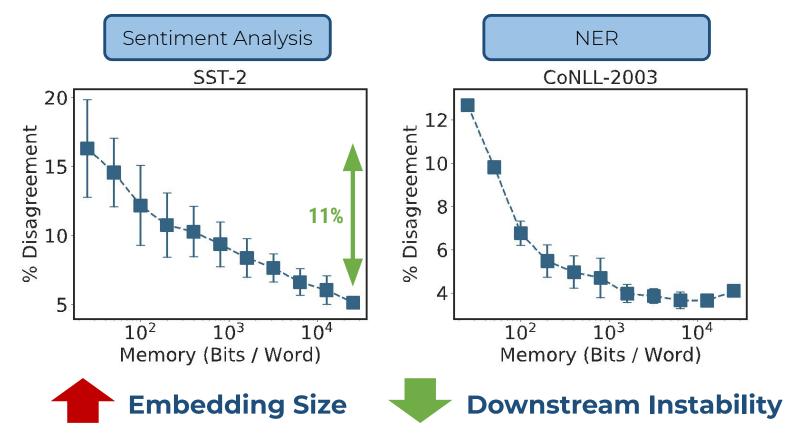


Downstream instability = % prediction disagreement between models trained on a pair of embeddings

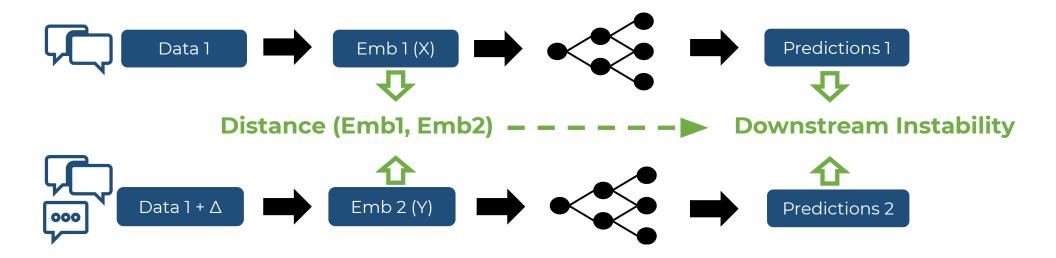
Embedding Hyperparameters that Impact Storage



[1] May et al. On the downstream performance of compressed word embeddings. NeurIPS, 2019.



Goal: Embedding Distance Measure for Instability



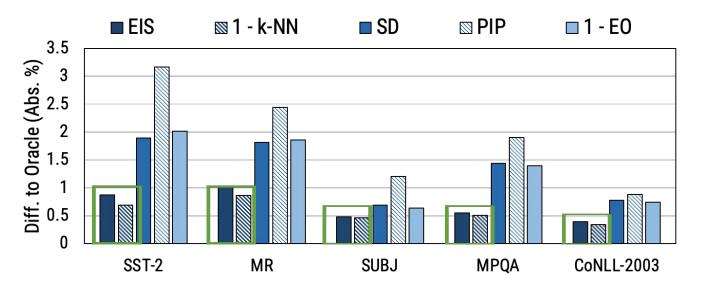
The measure should relate the **distance between the embeddings** to the **downstream instability**.

Embedding Distance Measures

- k-NN measure [1,2,3]
- Semantic displacement (SD) [4]
- PIP loss [5]
- Eigenspace overlap (EO) [6]
- Eigenspace instability measure (EIS) [7]

[1] Hellrich & Hahn, COLING, 2016; [2] Antoniak & Mimno, TACL, 2018; [3] Wendlandt et al., NAACL-HLT, 2018; [4] Hamilton et al., ACL, 2016; [5] Yin & Shen, NeurIPS, 2018; [6] May et al., NeurIPS, 2019; [7] Leszczynski et al., MLSys 2020

Using Embedding Distance Measures to Minimize Downstream Instability



k-NN measure and **theoretically grounded EIS measure** outperform other measures for selecting embeddings to **minimize downstream instability**.

