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Motivation of ML4DB

p Machine Learning gets more practical. And

empirical databases meet bottlenecks.

p Various ML models are available. It is

challenging to select proper ML models.

p Rigorous requirements for ML in databases,

e.g., performance, robustness, interpretable.
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p Database Core

p Query Rewrite

p Cost/Cardinality Estimation

p Join Order Selection

p Database Configuration

p Index/View Advisor

p Knob Tuning

p Workload Prediction
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Problem Description DB Tasks

Offline NP
Optimization

Optimize an NP-hard
problem with large search

space

Knob Tuning
Index/View Selection
Partition-key Selection

Online NP
Optimization

Optimize an NP-hard
problem with large search
space (instant feedback)

Query rewrite

Plan Enumeration

Regression
Determine the relationship 

between one dependent 
variable and a series of 

other independent variables

Cost/Cardinality Estimation

Index/View Benefit Estimation

Latency Estimation

Prediction Forecast the likelihood of a 
particular outcome

Trend Forecast

Workload Prediction & Scheduling

Overview of ML4DB
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Method Strategy Search
Space

Training
Data

Offline Optimization
(knob tuning, view

selection, index selection,
partition-key selection)

Gradient
based Local search Small Huge

Deep Learning (DL) Continuous space
approximation Large Huge

Meta Learning Share common 
model weights

Various 
spaces Huge

Reinforcement
Learning (RL) Multi-step search Large --

Online Optimization
(query rewrite, plan

enumeration)

MCTS(Monte Carlo 
Tree Search)+DL Multi-step search Large Huge

Multi-armed Multi-step search Small Small

Overview of NP-hard Problems
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Overview of Regression Problems
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Method Task Feature 
Space Feature Type Training 

Data
Classic ML (e.g., tree-
ensemble, gaussian,
autoregressive)

cost estimation, 
view/index benefit 
estimation

Small Continuous Huge

Sum-Product Network cost estimation Small Discrete Small

Deep Learning cost estimation, 
benefit estimation, 
latency estimation

Large Continuous Huge

Graph Embedding benefit estimation, 
latency estimation

Large Continuous Huge
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Overview of Prediction Problems
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Method Task Target Training Data

Clustering Algorithm Trend
Forecast

High accuracy Huge

Reinforcement Learning Workload
Scheduling

High
performance

--



Optimizing NP-hard Problems
p Offline Optimization vs Online Optimization

Ø Model Selection
• E.g., Offline is model-free and online is model-based

Ø Overhead
• Online requires instant feedback and offline is insensitive

Ø Performance
• Generally offline has better performance

VLDB’21 Tutorial
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Offline Optimization Online Optimization 8



Offline Optimizing NP-hard Problems
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p Motivation:

p DBMSs have numerous runtime metrics. Classic ML models

cannot efficiently select knobs based on all the metrics

p DBMSs have numerous system knobs to choose from, which

makes it harder to find optimal knobs

Offline Optimization for Knob Tuning

p DBMSs have different optimal knob settings, which significantly

affect the query performance and resource utilization
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p Problem Definition

Offline Optimization for Knob Tuning

Consider a database with different workloads, the target is to find the
optimal knob settings, i.e., satisfying SLA or resource requirements
under several constraints (e.g., over 5% throughput improvement).
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Value?
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… …
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Offline Optimization for Knob Tuning

(1) Gradient-based Methods
[Dana et al. SIGMOD 2017], [Kunjir et al. SIGMOD 2020]

[Cereda et al. VLDB 2021]

(2) Deep Learning Method [Tan et al. VLDB 2019]

(3) Meta Learning Method [Zhang et al. SIGMOD 2021]

(4) Deep Reinforcement Learning Methods
[Zhang et al. SIGMOD 2019], [Li et al. VLDB 2019]
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p Existing Works
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Dana Van Aken, Andrew Pavlo, et al. Automatic Database Management System Tuning Trough 
Large-scale Machine Learning. In SIGMOD, 2017. 

(1) Gradient-based Method for Database Tuning
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p Feature Extraction

• Identify Important Knobs à

• Estimate the knob correlations by minimizing the square errors

p Model Construction
• Search Optimial Knobs based on the Runtime Metrics à

• Gaussian Process: (1) Approximate the knob-performance relations
with numerous historical data; (2) Recommend knobs based on the
most similar historical workload

VLDB’21 Tutorial

• Characterize Workload Behaviors à

• Extract and Prune Runtime Metrics (e.g., #-page-
read, #-page-write)



(1) Gradient-based Method for Spark Tuning
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p Feature Extraction
• Spark tuning considers knobs at different levels à

• Empirically estimate execution profiles at resource/APP/VM levels

• Gaussian Process is black-box and requires much training data à

• Guided Gaussian Process: (1) Enhance tuning with the estimated
execution profiles as inputs; (2) Use GP to fit existing tuning data

x: Tested knob setting
Mi: Code overhead value
mc: Required cach storage
mo: GC settings

E.g., Memory Efficiency:

p Model Construction

Mayuresh Kunjir, Shivnath Babu. Black or White? How to Develop an AutoTuner for Memory-
based Analytics. SIGMOD 2020.VLDB’21 Tutorial
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p Feature Extraction
• Buffer Pool is critical resource in cloud databases à

