
Cubrick: A Scalable Distributed MOLAP
Database for Fast Analytics

Pedro Eugenio Rocha Pedreira
Supervised by Luis Erpen de Bona

Federal University of Parana, Curitiba, PR, Brazil.
and Chris Crosswhite

Facebook Inc., Menlo Park, CA, USA.
pedroerp@fb.com

ABSTRACT
This paper describes the architecture and design of Cubrick,
a distributed multidimensional in-memory database that en-
ables real-time data analysis of large dynamic datasets. Cu-
brick has a strictly multidimensional data model composed
of dimensions, dimensional hierarchies and metrics, support-
ing sub-second MOLAP operations such as slice and dice,
roll-up and drill-down over terabytes of data. All data stored
in Cubrick is chunked in every dimension and stored within
containers called bricks in an unordered and sparse fash-
ion, providing high data ingestion ratios and indexed access
through every dimension. In this paper, we describe details
about Cubrick’s internal data structures, distributed model,
query execution engine and a few details about the current
implementation. Finally, we present some experimental re-
sults found in a first Cubrick deployment inside Facebook.

1. INTRODUCTION
Exploratory analysis of large data streams has become

increasingly important as companies move toward leverag-
ing real time data insight services. At Facebook, the abil-
ity to interactively run dashboards and analyze real time
data helps to provide insights for both internal and exter-
nal customers in a timely manner. However, the challenges
of dynamicity, data volume and variability of queries from
exploratory analysis make it challenging to fulfill users’ ex-
pectations using current database technologies.

It is well known that traditional row-store databases are
not suited for analytics workloads [10], and we argue that
even column-stores do not perform well in highly dynamic
workloads containing arbitrary queries, since data is stored
in a particular (or even more than one) order. On the other
hand, current OLAP databases are either (a) based on a re-
lational database (ROLAP) [6] and therefore suffer from the
same problems, (b) rely heavily on pre-aggregations [8] or
(c) do not provide distributed capabilities, i.e., are difficult
to scale [7].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org.
Proceedings of the VLDB 2015 PhD Workshop

In this paper, we present a new database architecture
that targets Facebook’s highly dynamic analytical work-
loads. Cubrick is an in-memory multidimensional database
that can execute OLAP operations such as slice-n-dice, roll-
ups and drill-down over very dynamic multidimensional data-
sets composed of cubes, dimensions, dimensional hierarchies
and metrics as long as the cardinality of each dimension is
known a priori. Typical use cases for Cubrick are loads of
large batches or continuous streams of data for further exe-
cution of OLAP operations, generally generating small and
low latency result sets to be consumed by data visualiza-
tion tools. The system also supports interactive execution
of queries using a subset of SQL, which we call CQL.

Data in a Cubrick cube is range partitioned (or chunked)
in every dimension, composing a set of data containers called
bricks where data is stored sparsely and in an unordered and
append-only fashion. Cubrick works especially well in highly
dynamic systems such as real time data streams; no reorder-
ing or index update is required at load time making ingested
data immediately available to queries. Unlike traditional
data cubes, Cubrick does not rely on any pre-calculations,
rather it distributes the data and executes queries on-the-fly
leveraging MPP architectures.

Queries in Cubrick can contain any type of filter, aggre-
gations over metrics and a set of dimensions to group by.
Since data is partitioned in every dimension, the system can
easily prune entire bricks out based on the query’s filters, so
the more restrictive the search space, the faster the query
is. Data is also periodically synchronized to disk using a key
value store called RocksDB [1] for disaster recovery.

We have implemented Cubrick at Facebook from the ground
up and deployed for a couple of pilot projects; in one of
these deployments, Cubrick is able to execute queries over a
dataset containing a few billion cells in hundreds of millisec-
onds using a single node. In addition, since Cubrick always
returns ordered partial results by design, it can horizontally
scale smoothly.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of current database technologies
and discusses why they are not well suited for this particular
use case, while Section 2.1 points to related work. In Section
3 we detail Cubrick’s internal architecture and data struc-
tures used, as well as explanations about the distributed
model and how queries are executed. Section 4 shows some
results we got from Facebook’s current pilot implementation
of Cubrick, and finally Section 5 concludes this paper.