Stability Takeaways

- Defined downstream instability with respect to embeddings
- Stability-space tradeoff (precision, dimension)

- Measuring embedding quality with embedding distance measures
 - EIS and k-NN measures select embeddings with lower downstream instability

Closing the Loop of Model Development: Monitoring and Patching

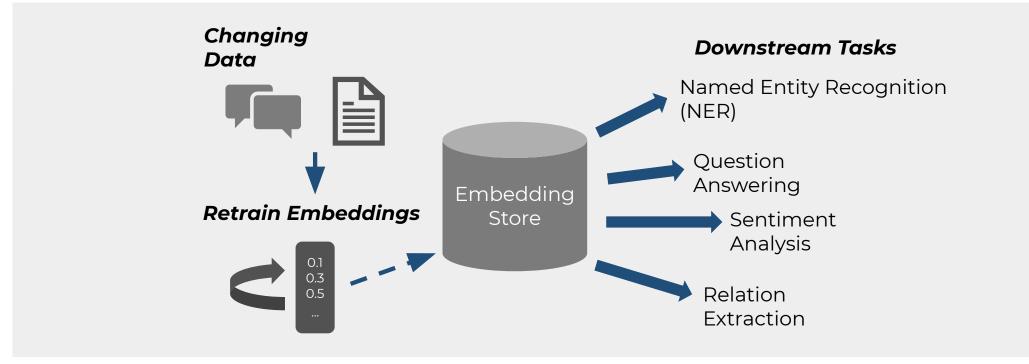
Monitoring and Patching

Embeddings need to be updated: distribution shift, changing needs

Monitor (when to update) Evaluate and track distribution shift

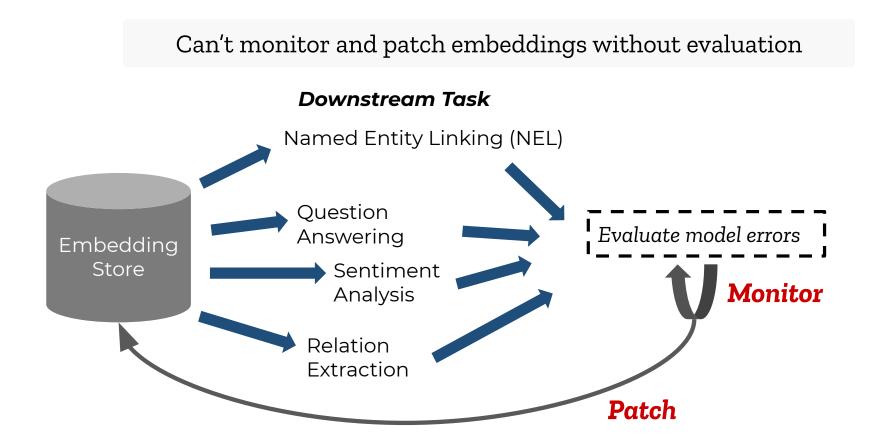
Patch (how to update) Fix bugs and improve performance

Remember: Embedding Store



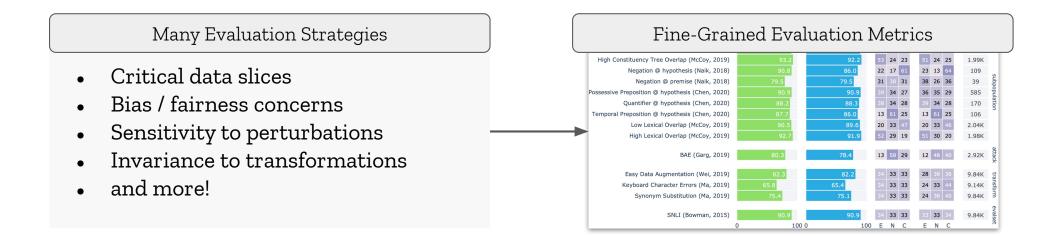
Important: update **embeddings not downstream models** -> changes propagate down to models!

Crucial Bottleneck: Evaluation



Crucial Bottleneck: Evaluation

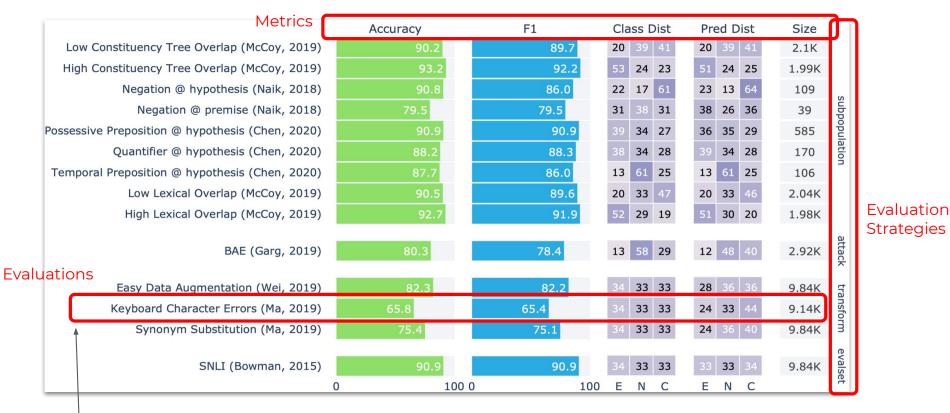
Can't monitor and patch embeddings without evaluation