• Only tune the buffer_pool_size knob for higher resource utilization

• Tune buffer size that maximizes resource utilization under SLAs à

• (1) Select buffer sizes for databases with similar database metrics; (2)
Design a neural network to estimate SLA as tuning feedback

p Model Construction

(2) Deep Learning for Buffer Tuning

• Many Metrics affect the response time besides buffer_pool_size à

• Database metrics: logical-read, io-read, QPS, CPU usage, historical RT

J. Tan, T. Zhang, F. Li, et al. iBTune: Individualized Buffer Tuning for Large-Scale Cloud Databases.
VLDB 2019.VLDB’21 Tutorial
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p Feature Extraction

• Boost tuning for new instances à

• (1) Learn meta-learner based on the weighted sum of the base learners;
(2) Fine-tune the meta-learner on the new instance;
(3) Recommend promising knobs

p Model Construction

(3) Meta Learning for Knob Tuning

Xinyi Zhang, Hong Wu, and et al. ResTune: Resource Oriented Tuning Boosted by Meta-Learning for Cloud 
Databases. SIGMOD, 2021.VLDB’21 Tutorial

• Characterize the common features of workloads à

• Meta-Features: Reserved words in the SQLs
• Cluster historical workloads (random forest) and

learn a base learner (meta-features as inputs) for
each workload cluster



(4) Reinforcement-learning for Knob Tuning

p Challenge:
p Basic ML models tune a small part of knobs. It is challenging

to support more knobs with complex correlations.

p High-quality training samples are hard to obtain, especially in

real-world scenarios
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pFeature Extraction
• Map knob tuning into an RL problem à

(4) Reinforcement-learning for Knob Tuning

RL CDBTune
Agent The tuning system
Environment DB instance
State Internal metrics
Reward Performance change
Action Knob configuration
Policy Deep neural network
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Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System 
Using Deep Reinforcement Learning. SIGMOD 2019.VLDB’21 Tutorial
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p Model Construction
• Many Continuous system metrics and knobs à

(4) Reinforcement-learning for Knob Tuning

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System 
Using Deep Reinforcement Learning. SIGMOD 2019.

• Value-based method (DQN)
– Replace the Q-table with a neural network

– Input: state metrics; Output: Q-values for all the actions

• Policy-based method (DDPG)
– (actor) Parameterized policy function:

– (critic) Score specific action and state:

Discrete Action ✕

Continuous State/Action ✓

VLDB’21 Tutorial



Summarization of Knob Tuning
Optimizastion

Target
Loss/Reward

Function
Training

Data
Adaptive 

(workload)

Gradient-based
[SIGMOD 2017]
[SIGMOD 2020]

Performance
The weighting coefficients are equal
to the mean estimates of the target
values

High --

Deep Learning 
[VLDB 2019]

Resource
Utilization High --

Meta Learning
[SIGMOD 2021]

Resource
Utilization

The loss is the number of misranked
pairs the model predicted High ✓

Deep
Reinforcement

Learning
[SIGMOD 2019]

[VLDB 2019]

Performance

Low
(RL does
not need
prepared

data)

✓
(Pre-train
a query
model)

20

I(e): mean square error; λ: Control 
the impact of overestimating

r: the reward; ∆Tt→t-1 / ∆Tt→0:  the 
performance change

VLDB’21 Tutorial



Take-aways of Knob Tuning
p Gradient-based method reduces the tuning complexity by filtering out

unimporant features. However, different scenarios may have different key
features, which makes it hard to train a generalizable tuning model.

p Deep learning method considers both query performance and resource
utilization. And they work better for resource-sensitive scenarios.

p Reinforcement learning methods take longest training time, e.g., hours, 
from scratch. However, it only takes minutes to tune the database after well 
trained and gains relatively good performance.

p Learning based methods may recommend bad settings when migrated to 
a new workload. Hence, it is vital to validate the tuning performance.

p Open problems:
Ø Predict workload execution performance for knob tuning
Ø One tuning model fits multiple databases
Ø Utilize empirical knowledge

21VLDB’21 Tutorial



p Materialized Views (MVs) optimize queries

• Share common subqueries 

p Space-for-time trade-off principle

• Materialize hot data (MVs) within limited space

• How to estimate the MV utilities

p The number of potential MVs grows exponentially

• Greedy/Genetic/other-heuristics work bad

p Motivation:

Offline Optimization for View Selection

22VLDB’21 Tutorial



p Problem Definition

Offline Optimization for View Selection

Given a workload Q and a space budget, select optimal subqueries to
materialize (MVs), including (i) candidate MV generation; (ii) MV Selection.

23

Queries

MV?View Selection

MV?

MV?

…

…

Views

…

…

Views

…

…
MV?
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pTwo sub-problems

l Benefit estimation

n Estimate the benefit of materializing a view
u Cost(q) - Cost(q,v), q is a query and v is a view

l View selection

l Select views from a large number of possible
combinations to maximize the benefit within a budget

Offline Optimization for View Selection

24VLDB’21 Tutorial



Offline Optimization for View Selection

(1) Hybrid View Selection
[Ahmed et al. VLDB 2020]

(2) DRL for View Selection
[Yuan et al. ICDE 2020]

(3) Encoder-Decoder for View Benefit Estimation
[Han et al. ICDE 2021]

25

p Existing Works

VLDB’21 Tutorial
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p Feature Extraction
• Numerous common subqueries among workload queries à

• Cluster equivalent queries and select the least overhead ones
as the candidate;

p Model Construction
• Numerous combinations of

candidate subqueries à

• (1) Solve MV Selection with
Q-learning: (2) Estimate the
MV utility with a deep
neural network

DRL for View Selection

H. Yuan, G. Li, L. Feng, and et al. Automatic view generation with deep learning and 
reinforcement learning. In ICDE, 2020.VLDB’21 Tutorial



p Indexes are essential for efficient execution
Ø SELECT c_discount from bmsql_customer where c_w_id = 10;

Ø CREATE INDEX on bmsql_customer(c_w_id);

p Select from numerous indexable columns
Ø Columns have different access frequencies, data distribution

p Redundant indexes may cause negative effects

Ø Increase maintenance costs for update/delete operations

Offline Optimization for Index Selection

p Motivation:

27VLDB’21 Tutorial



p Problem Definition

Offline Optimization for Index Selection

Given a workload and constraints (e.g., disk limit), find an index
set, such that the performance is optimal with the constraint.
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Queries

Create?Index Selection

Create?