1

2. BACKGROUND
Cubrick is meant to fill a gap in the current analytic

databases landscape. It has been shown before [10] that tra-
ditional row based relational databases are not well suited
for analytics workloads since they need to materialize en-
tire rows instead of only the columns required by a query.
Column-store databases, on the other hand, usually con-
sume I/O and CPU more efficiently by only materializing the
required columns, and since values for each column (which
by definition have the same data type) are stored contigu-
ously, they usually benefit more from compression and en-
coding techniques. However, since columns are stored in-
dependently these databases must provide a mechanism to
correlate and materialize rows when a query requires values
from more than one column.

Column-wise databases based on the C-Store [10] archi-
tecture correlate different columns by storing them using the
same row based ordering, making row materialization easier
since one can infer the row id based on the storage posi-
tion. Despite being widely used in current data warehouse
deployments, column-wise databases suffer from two major
issues: (a) since data is stored according to some specific or-
dering, insertions, updates and deletes are usually inefficient
operations (batch insertions might alleviate this issue) and
(b) data pruning might not be efficient over columns other
than the ones used in the sort order.

A second approach to deal with analytical workloads is
to use a multidimensional model, also known as data cubes,
modeling data in terms of dimensions, metrics and aggrega-
tions. MOLAP databases, in contrast to ROLAP systems
that suffer from the previously stated problems, leverage
truly multidimensional data structures but usually execute
queries over pre-calculated result sets consisting of aggrega-
tions by different combinations of dimensions. These partial
aggregations are usually heavily indexed and compressed so
that instead of searching the entire raw data the query is
executed over a much smaller set of pre-aggregated data [8].

The process of building these pre-aggregations, however,
is usually computationally intensive and results in a static
or hard to update cube, and can compromise its ability to
scale. In addition, pre-aggregation are computed based on
workload characteristics, making it unsuitable for highly dy-
namic workloads and ad-hoc queries such as the ones found
in data exploratory analysis.

We advocate that these issues make column store and tra-
ditional MOLAP databases less suited for exploratory data
analysis over dynamic datasets and that a new architecture
is in order.

2.1 Related Work
In this section we provide a brief overview of the existing

multidimensional database technologies able to cope with
dynamic data - or the ones that do not strongly rely on pre
computation.

SciDB [9] is an array database with a similar data model
as implemented in Cubrick: a user can define arrays com-
posed by a set of dimensions and metrics. Arrays can sim-
ilarly be chunked into fixed-size strides in every dimension
and distributed among cluster nodes using hashing and range
partitioning. SciDB, however, focuses in scientific work-
loads, which can be quite different from regular MOLAP
use cases. While SciDB offers features interesting for oper-
ations commonly found in image processing and linear al-

gebra, such as chunk overlap, complex user defined opera-
tions, nested arrays and multi-versioning, Cubrick targets
fast but simple operations (like sum, count, max and avg)
over very sparse datasets. In addition, SciDB characteris-
tics like non-sparse disk storage of chunks, multiversioning
and single node query coordinator make it less suited to our
workloads.

Nanocubes [5] is a in-memory data cube engine that pro-
vides low query response times over spatio-temporal multi-
dimensional datasets. It supports queries commonly found
in spatial databases, such as counting events in a particular
spatial region, and produces visual encodings bounded by
the number of available pixels. Nanocubes rely on a quad-
tree like index structure over spatial information which, other
than posing a memory overhead for the index structure, lim-
its (a) the supported datasets, since they need be spatio-
temporal, (b) the type of queries because one should always
filter by spatial location in order not to traverse the entire
dataset and (c) visual encoding output.