Shift towards fine-grained evaluation with new tools (e.g. Robustness Gym, Dynabench)

Tool: Robustness Gym 🥠

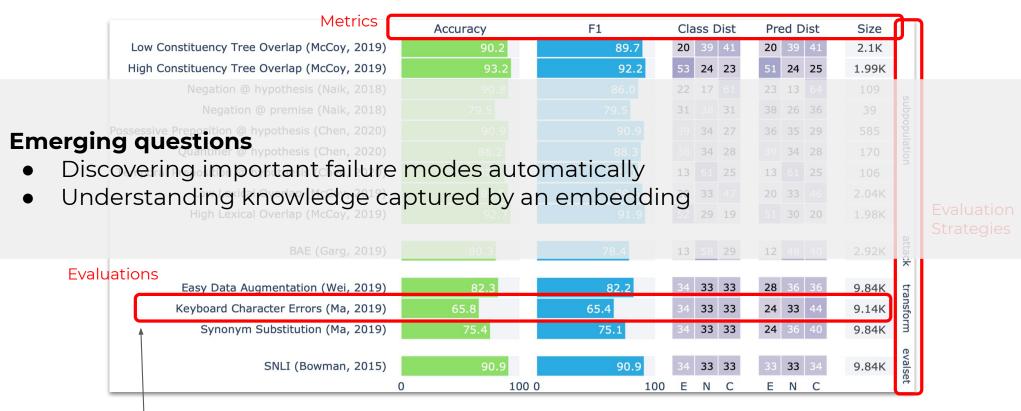
Consolidates different evaluation strategies (slices, transformations) and metrics



Example: BERT embeddings are sensitive to character errors

Robustness Gym: Unifying the NLP Evaluation Landscape. 78 Goel et al. NAACL Demo 2021.

Consolidates many different evaluation types (subpopulations, transformations) and metrics



Example: BERT embeddings are sensitive to character errors

Robustness Gym: Unifying the NLP Evaluation Landscape. 79 Goel et al. NAACL Demo 2021.

Important Evaluation Strategy: Slice-Based Evaluation

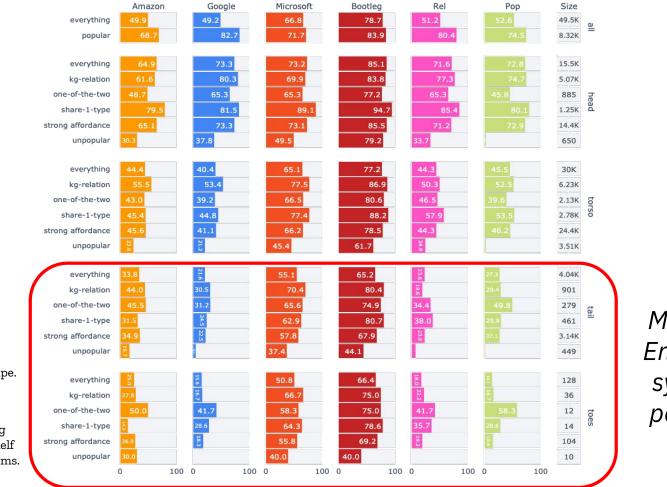
A type of fine-grained evaluation

→ Measure fine-grained performance on critical subpopulations (filtering)

Example:

short passages (< 50 words) in a text dataset

Example: Named Entity Linking

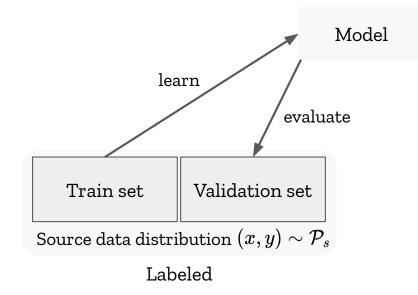


Most Named Entity Linking systems are poor on rare entities

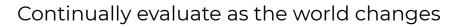
Robustness Gym: Unifying the NLP Evaluation Landscape. NAACL Demo 2021.