Create?

…

…

Candidate Indexes

…

…

Indexes

…

…
Create?
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p Two sub-problems
l Benefit estimation

n Estimate the benefit of creating an index
u Cost(q) - Cost(q, index), q is a query

l Index selection

l Select indexes from a large number of possible
combinations to maximize the benefit within a budget

Offline Optimization for Index Selection

29VLDB’21 Tutorial



DRL for Index Selection

Ø Map candidate indexes
with empirical rules

Ø Map the index selection problem into a reinforcement learning model

State: Information of current built indexes

Action: Choose an index to build

Reward: Cost reduction ratio after building the index

discrete space

large space

DQN Model

H. Lan, Z. Bao, Y. Peng. An Index Advisor Using Deep Reinforcement Learning. CIKM, 2020. 30

p Feature Extraction

p Model Construction

VLDB’21 Tutorial



Take-aways of View/Index Selection

p Learned selection is more robust than heuristics 
p Learned selection works well in online service, but takes 

much time for model training (cold start)
p Query encoding models need to be trained periodically

when data update
p Open problems:

Ø Benefit prediction for future workload
Ø Cost for future updates
Ø Support updates/eviction

31VLDB’21 Tutorial



Ø A vital component in distributed database

• Place partitions on different nodes to speedup queries

• Trade-off between data balance & access frequency

Ø Database partition problem is NP-hard

• Combinatorial problem: 61 TPC-H columns, 145 query 

relations, 2.3 x 1018 candidate combinations

p Motivation:

Offline Optimization for Database Partition

32VLDB’21 Tutorial



SELECT * FROM customer,lineitem WHERE c_nationkey = l_suppkey and c_nationkey < 4;

customer
c_custkey c_nationkey
1 15
2 13
3 1
4 4

lineitem
l_orderkey l_suppkey
197 15
69 13
161 1
64 15

Distribute by HASH 
(c_custkey)

Distribute by HASH 
(l_orderkey)

customer_ p_00
2 13
4 4

customer_ p_01
1 15
3 1

lineitem_p_00 
64 15

lineitem _p_01
197 15
69 13
161 1

Raw 
Tables

Node 0

Node 1

Offline Optimization for Database Partition

33

p Problem Definition

VLDB’21 Tutorial



Heuristic Method for Offline Co-Partition
p Select from foreign-key relations between tables à

Ø ↑ Data-locality: Maximum spanning tree for each query

Ø ↓ Data-redundancy: Enumerate selected partitions with DP

34
Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel 

Database Systems. SIGMOD 2015.VLDB’21 Tutorial
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P. Parchas, et al. Fast and Effective Distribution-Key Recommendation for Amazon 

Redshift. Proc. VLDB Endow, 2020.VLDB’21 Tutorial

Hybrid Methods for Partition-Key Selection

p Combine exact and heuristic algorithms to find good
partition strategies
• The partitioning performance is affected by the join queries à

• Build a weighted undirected graph, where the nodes are tables and
edges are join relations.

• Key Selection on the graph is a maximum weight matching problem à

• Provide both exact (i.e., each table uses a column, and turn into a
integer programming problem) and heuristic (i.e., select the table
columns whose edge weights are maximal) algorithms; and apply the
appropriate algorithm under the time budget.
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p Feature Extraction
• Typical OLAP Workloads contain complex and recursive queries à

• State Features: [ tables, query frequencies, foreign keys ]

p Model Construction
• To select from enumerous

partition-key combinations
and support new queries à

• (1) Use DQN to partition or
replicate tables; (2) Pre-train
a cluster of RL models.

DRL for Offline Partition-Key Selection

Benjamin Hilprecht, Carsten Binnig, Uwe Röhm. Towards learning a partitioning advisor with 
deep reinforcement learning. SIGMOD 2019.VLDB’21 Tutorial



Takeaways of Database Partition

p Learned key-selection partition outperforms heuristic partition

p Learned key-selection partition has much higher partition 

latency for model training

p Open Problems: 

ØAdaptive partition for relational databases

ØPartition quality prediction

ØImprove partition availability with replicates

37VLDB’21 Tutorial



Online Optimizing NP-hard Problems
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p Many queries are poorly-written
Ø Terrible operations (e.g., subqueries/joins, union/union all) ;
Ø Looks pretty to humans, but physically inefficient (e.g., take

subqueries as temporary tables);

p Existing methods are based on heuristic rules
Ø Top-down order may not be optimal (e.g., remove

aggregates before pulling up subqueries)
Ø No evaluation of different rewrite orders

p Trade-off in SQL Rewrite
Ø Best Performance: Enumerate for the best rewrite order
Ø Minimal Latency: SQL Rewrite requires low overhead (milliseconds)

Online Optimization for Query Rewrite
p Motivation:

39VLDB’21 Tutorial
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“SELECT 
      MAX ( DISTINCT L1.col1 )
FROM   lineitem L1
WHERE  L1.col1 = ANY
       (
          SELECT MAX
                   ( C.col1 ) m_key
          FROM customer C,
                      lineitem L2
          WHERE    C.col1 = L2.col1
              AND      ((
                      C.col2<2
                            AND  C.col3<2 )
                      OR       (
                      C.col2<2
                            AND  L2.col2>5 ))
              GROUP BY 
                             C.col1);”

Input SQL Query
Q

<latexit sha1_base64="DCvj8g5IHu/b8PJHwSfGtqDqWoU="></latexit>Aggregate

max(distinct(L1.col1))

O
1

Semi Join

L1.col1 = ANY(..)

