Big Data Software: What’s Next? (and what do we have to say about it?)

Michael Franklin
43rd VLDB Conference
Munich
August 2017
The VLDB Keynote “Sandwich”

“Traditional Apps“
Accounting, Reconciliation, and Reporting

MACHINE LEARNING

Data Science

INTERNET of THINGS

Data Management System

The Data Center under your Desk - How Disruptive is Modern Hardware for DB System Design?
Wolfgang Lehner (Technische Universita’t Dresden)
Tuesday 29 August, 8:30-10:00

While we are already used to see more than 1,000 cores within a single machine, the next processing platforms for database engines will be widely heterogeneous with built-in GPU-style processors as well as specialized FP-GAs and chips with domain-specific instruction sets taking advantage of the “Dark Silicon” effect. Moreover, the traditional volatile as well as the upcoming non-volatile RAM with capacities in the 100s of TBytes per machine will provide great opportunities for storage engines but also call for radical changes on
Big Data = Nearly every field of endeavor is transitioning from “data poor” to “data rich”
The Fourth Paradigm of Science

1. Empirical + experimental
2. Theoretical
3. Computational
4. Data-Intensive
Open Source Ecosystem & Context

2006-2010
Autonomic Computing & Cloud

2011-2016
Big Data Analytics

Usenix HotCloud Workshop 2010
“Making Sense at Scale”

6 years (2011-2016)
~12 faculty; ~120 PhD & Postdocs
DB+Systems+ML
NSF Expeditions, DARPA, DOE, DHS, 40+ Companies
Pubs in SIGMOD/VLDB/ICDE, OSDI/NSDI/SOSP/SOCC/
SIGCOMM, NIPS/ICML/ICDM, HCOMP...

Some Stats:
• 3 ACM Dissertation Awards (1 + 2 HMs)
• 2 CACM Research Highlights
• 4 Spinout companies: ~$400M in venture funding
• 3 Marriages (and numerous long term relationships)
Berkeley Data Analytics Stack

In House Applications – Genomics, IoT, Energy, Cosmology

Access and Interfaces

Processing Engines

Storage

Resource Virtualization

Access and Interfaces

Processing Engines

Storage

Resource Virtualization
A CONFLUENCE OF ML, SYSTEMS AND DATABASE THINKING
DB Thinking Meets Systems Thinking?

MapReduce: A major step backwards

By David DeWitt on January 17, 2008

[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and Michael Stonebraker]
DB Thinking Meets Systems Thinking?

“MapReduce may be a good idea for writing certain types of general-purpose computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive applications
2. A sub-optimal implementation, in that it uses brute force instead of indexing
3. Not novel at all - it represents a specific implementation of well known techniques developed nearly 25 years ago
4. Missing most of the features that are routinely included in current DBMS
5. Incompatible with all of the tools DBMS users have come to depend on”
AT THE TIME, MANY IN THE DB CAMP AGREED
Disruptive Technology (low end/new market)

SOURCE CLAYTON M. CHRISTENSEN, MICHAEL RAYNOR, AND RORY MCDONALD
DB Thinking Meets Systems Thinking?

“MapReduce may be a good idea for writing certain types of general-purpose computations, but to the database community, it is:

1. **A giant step backward** in the programming paradigm for large-scale data intensive applications
2. **A sub-optimal implementation**, in that it uses brute force instead of indexing
3. **Not novel at all** - it represents a specific implementation of well known techniques developed nearly 25 years ago
4. **Missing most of the features** that are routinely included in current DBMS
5. **Incompatible with all of the tools** DBMS users have come to depend on”
BUT “DATABASE THINKING” IS DRIVING THE IMPROVEMENT PROCESS
Spark’s Philosophy

- Specializing MapReduce leads to stovepiped systems
- Instead, **generalize** MapReduce:
 1. Richer Programming Model ➔ Fewer Systems to Master
 2. Memory Management ➔ Less data movement leads to better performance for complex analytics
Abstraction: *Dataflow Operators*