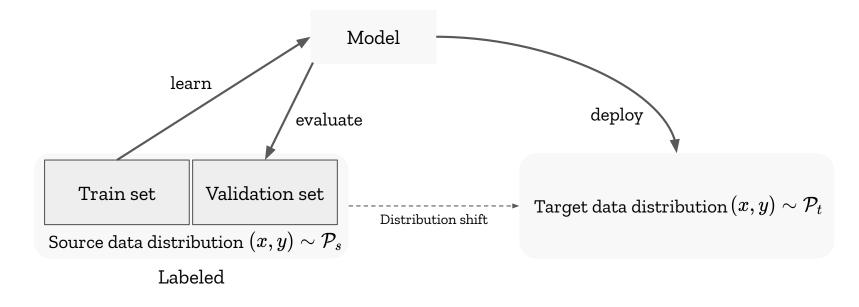
Evaluation over Time: Monitoring

Continually evaluate as the world changes

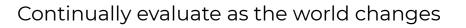


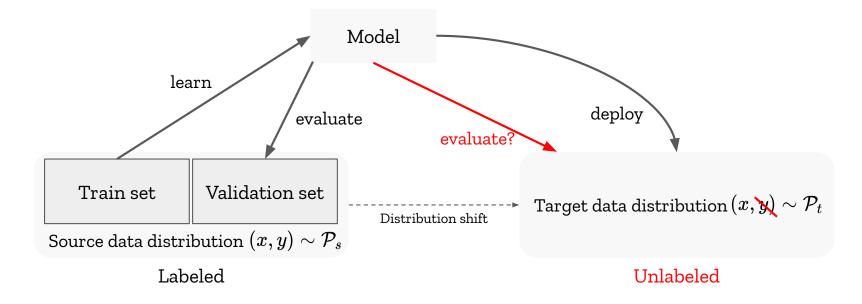
Evaluation over Time: Monitoring





Evaluation over Time: Monitoring





Need to monitor model performance on <u>unlabeled data</u>

Approach: Importance Weighting

Estimate metrics on incoming data

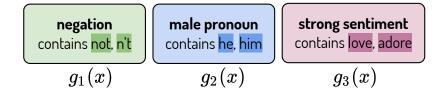
Upweight examples in our dev set more likely to be seen in the future

Theoretical Foundations

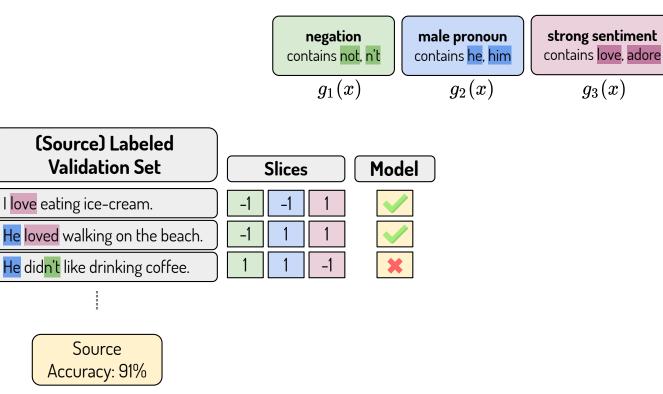
Density ratio estimation (Sugiyama, 2012)

Recent work: accurately estimate performance with *slice-based evaluation + importance weighting*

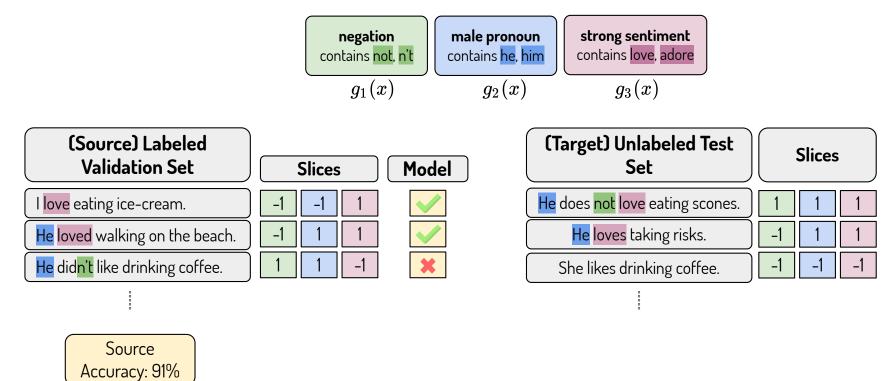
Slice: user-defined grouping of dat $g(x) \in \{-1,1\}$