O
2

Subquery
(select max..)

O
3

Aggregate
max(C.col1)

O
4

Filter
(C.col2<2…)

O
5

lineitem lineitem customer

Join
C.col1=L2.col1

O
6

Filter

Logic Query Tree Rewrite in Top Down Order 

O
2

O
1

lineitem

Inline 
View

Q1
<latexit sha1_base64="+xerqJ1MvW659V+YJDtTgEojB/M="></latexit>

(o3,r2)(o1,r1)
O

2

O
6

O
3

O
5

lineitem

lineitem customer

Aggregate
max((L1.col1))

O
1

O
4

O
6

O
3

O
5

lineitem customer

O
4

Rewrite in Optimal Order 

O
2

O
6

O
3

O
5

lineitem

lineitem customer

O
2

O
1

lineitem

O
6

O
5

lineitem customer

O
2

lineitem

Filter
O

5

customer

O
2

O
1

lineitem

Filter
O

5

customer

Q2
<latexit sha1_base64="jRIH0D5MrcmfGS6dJldi63jdgBY="></latexit>

Aggregate
max((L1.col1))

O
1

(o4,r1)
O

4

O
3 (o3,r3) OR (… L.lk>10)

(C.ck<2 AND …)  

O
1

(C.col3<2 or 
L2.col2>5)  

(o5,r5)

Filter
C.col2<2

O
7

Planning: 0.341 ms
Execution: > 20 min 

Performance

Planning: 0.172 ms
Execution: 1.941 s

Online Optimization for Query Rewrite
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p Problem Definition
Given a slow query and a set of rewrite rules, apply the rewrite rules
to the query so as to gain the equivalent one with the minimal cost.



Ø The rewrite space is large
• Exponential to the number of rewrite rules

Ø Search rewrite space within time constraints
• Rewrite within milliseconds;

Ø Estimate rewrite benefits by multiple factors
• Reduced costs after rewriting
• Future cost reduction if further rewriting the query

Online Optimization for Query Rewrite
p Challenge:
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p Feature Extraction
• A slow query may have various

rewrite of different benefits à

p Model Construction
• To select from enumerous

rewrite orders à

MCTS for Query Rewrite

• Policy Tree Model

• C↑(vi): previous cost reduction 
• Node vi: any rewritten query

• C↓(vi): subsequent cost reduction 
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• (1) Policy Tree Search Algorithm

• (2) Multiple Node Selection

A Learned Query Rewrite System using Monte Carlo Tree Search.VLDB’21 Tutorial



Take-aways of Query Rewrite
p Traditional query rewrite method is unaware of cost, causing 

redundant or even negative rewrites
p Search-based rewrite works better than traditional rewrite for 

complex queries
p Rewrite benefit estimation improves the performance of simple 

search based rewrite
p Open Problems

Ø Balance Rewrite Latency & Performance
Ø Adapt to different rule sets/datasets

Ø Design new rewrite rules
43VLDB’21 Tutorial



p Planning cost is hard to estimate
Ø The plan space is huge

p Traditional optimizers have some limitations
Ø DP gains high optimization performance, but causes great latency; 

Ø Random picking has poor optimization ability

p Steer existing optimiers can gain higher performance
Ø Hint join orders; Hint operator types

Plan Enumerator
p Motivation:
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Join Order Enumerator
p Problem Definition

Given a SQL query, select the “cheapest” join ordering (according to
the cost model).

45VLDB’21 Tutorial



p Offline Optimization Methods.
Ø Characteristic: given Workload，RL based.

Ø Key idea: Use existing workload to train a learned optimizer, which predicts the
plan for future queries.

p Online Optimization Methods.
Ø Characteristic: No workload, but rely on customized Database.

Ø Key idea: The plan of a query can be changed during execution. The query can
switch to another better plan. It learns when the database executes the query.

Join Order Enumerator
p Method Classification
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1. Marcus R, Papaemmanouil O. Deep reinforcement learning for join order enumeration
2. Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning 

Offline Optimization for Join Order Enumerator

p Map into RL Models (DQ, ReJOIN) [1,2]

Ø Agent : optimizer
Ø Action: join
Ø Environment: Cost model, database
Ø Reward：Cost ,Latency
Ø State : join order
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X. Yu, G. Li, and C.C. et al. Reinforcement learning with tree-lstm for join order selection. In ICDE, 2020.

Feature Encoding for Join Order Enumerator

48

p Feature Extraction

• Encode the operator relations 
and metadata features of the 
query

• Embed the query features with 
Tree-LSTM; Decide join orders 
with RL model

• The structural information of the execution plan is vital to 
join order selection  à
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p Update execution orders of tuples on the fly

• Update the plan on the fly and preserve the execution state à

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000. 

Online Optimization for Join Order Enumerator
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• Tuples flows into the Eddy from input relations
(e.g., R, S, T);

• Eddy routes tuples to corresponding operators
(the order is adaptively selected by the
operator costs);

• Eddy sends tuples to the output only when the
tuples have been handled by all the operators.