- map
- filter
- groupBy
- sort
- union
- join
- leftOuterJoin
- rightOuterJoin
- reduce
- count
- fold
- reduceByKey
- groupByKey
- cogroup
- cross
- zip
- sample
- take
- first
- partitionBy
- mapWith
- pipe
- save
- ...
Abstraction: **Dataflow Operators**

- `map`
- `filter`
- `groupBy`
- `sort`
- `union`
- `join`
- `leftOuterJoin`
- `rightOuterJoin`
- `reduce`
- `count`
- `fold`
- `reduceByKey`
- `groupByKey`
- `cogroup`
- `cross`
- `zip`
- `sample`
- `take`
- `first`
Memory Mgmt in Hadoop MR
Memory Mgmt in Spark

Training Data (HDFS) -> Cached Load

Map -> Reduce
Map -> Reduce
Map -> Reduce
Memory Management in Spark

10-100x speed up vs. Hadoop MapReduce with no HDFS data migration needed

Efficiently move data between stages

Training Data (HDFS)
Memory Management in Spark

Efficiently move data between stages

10-100x speed up vs. Hadoop MapReduce with no HDFS data migration needed
Memory Management in Spark

- Efficient move data between stages
- 10-100x speed up vs. Hadoop MapReduce with no HDFS data migration needed
Lineage (aka Logical Logging)

• **RDDs:** **Immutable** collections of objects that can be stored in memory or disk across a cluster
 - Built via parallel transformations (map, filter, …)
 - Automatically rebuilt on (partial) failure

```scala
messages = textFile(...).filter(_.contains("error"))
  .map(_.split('t')(2))
```

Lineage (aka Logical Logging)

- **RDDs**: Immutable collections of objects that can be stored in memory or disk across a cluster
 - Built via parallel transformations (map, filter, ...)
 - Automatically reconstructed via materialization.


```scala
messages = textFile [...] .filter(_.contains("error")) .map(_.split("\t")).list()
```
Spark Native SQL Support

Spark SQL, DataFrames and Datasets Guide

- Overview
 - SQL
 - Datasets and DataFrames
- Getting Started
 - Starting Point: SparkSession
 - Creating DataFrames
 - Untyped Dataset Operations (aka DataFrame Operations)
 - Running SQL Queries Programmatically
 - Global Temporary View
 - Creating Datasets
 - Interoperating with RDDs
 - Inferring the Schema Using Reflection
 - Programmatically Specifying the Schema
 - Aggregations
 - Untyped User-Defined Aggregate Functions
 - Type-Safe User-Defined Aggregate Functions
- Data Sources
 - Generic Load/Save Functions
 - Manually Specifying Options
 - Run SQL on files directly
 - Save Modes
 - Saving to Persistent Tables
 - Bucketing, Sorting and Partitioning
 - Parquet Files
 - Loading Data Programmatically
 - Partition Discovery
DataFrames
(main abstraction in Spark 2.0)

employees
 .join(dept, employees("deptId") === dept("id"))
 .where(employees("gender") === "female")
 .groupBy(dept("id"), dept("name"))
 .agg(count("name"))

Notes:
1) Some people prefer this to SQL 😊
2) Dataframes can be typed (called “Datasets”)

Notes:
Catalyst Optimizer

• Typical DB optimizations across SQL and Dataframes
 – Extensibility via Optimization Rules written in Scala
 – Open Source optimizer evolution!
• Code generation for inner-loops, iterator removal
• Extensible Data Sources: CSV, Avro, Parquet, JDBC, ...
 via TableScan (all cols), PrunedScan (project),
 FilteredPrunedScan(push advisory selects and projects)
 CatalystScan (push advisory full Catalyst expression trees)
• Extensible (User Defined) Types
• Cost-based (as of v2.2)

Catalyst Optimizer

• Typical DB optimizations across SQL and Dataframes
 – Extensibility via Optimization Rules written in Scala
 – Open Source optimizer evolution!