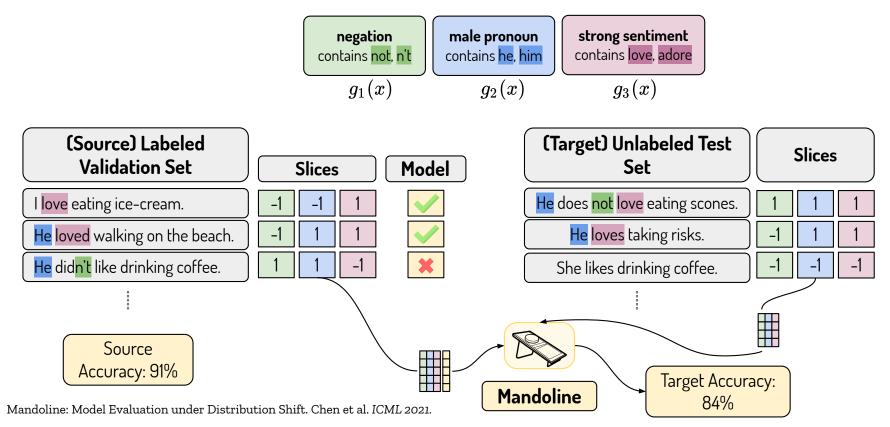
Slice: user-defined grouping of dat $g(x) \in \{-1,1\}$



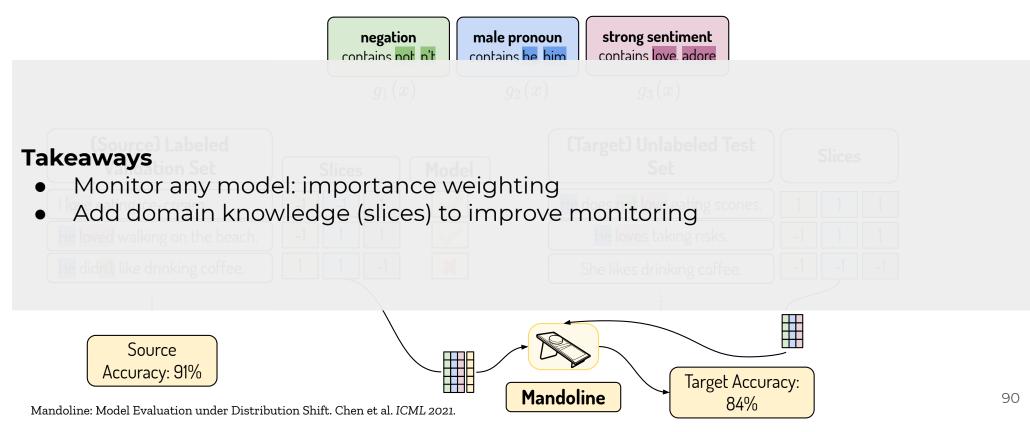
Slice: user-defined grouping of dat $g(x) \in \{-1,1\}$



Slice: user-defined grouping of dat $g(x) \in \{-1,1\}$



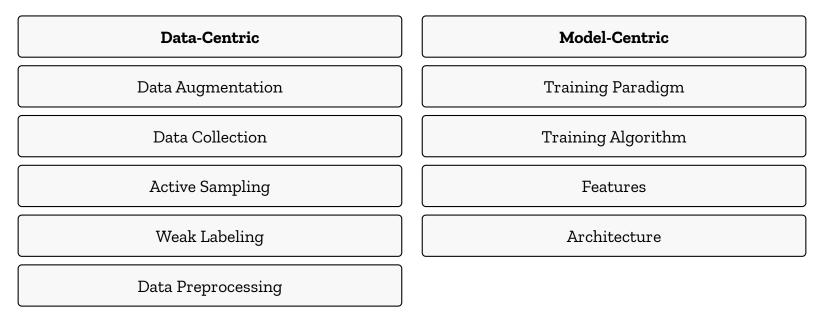
Slice: user-defined grouping of dat $g(x) \in \{-1,1\}$