Trummer, et al Skinnerdb: Regret-bounded query evaluation via reinforcement learning. In SIGMOD, 2019.

Monte Carlo tree search (MCTS).

� Support online reorder with MCTS à
Ø Do not require pre-training
Ø Time Slides: 0.001s

Ø Learn during runtime
Ø Customize Database

Ø Switch Plan in Low Latency

N way join

MCTS for Join Order Enumerator
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Quality Training 
Cost 

Adaptive  
(workload)

Adaptive 
(DB Instance)

Traditional Methods
[Genetic algorithms]

[Dynamic Programming]
Low Low ✓ High

Offline Optimization 
Methods 

[NEO VLDB2019]
[RTOS ICDE2020]

High High ✕ Medium

Online Optimization
Methods

[Eddies SIGMOD2000]
[SkinnerDB SIGMOD2019]

Medium Low ✓ Low

Join Order Enumerator
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Ryan Marcus et al. Bao: Making Learned Query Optimization Practical. In SIGMOD, 2021.

Online Optimization for Plan Hinter

p Enhance query optimization with minor changes
p E.g., Activate/Deactivate loop join for different queries

p Model Plan Hinter as a Multi-armed Bandit Problem
p Model each hint set HSeti as a query optimizer

p For a query q, it aims to generate optimal plan by

selecting proper hint sets, which is dealed as a regret

minimization problem:
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Take-aways of Plan Enumerator
pLearning based algorithm usually gives the plan with low time complexity, 

especially for large queries.
pOffline learning methods use the sampled workload to pretrained the model. It 

will give good plans for the incoming queries. 
pA new database (updates)  will lead to model retraining.
pOnline-learning methods do not need previous workload and can give good 

plans. But it needs the customized engine and is hard to be applied in existing 
databases.

pOpen Problems
Ø Raise the generalization performance of offline learning methods for unseen queries.
Ø Ensure the plan given by learned model is robust (explicable).
Ø Speed up the model training time, e.g. transferring previous knowledge.
Ø Make the model aware of the data update.
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Regression Problems
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Database estimation problems can be modeled as regression
problems, which fit the high-dimension input variables into target features
(e.g., cost, utility) and estimate the value of another variable.

Regression Problems

p Cardinality/Cost Estimation aims to estimate the cardinality of a 
query and a regression model (e.g., deep learning model) can be used.

p Index/View Benefit Estimation aims to estimate the benefit of 
creating an index (or a view), and a regression model can be used to 
estimate the benefit.

p Query Latency Estimation aims to estimate the execution time of a 
query and a regression model can be used to estimate the performance 
based on query and concurrency features.
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Automatic Cardinality/Cost Estimation

p One of the most challenging problems in databases
Ø Achilles Heel of modern query optimizers 

p Traditional methods for cardinality estimation
Ø Sampling (on base tables or joins) 
Ø Kernel-based Methods (Gaussian Model on Samples)
Ø Histogram (on single column or multiple columns)

p Traditional cost models
Ø Data sketching/data histogram based methods 
Ø Sampling based methods

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. How 
good are query optimizers, really? In VLDB, 2015.

p Motivation:
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Categories of Cardinality Estimation
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(1) Supervised Query Methods
Ø Multi-set Convolutional network

Ø Tree-based ensemble

VLDB’21 Tutorial

(2) Supervised Data Methods
Ø Gaussian kernel

Ø Uniform mixture model

(3) Unsupervised Data Methods
Ø Autoregressive

Ø Sum product network



1 Supervised Query Methods for Cardinality Estimation

A regression problem: learn the mapping function between query
Q and its actual cardinality

Query
Model

Queries Cards

Supervised Model Training

Well-Trained
Query Model

Queries

Online Cardinality Estimation

Optimizer
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p Problem Definition
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A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating 
correlated joins with deep learning. In CIDR, 2019.

• Multi-set Convolutional Neural
Network
ØLinear Models for different part of

SQL (table, joins, predicates)

ØPooling Varying-sized 
representations (avg pooling)

ØConcatenate different parts
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1.1 Deep Learning for Cardinality Estimation

p Model Construction

VLDB’21 Tutorial



1.2 Tree-Ensembling for Cardinality Estimation

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri. Selectivity estimation 
for range predicates using lightweight models. PVLDB, 2019. 60

• Challenge: Traditional cost estimation methods assume column independency
Ø Any conjunctive query on columns C can be represented as:

Ø Tree-based ensembles: pass query encoding vectors through the traversal of 
multiple binary trees

p Model Construction
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2 Supervised Data Methods for Cardinality Estimation

Data
Model

Supervised Model Training

Well-Trained
Data Model

Query
Dataset

Cardinality Estimation

Optimizer

Data
Sampler

tuples

Card

Data
Sampler

(Synthetic)
Queries

Dataset

A density estimation problem: learn a joint data
distribution of each data point

p Problem Definition
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M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for 
multidimensional selectivity estimation. SIGMOD, 2015.

Ø Sample rows from the table and 
initialize the bandwidth (distance 
from the true distribution) of the
kernel density model.

• Support point queries on single
tables  à

Ø Pick optimal bandwidth via 
stochastic gradient descent.
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2.1 Kernel-Density for Cardinality Estimation

p Model Construction

VLDB’21 Tutorial

Ø Estimate the cardinality based
on the kernel density model.



Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with 
mixture models. SIGMOD 2020

Ø Sample points within each history queries.
Ø Generating subgroups for the points.
Ø Learn the weights of all the Uniformity Mixture

Models for range queries.
• Support Range Queries à
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2.2 Mixture Model for Cardinality Estimation

p Model Construction
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3 Unsupervised Data Methods for Cardinality Estimation

A regression problem: learn a probability function
for each data point

p Problem Definition

Query
Dataset

Optimizer
Data

Sampl
er

tuples CardData Model
Training

Well-Trained
Data Model

Model

Sampled Tuples
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1. S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. Deep Learning Models for 
Selectivity Estimation of Multi-Attribute Queries. In sigmod, 2020.
2. Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica. 
Deep Unsupervised Cardinality Estimation. PVLDB, 13(3): 279-292, 2019.

• Learn the joint probability 
distribution over columns 
for range queries à
Ø Use Autoregressive Model to

fit the joint probability of
different columns

Ø Support range query with 
Progressive Sampling
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3.1 Autoregressive for Cardinality Estimation (single table)

p Model Construction
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Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica. NeuroCard: 
One Cardinality Estimator for All Tables. PVLDB, 14(1): 61-73, 2021

Ø Learn a single autoregressive model for
all the tables (joined)

Ø Join Sampler provides correct training 
data (sampled tuples from join) by using 
unbiased join counts

Ø Down sampling some tuples when
estimating query with only a subset of
tables according to the fanout scaling.

• Deep AR models can only handle single tables, and 
we need to learn from join correlations à
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3.2 Autoregressive for Cardinality Estimation (multi-tables)

p Model Construction
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Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and 
Carsten Binnig. DeepDB: Learn from Data, not from Queries! PVLDB 13, 13(7): 992-1005, 2020

Ø Split data table into multiple
segments and columns in each
segment are near independent.

Ø SPN: Sum for different filters and
Product for different joins.

Ø RSPN is for AVG aggregation,
NULL values support, non-key
attributes modeling and updatability.

• Different data distributions over 
the tables, which are independent 
from each other à
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p Model Construction

3.3 Sum-Product Network for Cardinality Estimation
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The Relations of Card/Cost Estimation

p Task Target
• Cost estimation is to approximate the execution-time/ resource-

consumption; 

p Correlations
• Cost estimation is based on cardinality

p Estimation Difficulity 
• Cost is harder to estimate than cardinality, which considers multiple 

factors (e.g., seq scan cost, cpu usage)

68VLDB’21 Tutorial



Tree-LSTM for Cost Estimation

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

• Traditional cost estimation uses estimated card, which is inaccurate 
without predicate encoding à
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p Model Construction
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Tree-LSTM for Cost Estimation

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307–319, 2019.

Ø The representation layer learns an embedding of each subquery (global vector 

denotes the subquery, local vector denotes the root operator)

Ø The estimation layer outputs cardinality & cost simultaneously

70

p Model Construction
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Take-aways

p Data-driven methods are more effective for single tables.

p Query-driven methods are more effective for multiple tables.

p Query-driven methods are more efficient than Data-drive methods.

p Data-driven methods are more robust than Query-driven methods.

p Training queries are vital to Query-driven methods.

p Samples are crucial to Data-driven methods.

p Estimators based on neural network are more accurate than 
statistic-based estimators.

p Statistic-based query model is the most efficient.
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p Challenge

p The index/view benefit is hard to evaluate

Ø Multiple evaluation metrics (e.g., index benefit, space cost)

Ø Cost estimation by the optimizer is inaccurate

p Interactions between existing data structures

Ø Multiple column access, Data refresh

Ø Conflicts between MVs

72

Deep Learning for Benefit Estimation
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1 Deep Learning for Index Benefit Estimation

Bailu Ding, Sudipto Das, et al. AI meets ai: leveraging query executions to improve index 
recommendations. In SIGMOD, 2019.

p Motivation: It is critical to 
compare execution costs of 
plans and decide index 
benefits à

Ø Training Data: Workloads and execution feedback 
from customers

Ø Well-trained Evaluation Model: Predict the index 
performance

Ø Use the evaluation model to create indexes with 
performance gains

73

p Model Construction

VLDB’21 Tutorial



74

p Feature Extraction
• Previous work take candidate views as fixed length à

• Encode various number and length of queries and views with an
encoder-reducer model, which captures correlations with attention

p Model Construction
• It is hard to jointly consider

MVs thatmay have conflicts à

• (1) Split the problem into sub-
steps that select one MV; (2)
Use attention-based model to
estimate the MV benefit

2 Encoder-Decoder for View Benefit Estimation

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system 
with deep reinforcement learning. In ICDE, 2021.VLDB’21 Tutorial



Take-aways of Benefit Estimation
p Learned utility estimation is more accurate than traditional empirical 

methods
p Learned utility estimation is also accurate for multiple-MV 

optimization
p Query encoding models need to be trained periodically when data

update
p Open problems:

Ø Benefit prediction for future workload
Ø Cost of initialization and future updates
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Deep Learning for Query Latency Estimation

• Performance prediction of 
single queries à

R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for query performance prediction. 
Proc. VLDB Endow., 2019.

Ø Represent each operator with a neural unit
Ø Each neural unit predicts the execution time 

of its operator
Ø Construct a network that matches the 

query structure to predict the query latency
Ø Take effects of concurrent queries as 

parallel operators (e.g., gather, parallel join)
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p Model Construction
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X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020.