• Code generation for inner-loops, iterator removal

• Extensible Data Sources: CSV, Avro, Parquet, JDBC, ...
 via TableScan (all cols), PrunedScan (push advisory selects),
 FilteredPrunedScan (push advisory selection and projection),
 CatalystScan (push advisory full Catalyst expression trees)

• Extensible (User Defined) Types

• Cost-based (as of v2.2)

An interesting thing about SparkSQL Performance

![Bar chart showing time to aggregate 10 million int pairs (secs)]

- DataFrame SQL
- DataFrame R
- DataFrame Python
- DataFrame Scala
- RDD Python
- RDD Scala

Time to Aggregate 10 million int pairs (secs)
An interesting thing about SparkSQL Performance

![Bar chart showing time to aggregate 10 million int pairs (secs) for different methods: DataFrame SQL, DataFrame R, DataFrame Python, DataFrame Scala, RDD Python, RDD Scala. The chart indicates that RDD Python and RDD Scala are the most efficient, followed by DataFrame SQL and DataFrame R. DataFrame Python and DataFrame Scala are the least efficient.]
Spark Structured Streams (unified)

Batch Analytics

```scala
// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy("action", window("time", "1 hour").count()
  .write.format("jdbc")
  .save("jdbc:mysql://...")
```

Streaming Analytics

```scala
// Read data continuously from an S3 location
val inputDF = spark.readStream.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy("action", window("time", "1 hour").count()
  .writeStream.format("jdbc")
  .start("jdbc:mysql://...")
```
Spark Structured Streams (unified)

Batch Analytics

// Read data once from an S3 location
val inputDF = spark.read.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy("action", window("time", "1 hour")).count()
 .writeStream.format("jdbc")
 .save("jdbc:mysql://...")

Streaming Analytics

// Read data continuously from an S3 location
val inputDF = spark.readStream.json("s3://logs")

// Do operations using the standard DataFrame API and write to MySQL
inputDF.groupBy("action", window("time", "1 hour")).count()
 .writeStream.format("jdbc")
 .start("jdbc:mysql://...")
Putting it all Together: Multi-modal Analytics

// Load historical data as an RDD using Spark SQL
val trainingData = sql("SELECT location, language FROM old_tweets")

// Train a K-means model using MLlib
val model = new KMeans()
 .setFeaturesCol("location")
 .setPredictionCol("language")
 .fit(trainingData)

// Apply the model to new tweets in a stream
TwitterUtils.createStream(...)
 .map(tweet => model.predict(tweet.location))

Current release has similar support for Deep Learning models as well
SPARK MOMENTUM
Spark Meetups (February 2013)

1 group with 538 members
spark.meetup.com
Apache Spark Meetups (August 2017)

619 groups with 406,114 members
spark.meetup.com
Open Source Impact

November 21, 2014
Spark Just Passed Hadoop in Popularity on the Web—Here’s Why

November 4, 2015
Skip the Ph.D and Learn Spark, Data Science Salary Survey Says

Alex Woodie

Prospective data scientists can boost their salary more by learning Apache Spark and its tied-at-the-hip language Scala than obtaining a Ph.D., a recent data science survey by O’Reilly suggests.
A Data Management Inflection Point

- **Scale Out Computing**
 - Processing
 - Storage

- **Elastic Resources**
 - Pay-as-you-go Processing
 - Pay-as-you-go Storage

- **Flexible Data Formats**
 - Schema on Read vs. on Write
 - Direct access to stored data

- **Multimodal Advanced Analytics**
 - Search, Query, Analytics
 - Machine Learning, AI

- **Open Source Ecosystem**
 - Rapid Adoption
 - Rapid Innovation
WHERE “DATABASE THINKING” CAN GET IN THE WAY
Traditional Database Thinking (analytics subset)

+ Declarative Queries and Data Independence
 • Rich Query Operators, Plans and Optimization
 • Separation of Physical and Logical Layers