Despite being a column-store database and hence not hav-
ing the notion of dimensions, hierarchies and metrics, Goo-
gle’s PowerDrill [4] chunks data in a similar fashion to Cu-
brick. A few columns can be selected to partition a partic-
ular table dynamically, i.e., buckets are split once they be-
come too big. Even though this strategy potentially provides
a better data distribution between buckets, since PowerDrill
is a column store, data needs to be stored following a certain
order, and thus each bucket needs to keep track of which val-
ues are stored inside of it for each column, which can pose
a considerable memory footprint increase. In Cubrick, since
we leverage fixed range partitioning for each dimension, the
range of values a particular brick stores can be inferred based
on its brick id.

3. CUBRICK ARCHITECTURE
In this Section we provide more information about Cu-

brick’s data model, internal data structures leveraged, dis-
tributed model and query engine.

3.1 Data Model
A Cubrick database instance CBKi runs on a Cubrick

cluster and is composed by a set of cubes,
CBKi = {C1, C2, C3, ..., Cn}. Each of these cubes Cj is
further defined by a 3-tuple < Dj ,Mj , Bj >.

Dj = {d1, d2, ..., dm} denotes the set of dimensions that
describes the cube j, while each dimension is further de-
scribed by a 4-tuple in the form
dd =< Ld, Cardd, Chksd,Md >, where

• Ld represents the set of levels for dimension d (|Ld| >
0). A dimension where |Ld| > 1 is called a hierarchical
dimension.

• Cardd denotes the cardinality of dimension d, i.e. the
maximum number of distinct values allowed.

• Chksd = {chk1, chk2, ...chkn} represent a list of dis-
joint sets of valid values for dimension d. In addition,
∀i, j ∈ Chksd, |i| = |j|.

• Mi is a function that maps a particular value for di-
mension d to a chunk chkk in Chki, or Md(v1, v2, ..., vl) :
Chksd.

2

Table 1: Two-dimensional sample data.
Region Gender Likes Comments

CA Male 1425 905
CA Female 1065 871
MA Male 948 802
CO Unknown 1183 1053
NY Female 1466 1210

Complementing the cube definition, Mi = {m1,m2, ...,mh}
represents the set of metrics associated with a cube i, while
Bi contains a set of bricks (or buckets) that comprises the
data stored on the cube, where |Bi| = {Chks1 × Chks2 ×
...× Chksm}.

Each cell of data inserted into the cube i has the form of
a tuple Celli =< d1, d2, ..., dn,m1,m2, ...,mm >, where dx
specify a tuple containing values for each level of a dimen-
sion x. The tuple formed by the values < d1, d2, ..., dn >
is hereafter called cell coordinates. < m1,m2, ...,mz > de-
fine the data associated with the current coordinates, where
z = |Mi|. Based on the coordinate values this cell is then
mapped to a brick bj in Bi by applying Mi to each coordi-
nate.

3.2 Chunking and Data Structures
In a Cubrick cluster, at cube creation time the user must

specify the maximum cardinality and a chunk size for each
dimension, as well as the number and data types of metrics.
Based on each dimension’s chunk size, the cube is segmented
into smaller fixed-sized cubes called bricks, which are used
to store and locate data. Each cell stored by the cube is
therefore allocated to a particular brick b depending on its
coordinates. All bricks are stored in a hash table, and only
created when there is data to be inserted into it.

Within a brick, cells are stored column-wise and in an un-
ordered and sparse fashion. Each brick is composed by one
array per metric plus one array to store a bitwise encoded
value to describe the in-brick coordinates, using a technique
called Bit Encoded Sparse Structures, or bess [2]. BESS is a
concatenated bit encoded buffer that represents a cell’s co-
ordinate offset inside a particular brick on each dimension.
Furthermore, based on the in-brick bess coordinate and on
the bid, it is possible to reconstruct a complete cell coordi-
nate while keeping a low memory footprint. The number of
bits needed to store a cell’s coordinate for a particular cube
i is:

|Di|∑
d=0

dlg |chkd|e

Optionally, a hash table can be maintained per dimension
to associate labels to the actual encoded values.