• Performance prediction of concurrent queries à

Ø Represent concurrent queries with a graph model

Ø Embed the graph with graph convolution network and predict the latency of all 

the operators with a simple dense network
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Graph Embedding for Query Latency Estimation
p Model Construction
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Prediction Problems
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p Concurrency Control is Challenging
Ø #-CPU Cores Increase

p Transaction Management Tasks
Ø Transaction Prediction
Ø Transaction Scheduling

p Effective Scheduling can Improve the Performance
Ø Minimize conflicts between transactions

p Motivation

79

Prediction Problems
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Learned Transaction Prediction

Lin Ma, Dana Van Aken, and et al.  Query-based Workload Forecasting for 
Self-Driving Database Systems. In SIGMOD, 2018.

p Predict the future trend of different workloads à

Ø Pre-Processor identifies query templates and the arrival-rate    
from the workload;

Ø Clusterer combines templates with similar arrival rate patterns
Ø Forecaster utilizes ML models to predict arrival rate in each cluster
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Learned Transaction Scheduling

Chi Zhang, Ryan Marcus, and et al. Buffer Pool Aware Query Scheduling via Deep 
Reinforcement Learning. In VLDB, 2020.

p Learn to schedule queries to minimize disk 
access requests à

Ø Collect requested data blocks 
(buffer hit) from the buffer pool: 

Ø State Features: buffer pool size, 
data block requests, ;

Ø Schedule Queries to optimize 
global performance with Q-learning
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ML Methods in ML4DB
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Summarization of ML4DB Techniques
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Classical ML Methods

VLDB’21 Tutorial

p Techniques
• Gradient methods (e.g., GP); Regression methods (e.g., tree-

ensembling, kernel-density estimation)

p Advantages
• Lightweight; Easier to interpret than DL

p Disadvantages
• Hard to extend to large data; Complex feature engineering

p ML4DB Applications
• Knob Tuning; Cardinality Estimation
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Classical ML Methods
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p Application Difference
Feature Engineering Model Selection

Knob
Tuning

• Reduce the knob space with
linear regression like Lasso;

• Reduce redundant metrics
with factor analysis and
clustering like k-means;

• Gaussian Process: Search local-
optimal settings within the selected
knob space

• Reuse the historical data by matching
workloads by their metric values

Cardinality
Estimation

• Assumptions like column
independency or linear
relations between columns

• Determine supported queries
like range queries

• Query-based: Define input space as
conjunction of the query ranges on
data columns (Tree-Ensemble)

• Data-based: Partition data into
indpendent regions (Sum-Product) or
learn column correlations (AR)
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Classical ML Methods
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p How to apply to a new problem?
p Problem Modelling: As a regression or gradient-based

optimization problems

p Feature Engineering: Determine the input with feature

engineering techniques

p Model Construction: Select proper classic ML models, collect

sample data, and learn the mapping relations
p Additional Requirements: Reuse classic ML models in limited

scenarios (e.g., similar workloads)
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p Techniques
• Model-based (e.g.,, MCTS+DL);

• Model-free (e.g., value-based like Q-learning, policy-based like DDPG)

p Advantages
• High performance on large search space; No prepared data

p Disadvantages
• Long exploration time; Hard to migration to new scenarios

p ML4DB Applications
• Knob Tuning, View/Index/Partition-key Selection, Optimizer, Workload

Scheduling

Reinforcement Learning Methods
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Input Features RLMethod Reward Design Estimation Model

Knob
Tuning

• Knobs Values
• Innter Metrics
• Workloads

• DDPG for both
continuous
state and
continuous
actions

• Performance
improvements
over last tuning
action

• Performance
improvements
over first tuning
action

• Design a dense
network as the
estimation (critic)
model

Reinforcement Learning Methods
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Input Features RLMethod Reward Design Estimation Model
View

Selection
• Candidate Views
• Built Views
• Workload

• DQN for
continuous
state and
discrete
actions

• Utility increase
on creating the
views

• Encoder-decoder
for inputs;
Nonlinear layers
for utility
estimation

Index
Selection

• Candidate
Indexes

• Built indexes
• Workload

• Utility increase
on creating the
indexes

• Design a dense
network as the
estimation model

Partiton-
key

Selection

• Columns
• Tables
• Query templates

• Estimated costs
beofore/after
partitioning

• Design a dense
network as the
estimation model

Reinforcement Learning Methods
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Input Features RLMethod Reward Design Estimation Model
Query

Rewrite
• Logical Query
• Rewrite Rules
• Table Schema

• MCTS for
tree search

• Utility increase
for future
optimal queries

• Multi-head
attention for
rules, query, data

Join
Order

Selection

• Physical Plan
• Candidate

Joins
• Table Schema

• DQN for
continuous
state and
discrete
actions

• Saved costs • Design a dense
network as the
estimation model

Plan
Hinter

• Physical Plan
• Hint Sets

• Contextual
Multi-armed
for limited
actions

• Saved costs • Traditional
Optimizer

Reinforcement Learning Methods
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p How to apply to a new problem?
p Problem Modelling: Map to the 6 factors in a RL model
(state, action, reward, policy, agent, environment)

p Feature Characterization: Select target-related features as the

state of the RL problem

p Model Construction: Select proper RL models (e.g., MCTS,

DQN, DDPG), design the networks and the reward function
p Additional Requirements: E.g., encode the query costs with

Deep Learning; encode the join relations with GNN

Reinforcement Learning Methods
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p Techniques
• Dense Layer ((non)-linear); Convolutional Layer; Graph