+ Data existing independently of applications
 • Not as natural to most people as you’d think

+ Importance of managing the storage hierarchy

- Monolithic Systems and Control
- Schema First & High Friction
- The DB Lament: “We’ve seen it all before”
How Database Systems Treat Data
Adapted from Mike Carey, UCI
Database Systems: One way in/out

SELECT
FROM
WHERE

SQL Compiler
Relational Dataflow
Row/Col Store

Adapted from Mike Carey, UCI
Mix and Match Data Access

Adapted from Mike Carey, UCI
Mix and Match Data Access

Adapted from Mike Carey, UCI
From: Spark User Survey 2016, 1615 respondents from 900 organizations
http://go.databricks.com/2016-spark-survey
COMPONENTS USED IN PROTOTYPING AND PRODUCTION

More than one component could be selected.

- 31% DATASETS
- 14% GRAPHX
- 43% MLlib
- 43% SPARK STREAMING
- 67% SPARK SQL
- 67% DATAFRAMES
% OF RESPONDENTS WHO CONSIDERED THE FEATURE VERY IMPORTANT

More than one feature could be selected.

- 91% PERFORMANCE
- 69% EASE OF DEPLOYMENT
- 76% EASE OF PROGRAMMING
- 82% ADVANCED ANALYTICS
- 51% REAL-TIME STREAMING
Spark Ecosystem Attributes

• Spark focus was initially on
 • Performance + Scalability with Fault Tolerance
• Rapid evolution of functionality kept it growing
 • especially across multiple modalities: DB, Graph, Stream, ML, etc.

Database thinking is moving Spark and much of the Hadoop ecosystem up the disruptive technology value curve
Some Other Lessons

• Leverage (create) a popular ecosystem
• Build community - agree on standards: de facto or otherwise
• Solve the most common use cases and avoid complexity from others
• Ease of use + scale up/out trumps raw speed (although winning benchmarks is good for buzz)
• Hellerstein and Brewer’s 262 CS&OS merger at Berkeley set the intellectual stage
What’s Next?

As we heard yesterday, rapidly changing hardware means that there is still a lot of research to be done in performance, scalability and fault tolerance!

But a new set of concerns is moving to the fore...

1) Data Science/Analytics **Full Lifecycle** Concerns
2) Ease of Development and Deployment
3) “Safe” Data Science and Human Factors

And how will DB Thinking help???
If NSF can help foster the evolution and development of both Data Science and Data Scientists over the next decade, we can begin to meet the potential of Data Science to drive new discovery and innovation...

This should include not only a focus on fundamental Data Science, but also on **translational efforts** to move ideas from research to practice across the broadest landscape of commercial applications.
Data Science & Analytics: A Lifecycle View

{Ethics, Policy, Regulatory, Stewardship, Platform, Domain} Environment

Acquire
- Create, capture, gather from:
 - Lab
 - Fieldwork
 - Surveys
 - Devices
 - Simulations
 - etc

Clean
- Organize
- Filter
- Annotate
- Clean

Use / Reuse
- Analyze
- Mine
- Model
- Derive ++ data
- Visualize
- Decide
- Act
- Drive:
 - Devices
 - Instruments
 - Computers

Publish
- Share
 - Data
 - Code
 - Workflows
 - Disseminate
 - Aggregate
 - Collect
 - Create portals, databases, etc
 - Couple with literature

Preserve / Destroy
- Store to:
 - Preserve
 - Replicate
 - Ignore
 - Subset, compress
 - Index
 - Curate
 - Destroy

from the National Science Foundation CISE AC Data Science Report, October 2016
Data “Wrangling”

• Claim: Up to 80% of time spent on cleaning, integrating and preparing data for analysis

• Problems include:
 • Data acquisition and characterization
 • Correcting values and imputing missing data
 • (Re) Formatting
 • Dynamic and evolving data sources

• Data Integration from heterogeneous sources

• Semantic and Performance issues arise

• Machine Learning and Human Processing solutions
Data Cleaning: SampleClean

Key Systems Issues – how to deal with latency and cost of the crowd?