Adding a new cell to a brick is just a matter of append-
ing data to each in memory array, which is a constant time
operation unless it requires re-allocation. Deletes are sup-
ported providing that their predicates only match entire
bricks. Besides making Cubrick particularly well suited for
applications that require high ingestion rates, the append-
only model facilitates solving conflicts such as concurrent
load operations, since the order in which cells are added to
internal arrays does not matter.

Figure 1 illustrates how Cubrick organizes data from the
two-dimensional two-metric sample dataset in Table 1. In

0 1

2 3

0 1 2 3 4 5 6 7

0

1

2

3

Region Labels (x): Gender Labels (y):

1: CA
0: Unknown
1: Male
2: Female

0: AL

2: CO
3: MA

5: NY
4: WA

6: CO
7: HI

(1425, 905)

(1065, 871)

(948, 802)

(1183, 1053)

Bricks:

(1466, 1210)

0:
 likes:
 comments:
 bess:

1425
905

948
802

1183
1053

011 111 101

0 1 2 2:
 likes:
 comments:
 bess:

1065
0

871
010

3:
 likes:
 comments:
 bess:

1466
0

1210
010

Figure 1: Cubrick data organization. From the top
to the bottom: (a) an illustration of how cubrick
segments the cube space into four bricks, (b) per
dimension label-to-id mappings and (c) how data is
organized and stored inside bricks.

order to store this data in Cubrick, one can create a cube
using the following syntax:

CREATE CUBE cube test

[region 8:4 labeled, gender 4:2 labeled]

(likes, comments);

This piece of DDL defines a cube named cube test com-
prising two labeled dimensions, (a) region with maximum
cardinality of 8 and chunk size of 4 and (b) gender with
maximum cardinality 4 and chunk size 2. This also defines
that the array will store two metrics named likes and com-
ments. After loading the dataset, this cube will comprise by
three active bricks (0, 2 and 3) containing 3, 1 and 1 cells
respectively. Each brick has two metric array plus one for
bess, which in this case takes 3 bits per cell. In this example,
the total memory footprint of a cell is 67 bits (2 * 32 bits +
3 bess bits).

Lastly, another interesting feature that comes inherently
from Cubrick’s data organization and sparse in-brick storage
is the ability to store different sets of metrics in the exact
same coordinate. An appealing use case for it is, considering
the same example as we shown in Table 1, if instead of the
already aggregated data, the data source was composed by
a stream where each row represents one like or one comment
from a particular region and gender. New likes or comments
can be immediatelly queriable upon appending to the cor-
rect brick (as long as the operation executed is additive).
Later on, Cubrick periodically rolls-up the data (removing
coordinate redundancy and aggregating the data) by a back-
ground procedure to keep the dataset small. Those roll ups
are completely transparent to query execution.

3.3 Distributed Architecture
In addition to defining dimension and metrics, in a dis-

tributed cube the user must also specify the segmentation
clause. The segmentation clause is a subset of the cube’s di-
mensions that dictate the granularity in which data for this
cube will be distributed among cluster nodes. This subset
of dimensions forms larger virtual bricks (or v bricks) that
comprises several smaller bricks and are also numbered in

3

row-major order. Finally, v bricks are organized and as-
signed to cluster nodes by using consistent hash techniques
— optionally v bricks can be replicated by using more than
one hash seed.

At query time, if the query has filters in all dimensions
listed under the segmentation clause, the query request is
only sent to the particular nodes that store data; otherwise,
the query is broadcasted to all nodes.

3.4 Query Engine
Queries in a Cubrick cluster are highly parallelizable and

composed by the following steps:
Define search space. All active bricks are evaluated

in order to generate the list of local bricks that need to be
scanned, based on whether they are inside, intersect or out-
side the search space defined by query filters. If the search
space fully encompasses the brick, all cells are scanned with-
out further action; if they intersect, each cell in the brick
will first be compared against the particular filter intersect-
ing the brick; if they are outside the search space, the entire
brick is pruned. Scanning bricks that intersect a query space
is more burdensome since it requires comparisons against
each cell, but occur much less frequently than full scans.