Embedding Layer; Recurrent Layer

p Advantages
• Approximate the high-dimension relations

p Disadvantages
• Data-consuming

p ML4DB Applications
• Cost Estimation; Benefit Estimation; Latency Estimation

Deep Learning Methods
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Deep Learning Methods
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Input Features Feature Encoding Model Design
Cost

Estimation
• Physical Plan • Encode operators

with LSTM
• Plan-structured

Neural Network

Benefit
Estimation

• Physical Plan
• Optimization

Actions (e.g.,
views. indexes)

• Encode actions
like Encoder-
Decoder for Views
and linear layer for
Indexes

• Design a dense
network as the
estimation model

Latency
Estimation

• Physical Plan
• Query Relations
• DB State

• Encoder query
correlations with
graph covolutions

• Design a K-layer
graph embedding
network for K-hop
neighbors
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p How to apply to a new problem?
p Input Features: Select features that affect the estimation

targets (e.g., latency, utility)

p Encoding Strategy: Encode based on the feature structures

(e.g., Graph embedding for query relations)

p Model Design: Design the network structures (e.g., layers,

activation functions, loss functions) based on the input
embedding (e.g., fixed-length or varied-length)

Deep Learning Methods



Open Problems of ML4DB
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p Lightweight Model Training 
Ø Featurization: Some features are not available in real-word scenarios, e.g.,

by privacy constraints;
Ø Data Collection: Costly to collect data on different datasets/ databases, 

e.g., high collection latency, overhead;
Ø Model Migration&Application: ML models trained on small datasets are

hard to generalize to large datasets

p Possible solutions: few-show learning; from data-driven to 
knowledge-driven; super-large pre-trained model

Open Problem #1: Reduce Model Training Overhead
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p Model Validation

Ø Whether a model is effective?

Ø Whether a model outperforms existing ones?

Ø Whether a model can adapt to new scenarios?
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Open Problem #2: Validate Learning-based Models
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p High Adaptability
Ø Workloads: query operators; plan structures; underlying data access

Ø Datasets: tables; columns; data distribution; indexes / views; data updates

Ø DB Instances: state metrics (DB, resource utilization): hardware 

configurations

Ø DBMSs: MySQL; PostgreSQL; MongoDB; Spark

p Possible Solutions: common knowledge extraction; meta 

learning
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Open Problem #3: One Model Fits Various Scenarios
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p Automatic Database Assembling
Ø Automatically select ML models/algorithms for different tasks
Ø Evaluate the overall performance

Database Assembling The Stack of ML Algorithms 

Category Method

Supervised
Learning

Linear Regression
Logistic Regression
Decision Tree
Deep Learning

Unsupervis
ed Learning

K-Means Clustering
Association Rules
Reinforcement Learning

Descriptive
Statistics

Count-Min Sketch
Data Profiling
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Open Problem #4: Automatic Learned Model Selection
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p Arrange Multiple Database Optimization Tasks
p Multiple Requirements: (1) Optimizer can produce good plans with not very

accurate estimator; (2) Creating indexes may incur the change of optimal knobs
p Hybrid Scheduling: Arrange different optimization tasks based on the database

configuration and workload characters
p Optimization Overhead: Achieve maximum optimization without competing

resources with user processes

ü Challenges: various task features; correlations between tasks; trend changes
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Open Problem #5: Unified Database Optimization
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Thanks
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Traditional Methods and Problems
p Manual-based Methods (e.g., knob tuning)

• It is costly and time-comsuming for DBAs to optimize components

p Heuristic Search/Equations/Rules (e.g., cost/view/index estimation)

• Produce sub-optimal solutions; cannot learn from historical data; fail to handle

complex scenarios

p Optimal algorithms (e.g., join order selection, view selection)

• Assumptions may not be satisfied in most scenarios
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ML Method Description Example DB Tasks

Gradient-based
Methods

Approximate the data 
distribution with gaussian 
functions, and select the 

optimal point by the guidance 
of gradients

Knob Tuning; Cardinality 
Estimation

Contextual Multi-
armed Bandit

Maximize the reward by 
repeatedly selecting from a 

fixed number of arms
Plan Hint; Knob Tuning; MV 
Selection; Index Selection; 
Database Partition; Join Order 
Selection; Workload ScheduleDeep Reinforcement

Learning
Learn the selection (actor) or 
estimation (critic) policy with 

neural networks

Monte Carlo Tree
Search

Repeated iterations of four 
steps (selection, expansion, 

simulation, back-propagation) 
until termination

Query Rewrite; Online Join 
Order Selection

ML Models for Optimization Problems
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ML Method Description Example DB Tasks

Statistical ML
Build a regression model to 

approximate real 
distribution based on 

sampled data

Cardinality Estimation; Trend
Prediction

Sum-Product Network
Learn distributions with

Sum for different filters and 
Product for different joins

Cardinality Estimation

Deep Learning (e.g.,
DNN, CNN, RNN)

Learn the mapping relations
from the input features to

the targets by graident
descent

Knob Tuning; Cardinality 
Estimation; Cost Estimation

VLDB’21 Tutorial

ML Models for Regression Problems
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ML Method Description Example DB Tasks

Generative Model
(e.g., Encoder-

Decoder)

Encode varied-length input
features into fixed-length

vector with mechanisms like
multi-head attention

MV Selection

Graph Convolutional
Network

Encode graph-structured
input features with

convolutions on the vertex
features and their K-hop

neighbor vertices

Query Latency
Prediction

Meta Learning

Use the base models to form
the target model based on
the task similarity and the
prediction accuracy during

usage

Knob Tuning

VLDB’21 Tutorial

ML Models for Others