J. Wang, S. Krishnan, et al., A Sample-and-Clean Framework for Fast and Accurate Query Processing on Dirty Data, *SIGMOD 2014*
Ease of Development/Deployment

• Data Analytics is a complex process
• Rare to simply run a single algorithm on an existing data set
• Emerging systems support more complex workflows:
 • Spark MLPipelines
 • Google TensorFlow
 • KeystoneML and Clipper Model Serving (BDAS)
Declarative API \rightarrow Optimizations
(c.f., Database Query Optimization)

Automated ML operator selection

Auto-caching for iterative workloads
KeystoneML

• Current version: v0.3

• Scale-out performance on 10s of TBs of training features on 100s of machines. apps: Image Classification, Speech, Text.

• First versions of node-level and whole-pipeline optimizations.

• KeystoneML system design – ICDE 2017

• Other Results:
 – Principled, scalable hyperparameter tuning. (TuPAQ - SoCC 2015)
 – Advanced cluster sizing/job placement algorithms. (Ernest - NSDI 2016)
Deployment: Model Serving

Clipper: A prediction serving system that spans multiple ML frameworks

- Simplifies model serving
- Bounds latency and increases prediction throughput
- Enables real-time learning and personalization across machine learning frameworks

https://github.com/ucbrise/clipper

Curation and Reproducibility

Data outlives any particular application:

“[Database systems] let you use one set of data in multiple ways, including ways that are unforeseen at the time the database is built and the first applications are written.” (Curt Monash, analyst/blogger)

Z. Zhang et al. HPDC 17:

- Efficient fine-grained lineage for machine learning and advanced analytics pipelines
- Supports code debugging, result analysis, data anomaly removal and computation replay
- Provides interactive answers to queries over lineage
Bias, Privacy and Ethical Issues

"With Big Data comes Big Responsibility"
Humans in the loop

Data Consumers

Data Generators

Data Scientists

Data Processors

People Icons created by Clara Joy from Noun Project
The AMPCrowd System

amplab.github.io/ampcrowd

Leveraging systems and database techniques for hybrid human-in-the-loop analytics (e.g. Straggler Mitigation, Active Learning)

D. Haas, et al., Clamshell: Scaling Up Crowds for Low Latency Data Labeling, PVLDB 9(4)
Haas & Franklin, Cioppino: Multi-tenant Crowdsourcing, HCOMP 2017
Closer Integration With Domains

- Jim Gray and Alex Szalay showed the mutual benefits between databases and science that can gained by close collaboration
- The widespread creation of new Data Science Institutes provides institutional support for such efforts
- DB program committees much be encouraged to recognize this type of work
- (this was the topic of yesterday’s panel)
New Challenges Summary

Performance, Scalability, and Fault Tolerance remain important, but we face new challenges, including:

Data Science Lifecycle
- Data Acquisition, Integration, Cleaning (i.e., wrangling)
- Data Integration remains a “wicked problem”
- Model Building
- Communicating results, Curation, “Translational Data Science”

Ease of Development and Deployment
- Can leverage database ideas (e.g., declarative query optimization)
- New components for “model serving” and “model management”

“Safe” Data Science
- end-to-end Bias Mitigation
- Security, Ethics and Data Privacy
- Explaining and influencing decisions
- Human-in-the-loop

(and don’t ignore Deep Learning...)
Conclusions

• The Database field is seeing tremendous change from above and below
• Big Data software is a classic Disruptive Technology
• Database Thinking is key to moving up the value chain
• But we’ll also have to shed some of our traditional inclinations in order to make progress
Acknowledgements

Thanks to all the amazing AMPLab students, staff, faculty and sponsors
and to the pioneers who developed our increasingly central field
as well as to those who continue to push the boundaries
(apologies to anyone left out of the pictures!)
Thanks and for More Info

Mike Franklin
mjfranklin@uchicago.edu