Generate partial results. Queries are first distributed
among cluster nodes based on a query’s filters. After query
distribution, on each node, bricks are assigned to worker
threads that allocate dense buffers per brick based on which
dimension the query groups by (the result set space) or a
hash table if the buffers turn out to be too big. Once all
bricks are scanned, each worker thread merges the buffers
into a single partial result.

Aggregate partial results. All partial results are re-
ceived and aggregated into a single buffer and returned to
the user. Note that since Cubrick allocates dense buffers (or
ordered maps) for partial results, merging buffers is a linear
operation and can be done in parallel.

Currently Cubrick supports the distributive category of
aggregation functions (COUNT, SUM, MIN and MAX) as
defined in [3], but we can support all algebraic operations
using the same query execution methodology.

4. EXPERIMENTAL RESULTS
In Figure 2 we show the query latency of a few Cubrick

queries over two different datasets, one sized 140GB (maxi-
mum one can fit on a 144GB server) and a second one sized
1TB, both running on a 1, 10, 50 and 100 node cluster.
We show the results of three different queries: (a) a query
that scans the entire dataset, (b) a query containing a fil-
ter in one of the dimensions, reducing the search space to
about 30% of the full dataset, and (c) a query that filters by
two dimensions, where the search space is below 1% of the
dataset.

5. CONCLUSIONS AND FUTURE WORK
This paper presents the architecture and design of Cubrick,

a new distributed multidimensional in-memory database for
real-time data analysis of large and dynamic datasets. Cu-
brick chunks the data in each dimension composing smaller
containers called bricks that store data in a sparse and un-
ordered fashion, thereby providing high data ingestion ra-
tios.

Figure 2: Query latency for different search spaces,
dataset size and number of nodes.

For future work, we are exploring how to extend Cubrick
in order to support: (a) efficient counting of distinct val-
ues for dimensions with very high cardinality, (b) dynamic
chunking in order to support datasets with even data distri-
bution more efficiently and (c) paginate bricks in and out of
flash disks on the fly.

6. ACKNOWLEDGMENTS
We would like to thank the valuable feedback we got from

different folks at Facebook, such as Jason Sundram, Burc
Arpat, Satya Satyavarta and Miles McCrocklin, and lastly
for Facebook itself for founding the project.

7. REFERENCES
[1] Facebook Inc. Rocksdb: A persistent key-value store for

fast storage environments. http://rocksdb.org/, 2015.
[2] S. Goil and A. Choudhary. BESS: Sparse data storage of

multi-dimensional data for OLAP and data mining.
Technical report, North-western University, 1997.

[3] J. Gray et al. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data Min.
Knowl. Discov., 1(1):29–53, 1997.

[4] A. Hall, O. Bachmann, R. Buessow, S.-I. Ganceanu, and
M. Nunkesser. Processing a trillion cells per mouse click.
PVLDB, 5:1436–1446, 2012.

[5] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes
for Real-Time Exploration of Spatiotemporal Datasets.
Visualization and Computer Graphics, IEEE Transactions
on, 19(12):2456–2465, 2013.

[6] MicroStrategy Inc. Microstrategy olap services.
https://www.microstrategy.com/us/software/products/
olap-services, 2015.

[7] Oracle Inc. Oracle essbase. http://www.oracle.com/
technetwork/middleware/essbase/overview, 2015.

[8] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: Shrinking the petacube. SIGMOD’02,
pages 464–475, New York, NY, USA, 2002. ACM.

[9] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The
architecture of SciDB. In SSDBM’11, pages 1–16.
Springer-Verlag, 2011.

[10] M. Stonebraker et al. C-store: A column-oriented DBMS.
In Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 553–564. VLDB
Endowment, 2005.

4