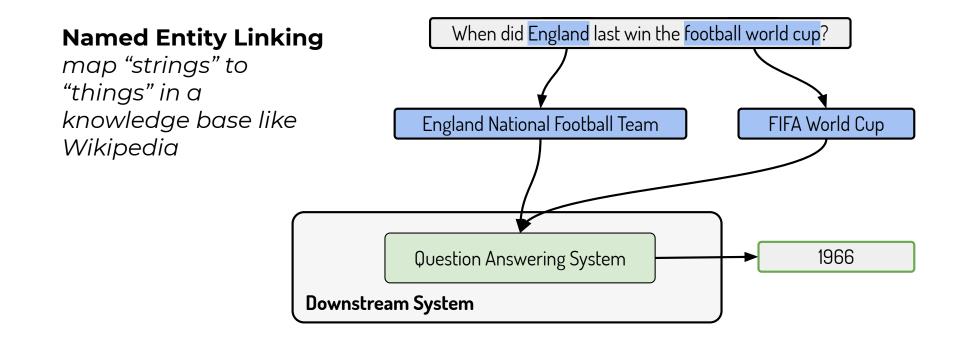
Embedding Model Patching

Once errors are identified, need to retrain or update embeddings

Many Approaches



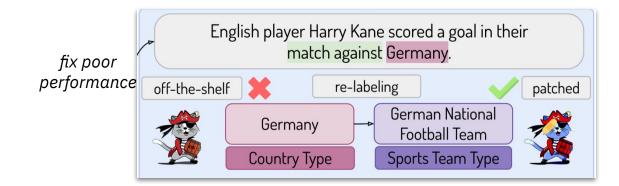
Named Entity Linking



A correct NEL is required for the downstream system!

End to End Example: Named Entity Linking

Repurposing Bootleg NEL system to patch errors for sports QA



Sports QA: prefer if the model predicted the national sports team instead of the country!

End to End Example: Named Entity Linking

Repurposing Bootleg NEL system to patch errors for sports QA

End to End Example: Named Entity Linking

Repurposing Bootleg NEL system to patch errors for sports QA

Wikipedia examples with mentions of countries and sports teams

Subpop.	Gold Label	Pred. Label	Size (Off-The-Shelf \rightarrow Patched)	
	Team	Country Team	$\begin{array}{c} 151 \rightarrow 106 \\ 3393 \rightarrow 3447 \end{array}$	$(\downarrow) \ (\uparrow)$

25% absolute accuracy improvement in sports-related errors

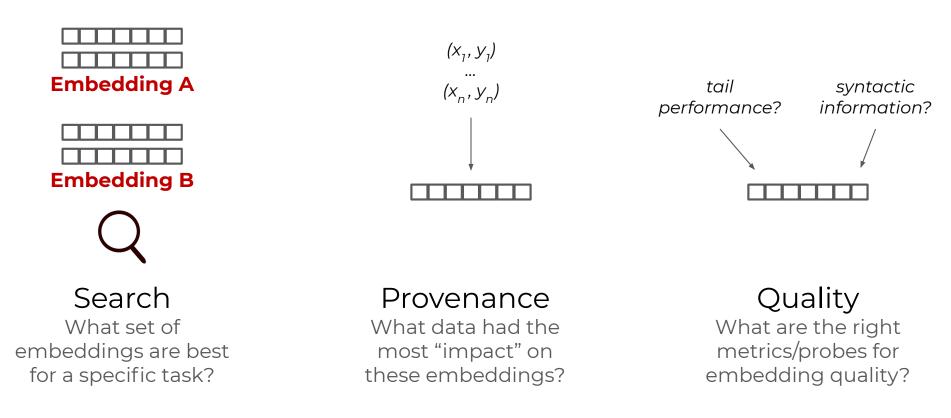
Embedding Model Patching

Data-Centric A area of research!	
Incremental and targeted embedding updates Backwards compatibility for updated embeddin Data-centric vs. model-centric updates	Training Paradigm gs e.g. stability Training Algorithm
Sample efficiency and efficacy of approaches Time-to-update and optimal cadence	

Future Directions

Embeddings as First Class Citizens

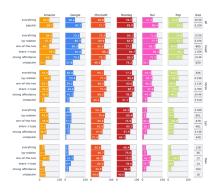
What is the right system for embedding management in ML pipelines?



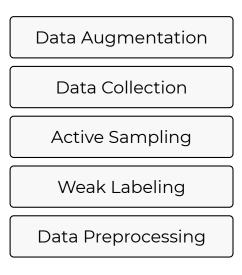
98

End-to-End Model Patching

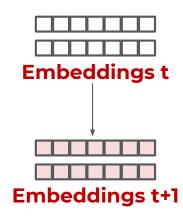
How can we automate and provide guidance for embedding patching?



What are the current failure modes?



What data engineering strategy to use?



How do I update my models efficiently?

Interactive Machine Learning

How can we facilitate human interaction with model training and evaluation data?

